
A model for transfer phenomena in biological
populations

Peter Hinow

Institute for Mathematics and its Applications, University of Minnesota,
Minneapolis, MN 55455

University of Wisconsin – Milwaukee
December 11, 2008

Peter Hinow Transfer phenomena



Collaborators

Pierre Magal,
University of Le Havre, France

Glenn Webb, Vanderbilt
University

Peter Hinow Transfer phenomena



Overview of the talk

I introduction to the biological background
I cancer disease and its treatment
I multidrug resistance (MDR) and the role of P-gp
I intercellular transfer of transmembrane proteins

I formulation of the mathematical models and analytical results
I the simple transfer model (only transfer between individuals is

considered)
I the model with production of P-gp, cell division and cell death

I numerical simulations

I outlook, conclusion
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Cancer and its treatment

Cancer is the uncontrolled growth of cells coupled with malignant
behavior: invasion and metastasis. Treatment options consist of

I surgery

I radiotherapy

I cytotoxic (cell-killing) chemotherapy

I newer strategies: immune therapy, oncolytic viruses . . .

I combinations of these

Chemotherapy is the treatment of choice for ≈ 50% of all cancers.
In particular, cancers of the blood (such as leukemia) and
metastatic tumors require chemotherapy.
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Chemotherapy and resistance to it

Cytotoxic drugs (such as cisplatin, taxol, doxorubucin) kill rapidly
dividing cells, cancer cells just as healthy dividing cells.

However, the appearance of multidrug resistance (MDR) minimizes
the effectiveness of such therapy in a large number of patients.
Here, resistance applies to not just one, but a wide panel of
cytotoxic drugs. One mechanism responsible for multidrug
resistance is an increased efflux of drug from the cell.
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The role of P-glycoprotein (P-gp)

Ambudkar et al., Oncogene 22, 2003

Luu & Uchizono, Pharmaceutical Research 22, 2005
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The role of P-glycoprotein (P-gp)

I P-gp (also known as ABCB1) is an ATP-dependent pump
located in the cell membrane that is able to remove a wide
panel of cytotoxic substances such as from the cytoplasm of a
cell.

I P-gp requires chemical energy in the form of ATP and hence
can pump the cytotoxic substances against a gradient.

I Thus anticancer drugs cannot accumulate to sufficiently high
levels and the cell is protected from death.

I The expression of P-gp has been documented in breast
cancers, sarcomas, neuroblastomas, leukemias and others and
is generally associated with a poor prognosis.
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The pathways to multidrug resistance (MDR)

Ambudkar et al., Trends in Pharmacological Sciences 26, 2005
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Intercellular transfer of P-gp

Levchenko et al. cocultured sensitive and resistant cancer cells and
used fluorescent antibodies to measure the level of P-gp
expression.

Levchenko et al., Proc. Nat. Acad. Sci. USA 102, 2005
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Summary

Cancer cells can have the multidrug resistant (MDR) phenotype by

1 being intrinsically resistant

2 expression of P-gp under exposure to cytotoxic drug

3 through transfer from P-gp rich resistant cells (shown both in
vitro and in vivo).

We will introduce a model for processes 3 and 2 & 3.
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The model

Let p ∈ [0, 1] denote the scalar quantity and let u(p, t) denote the
population density of individuals having quantity p at time t. We
work in the space L1[0, 1] with positive cone L1

+[0, 1]. Define

En(u) =

∫ 1

0
pnu(p) dp

for the n-th moment. E0(u) = ||u|| is the total number of
individuals and E1(u) is the total amount of the quantity p in all
individuals.
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The transfer process

1. The probability that a pair of two individuals is involved in a
transfer event is independent of their p values and the pairing
is chosen randomly from all individuals.

2. The time between two transfer events follows an exponential
law with mean τ−1 > 0 (alternatively, τ is the rate of transfer
per unit time).

3. Let f ∈ L∞[0, 1] with 0 ≤ f ≤ 1. If 2 individuals whose
difference in quantity is p̂ are involved in a transfer, then the
one with higher value loses f (|p̂|) times the difference of their
p values and the one with lower p value gains exactly this
amount.
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The transfer process

The four possibilities of transfer to a cell with value p after a
transfer event.
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The transfer process

Let two individuals have values p1 and p2 before the transfer and
p̄1 and p̄2 afterwards. Then by assumption 3 we obtain

p1 7→ p̄1 = p1 + f (|p̂|)(p2 − p1)

and
p2 7→ p̄2 = p2 − f (|p̂|)(p2 − p1)

where p̂ = p1 − p2. Thus,

p1 = p̄1 + f (|p̂|)p̂ and p2 = p̄1 − (1− f (|p̂|))p̂.
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The transfer operator

For any function φ defined on [0, 1] we denote by φ̄ its trivial
extension by zero outside [0, 1]. The transfer operator
T : L1

+[0, 1]→ L1
+[0, 1] is given by T (0) = 0 and for u 6= 0 by

T (u)(p) =
1

||u||1

∫ ∞
−∞

ū(p + f̄ (|p̂|)p̂)ū(p − (1− f̄ (|p̂|))p̂) dp̂.
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The transfer equation

A particle of size p is lost when it is either the donor or the
acceptor in a transfer.

du

dt
= 2τ (T (u(t))− u(t)) ,

u(0) = u0 ∈ L1
+ (0, 1) .

