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Write a story about a cone for a presentation to PhD students.

ChatGPT

Once upon a time in the hallowed halls of Academia, there existed a peculiar cone
named Conicus. Conicus wasn't an ordinary cone; it was a mathematical marvel, a
three-dimensional embodiment of elegance and precision. This particular cone,
however, found itself in an extraordinary situation—it was chosen to be the focal point

of a presentation to a room full of inquisitive PhD students.

The esteemed professor, Dr. Octavia Mathesius, had dedicated her life to unraveling
the mysteries of mathematics. Her passion for teaching was as boundless as the vast

mathematical landscapes she explored. One day, as she prepared to enlighten her
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Anisotropy, n.

1. Non-uniformity in every direction.



Anisotropy, n.
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2. How cone are you?
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Zipf's law and limitations.
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..the embeddings of most words in the
vocabulary will be pushed towards similar
directions negatively correlated with

most hidden states..”

- Jun Gao et. al, 2019
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Positive Pair : (

Alignment: Similar samples have similar features. Uniformity: Preserve maximal information.
(Figure inspired by Tian et al. (2019).)
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Headless pre-training.
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Training speed (ms/token)
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Thank you!



