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Biology of the HER2 (ErbB2) receptor I

Yarden & Sliwkowski, Nat. Rev. Mol. Cell Biol. 2:127

Receptor tyrosine kinases play a crucial role in growth and
differentiation of both normal and malignant mammary epithelial
cells.
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Biology of the HER2 (ErbB2) receptor II

I HER2 is a potent signal amplifier via heterodimerizing with
other HE receptors.

I HER2 is overexpressed in 20-30 % of breast cancers.

I Overexpression of HER2 is associated with shorter survival of
cancer patients (3 years vs. 6-7 years).
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The role of lapatinib

Yarden & Sliwkowski, Nat. Rev. Mol. Cell Biol. 2:127

Lapatinib binds to the ATP binding site and blocks the receptor’s
catalytic activity.
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Cell cycle and drug action
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Drugs can

I slow progression of cells through specific phases of the cell
cycle (cytostatic effects), and

I kill cells in specific phases of the cell cycle (cytotoxic effects).
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Goals of our study

We wanted to

I separate quantitatively cytostatic and cytotoxic effects of
lapatinib,

I investigate the cell cycle specificity of the cytostatic action,
and

I determine temporal dynamics and dose-dependence of drug
effects.
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Related works

A very thin list . . .

I Ubezio et al. (1998, 2004, 2006) investigate phase-specific
cytotoxic and cytostatic effects of cisplatin, melphalan and
topotecan – discrete partition of cell cycle into compartments,
discrete progression of time

I Świerniak and Kimmel (and others, 2003) propose
compartmental ODE models and apply methods from otpimal
control theory

I Kheifetz, Kogan and Agur (M3AS 16:1155) predict the effect
of periodic treatments with cycle-specific cytotoxic drugs using
properties of positive compact operators (linear PDE model)
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Experimental procedures

I MCF10A/HER2 cells are grown in well plates over 6 days and
exposed to constant concentrations of drug.

I The cell numbers are counted using a Coulter counter.

I The cell cycle distribution is analyzed using flow cytometry.

I Cells are stained for markers of proliferation and apoptosis
(immunoflurescence assay).
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Flow cytometry

Ubezio, Discrete Contin. Dyn. Syst. Ser. B 4:323

The cell population can be sorted according to the DNA content of
each cell.
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The mathematical model

I We introduce structured populations of proliferating and
nonproliferating cells.

I Nonproliferating cells became necessary as we observed a
saturation of the initially exponential growth after 5 days.

I Cells are characterized by their position in the cell cycle, a
variable we call the maturity of a cell. It can be interpreted
for example as cell size or DNA content.
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Variables of the model

Let t ≥ 0 denote time since the begin of experiment and
a ∈ [0, am] denote maturity (where am is the maximal maturity). In
the absence of cytostatic effects a coincides with the time since the
last mitosis.

Let p(a, t) and n(a, t) denote the densities of proliferating and
nonproliferating cells, respectively.
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Variables of the model

The total number of cells is

M(t) =

∫ am

0
(p(a, t) + n(a, t)) da.

Proliferating cells become nonproliferating as the total cell number
exceeds a critical size. Nonproliferating cells have a maturity, the
point at which they exited the cell cycle. Their number is

N(t) =

∫ am

0
n(a, t) da.
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Model equations for an exponentially growing population

The linear model is given by

∂

∂t
p(a, t) +

∂

∂a
p(a, t)︸ ︷︷ ︸

aging of cells

= −β(a)p(a, t)︸ ︷︷ ︸
loss through mitosis

,

p(0, t) = 2

∫ am

0
β(a)p(a, t) da︸ ︷︷ ︸

binary renewal

,

p(a, 0) = p0(a).

Mitosis occurs at a rate β that depends on maturity.
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Model equations for untreated cells

The model with nonproliferating cells

∂

∂t
p(a, t) +

∂

∂a
p(a, t) = −(β(a) + µ̃(a,M(t)))p(a, t),

∂

∂t
n(a, t) = µ̃(a,M(t))p(a, t),

p(0, t) = 2

∫ am

0
β(a)p(a, t) da,

p(a, 0) = p0(a),

n(a, 0) = 0.

The function µ̃ realizes the transition from the proliferating to the
nonproliferating class, depending on the total cell number M(t).