(1)

The transfer rate τ must be multiplied by 2 as transfer involves
two individuals (a particle that emerges with quantity p may have
been the smaller or larger partner in the transfer event).

Notice the formal similarity to an equation of Boltzmann type.
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Basic properties of the transfer operator

Theorem
The operator T maps L1

+[0, 1] into itself and has the following
properties:

1. T is positively homogeneous, T (cu) = cT (u) for all c > 0,

2. T is globally Lipschitz continuous,

3. We have for u ∈ L1
+[0, 1] and n = 0, 1

En(T (u)) = En(u),

Proof. By calculation. �

Peter Hinow Transfer phenomena



Basic properties of the transfer model

Theorem
For each initial datum u0 ∈ L1

+[0, 1], equation (1) has a global
positive solution. Moreover, for all t > 0 and n = 0, 1

En(u(t)) = En(u0).
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Basic properties of the transfer model

Proof. This is a standard result for an ordinary differential
equation y ′ = F (y) in a Banach space with gobally Lipschitz
continuous F . The solution has the representation

u(t) = e−2τ tu0 + 2τ

∫ t

0
e−2τ(t−s)T (u(s)) ds,

and the positivity of u follows. The conservation of the zeroth and
first moment follows from the corresponding property of the
transfer operator. �
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Convergence of the solution

Let u(t) be the solution of equation (1) with initial value
u0 ∈ L1

+[0, 1] \ {0}.

Theorem
There exists a Radon measure w on [0, 1] such that

lim
t→∞
〈u(t), φ〉 = 〈w , φ〉

for every φ ∈ C [0, 1].

〈 · , · 〉 denotes the pairing of C [0, 1] with its dual space

〈w , φ〉 =

∫ 1

0
φ(p) w(dp).
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Convergence of the moments

Proof. We show first that the moments En(u(t)), n ≥ 1 are
decreasing along a trajectory and since they are all ≥ 0, their limits
E∞n (u0) as t →∞ exist. Then we define for a polynomial

%(x) =
m∑

n=0

anxn

a linear functional w by

〈w , %〉 =
m∑

n=0

anE∞n .
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Convergence of the moments

By the Weierstrass approximation theorem, the space of
polynomials P[0, 1] is dense in the space of continuous functions
C [0, 1] and so w extends uniquely to an element of the dual space
C [0, 1]′.

By the Riesz representation theorem the linear functional w can be
identified with a Radon measure supported on [0, 1]. �
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Can we do better?

Unfortunately not. . .

Theorem
If the transfer fraction f is constant, i.e. f (|p|) = f , then for each
u0 ∈ L1

+[0, 1] \ {0}, the solution of the transfer model (1)
converges to a Dirac measure in the weak∗ topology. More
precisely let m = E1(u0)

E0(u0)
be the mean of the initial datum, then

u(t)
∗
⇀ E0(u0)δm

as t →∞.
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Convergence towards a Dirac measure

Proof. Assume without loss of generality that E0(u0) = 1. We
have the following system of ordinary differential equations for the
moments xn(t) = En(u(t))

dxn(t)

dt
=

n∑
k=0

(
n

k

)
f k (1− f )n−k xk (t)xn−k (t)− xn(t),

xn(0) = En(u0).

From this, one can show that

lim
t→∞

xn(t) = x1(0)n.
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Convergence towards a Dirac measure

This implies that for every polynomial % ∈ P[0, 1]

lim
t→∞
〈u(t), %〉 = δE1(u0)(%).

Again this result extends to every φ ∈ C [0, 1] by the Weierstrass
approximation theorem. �
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The model with expression of P-gp and proliferation

We add to our model

I production or loss of P-gp by the cells, at a rate h depending
on p

I random fluctuations in the P-gp content of a cell (a diffusion
term)

I proliferation and death of cells, depending on their P-gp
content.