Peter Hinow Mathematical modeling of experiments with lapatinib



Model equations for treated cells

(
∂

∂t
+

∂

∂a
(1− δ(a, t))

)
p(a, t) = −(β(a) + µ̃(a,M(t)) + ε(t))p(a, t),

∂

∂t
n(a, t) = µ̃(a,M(t))p(a, t)− ε(t)n(a, t),

(1− δ(0, t))p(0, t) = 2

∫ am

0
β(a)p(a, t) da,

p(a, 0) = p0(a),

n(a, 0) = 0.

The effects of the drug are

I decreased maturation velocity 1− δ(a, t), dependent on
maturity a

I additional mortality ε(t).
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Characteristic equations

The characteristic curves are given by the ordinary differential
equation

da

dt
= 1− δ(a, t),

with 0 ≤ δ(a, t) ≤ 1.

In the absence of cytostatic effects, we have δ = 0 and
a− t = const.
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What are the outputs of the model?

Apart from the total population M(t) the model predicts the
fractions of cells in any of the stages of the cell cycle.

G1(t) =

∫ aG1

0
(p(a, t) + n(a, t)) da

/
M(t),

S(t) =

∫ aS

aG1

(p(a, t) + n(a, t)) da

/
M(t),

G2(t) =

∫ am

aS

(p(a, t) + n(a, t)) da

/
M(t),

Here aG1 and aS are suitably chosen boundaries between the age
compartments.
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Parameters to choose

Fixed for all scenarios are

I the maturity space [0, am] and boundaries between phases aG1

and aS ,

I the birth rate β(a), and

I the crowding function µ̃ and threshold M0.

Depending on drug dose we choose

I delay δ, and

I death rate ε.
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Choice of the age space

Let

aG1 = 7,

aS = 11,

am = 30.

If no cytostatic effects are present, cells age as time progresses.
Then these values are hours after mitosis. The control scenario
supports our choices.
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Choice of the proliferation rate

The distribution of intermitotic times φ is a shifted Γ-distribution
Γ(a− 15; 2, 2) with mean 19 h (Dibrov et al. Math. Biosci.
66:167–185).

The corresponding age-dependent proliferation rate is given by

β(a) =
φ(a)

α(a)
,

where

α(a) =

∫ ∞
a

φ(s) ds

is the fraction of cells that reach age a without division.
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Choice of the proliferation rate
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blue: distribution of intermitotic times, red: corresponding
proliferation rate
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Control scenario

Phase contrast images of untreated cells on different days. Cells are
growing in monolayer culture until they reach contact inhibition.
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Control scenario

Staining of untreated cells. Blue – all nuclei, green – marker of
proliferation Ki-67.
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Control scenario
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As the number of cells exceeds M0 = 6 · 105 we see a delayed
growth and a change in the steady-state cell cycle distribution
(discrete symbols – experimental data, continuous curves – model
predictions).
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Choice of transition to nonproliferating class

µ̃(a,M) = µ(a)

{
c(M −M0) if M ≥ M0

0 otherwise
.
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A cell that has entered S-phase will finish it and therefore is less
prone to entering nonproliferation.
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Cell-cycle specificity of delay effect

We want to test the hypothesis that lapatinib affects chiefly cells
in G1 phase. Moreover, the cytostatic effects increase with time,

δ(a, t) = δG1

t

T

{
1 if 0 ≤ a ≤ aG1

0 otherwise.

A sudden onset of cytostatic effects would cause oscillations in the
percentages that are not seen in the experimental data.
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0.1µM lapatinib
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Notice decline in the total population after day 5.
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0.5µM lapatinib
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1µM lapatinib
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2µM lapatinib
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Combined growth curves
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Conclusions

I In monolayer growth culture, lapatinib affects preferentially
cells in G1 phase.

I The strength of the cytostatic effects depends on the drug
dosage and shows saturation at high drug concentrations.

I The cytostatic effect does not set in immediately but
increases over the course of the experiment.

I The cytotoxic effects occur in all treatment cases, however
only after day 5.
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Conclusions
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The strength of the delay in G1-phase δG1 as function of dose is
well described by the equation

δG1(d) =
c1d

1 + c1d

with c1 = 3.5.
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Conclusions

I Our model can be applied to interpret cytostatic and cytotoxic
effects of cell cycle specific drugs.

I The fully continuous model uses few parameters and these
parameters have a straightforward biological interpretation.

I A refined model may be used to study an in vivo situation.

I It is advisable to combine lapatinib with cytotoxic therapeutic
agents that kill not only proliferating cells but also quiescent
cells (e.g. alkylating agents).
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Thank you for your attention.
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