The proliferation of cells saturates as a certain carrying capacity is
reached (logistic growth).
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The full model

∂u

∂t
−D2∂

2u

∂p2
+

∂

∂p
(h(p)u)︸ ︷︷ ︸

fluctuations and production

= (c(p)− L(u))u︸ ︷︷ ︸
birth and death

+ 2τ(T (u)− u)︸ ︷︷ ︸
transfer

,

D2∂u

∂p
= h(p)u(p, t), p = 0, 1,

u(p, 0) = u0(p),
(2)

where h ∈ C 1[0, 1] is the convection field, c ∈ L∞[0, 1] the
combined proliferation and death rate and L : L1[0, 1]→ R a
positive linear functional that models effects of crowding (for
example L(u) = γ||u||1).
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Semigroups

Definition
A one-parameter strongly continuous semigroup (S(t))t≥0 on the
Banach space X is a family of linear bounded operators such that

I S(0) = I ,

I S(t + s) = S(t)S(s), and

I for every x ∈ X , limt→0+ S(t)x = x .

The infinitesimal generator A of the semigroup S(t) is the linear
operator defined by

Ax := lim
t→0+

S(h)x − x

h

whose domain D(A) is the set of x ∈ X for which the limit exists.
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Global existence result

Theorem
For every u0 ∈ L1

+[0, 1], equation (2) has a unique global solution
in L1

+[0, 1].

Proof. The operator Au = D2u′′ − (hu)′ is the infinitesimal
generator of a positive, compact and analytic semigroup
{SA(t)}t≥0 on L1[0, 1] (H. Amann, Israel J. Math. 45, 1983).

The operator B = A + c is a bounded perturbation of A and is the
infinitesimal generator of a positive, compact semigroup
{SB(t)}t≥0. (A. Pazy, Semigroups of Linear Operators and
Applications to Partial Differential Equations, Springer, 1983).
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Global existence result

The operator B (diffusion, transport and growth) has a simple
eigenvalue λ0(B) ∈ R.

The existence of a solution to the nonlinear problem follows from
the theory for Lipschitz perturbations of linear problems. �
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Global asymptotic stability

Theorem
Provided that λ0(B) > 0, there exists τ∗ > 0 such that for every
τ ∈ [0, τ∗], equation (2) has a unique globally asymptotically
stable steady state uτ ∈ L1

+[0, 1].

Proof.
This was proved by Magal and Webb (Discr. Contin. Dyn. Sys. 6,
2000), and Magal (Discr. Contin. Dyn. Sys. B 2, 2002). �
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Numerical simulations

The numerical solution of the full model (2) with f ≡ 1
2 , h ≡ 0 and

D = 0 (left) respectively D = 0.05 (right). The solution remains
bounded when diffusion is present.
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Numerical simulations

The numerical solution of the pure transport equation (1) with

f (|p|) =

{
f if |p| ≥ δ,
0 otherwise

using δ = 0.85 and f = 0.87.
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Numerical simulations
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The Monte Carlo simulations of the pure transport process with
500 respectively 10000 individual cells.
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Recall. . .

Levchenko et al., Proc. Nat. Acad. Sci. USA 102, 2005
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Transfer limited to nontrivial differences

Consider again the pure transfer model (1) (without production
and diffusion) and assume there exists a δ > 0 such that f |[0,δ] = 0
(i.e. transfer takes place only if the difference in quantity exceeds a
certain threshold). Highly concentrated populations are steady
states of (1).

Lemma
Let u ∈ L1[0, 1] with diam supp u ≤ δ. Then u is a steady state of
the pure transfer model (1).
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Transfer limited to nontrivial differences

Based on our numerical experiments, we state the following

Conjecture

Let u(t) be a solution of equation (1) with u(0) ∈ L∞[0, 1]. Then
there exists a function u∞ ∈ L∞[0, 1] with E0(u∞) = E0(u0),
E1(u∞) = E1(u0) and diam supp u∞ ≤ δ such that (in L1

+[0, 1])

lim
t→∞

u(t) = u∞.
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Outlook

Topics of future research

I How important is P-gp transfer for the development of
multidrug resistance in vivo?

I Does the resistant population have a slower growth rate than
the sensitive population (indicated by Levchenko et al.) and
could this be exploited?

I P-gp may not remove all kinds of cytotoxic drugs with the
same efficiency. There is room for better scheduling of
combination chemotherapy protocols.
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Outlook

Topics of future research (continued)

I A spatial component will be introduced such that the transfer
efficiency decreases with the distances between cells.

I The model has to be complemented with experimental work
and parameters have to be determined.
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Outlook

green: sensitive cells, red: P-gp on the surface of resistant cells;
increase in red staining in the membrane of green cells (J=“jour”)

Jennifer Pasquier and Frank Le Foll, University of Le Havre, France
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Outlook

More examples for transfer processes

I inelastic interacting particles exchanging kinetic energy (Ben
Naim et al., Aranson & Tsimring)

I economically or socially interacting populations exchanging
assets or opinions (compromise processes)

I bacteria transferring genetic material (Novozhilov et al., Webb
& Blaser)
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