My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 000

As easy as a piece of cake Analytically cutting infinite cakes (yum!)

Baptiste Plaquevent-Jourdain, with Jean-Pierre Dussault, Université de Sherbrooke Jean Charles Gilbert, INRIA Paris

January, 09 2024

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 000
Outline					

- 1 My Personal Recipe
- Pirst part(s of the cake)
- 3 Formalism
- 4 An algorithm

My Personal Recipe	First part(s of the cake)	Formalism	An algorithm	Some improvements	References
●000	0000000000	00000	00000		000
Plan					

1 My Personal Recipe

- Pirst part(s of the cake)
- 3 Formalism
- 4 An algorithm
- **5** Some improvements

My Personal Recipe First part o●oo 000000

st part(s of the cake) 00000000 Formalism

An algorithm

Some improveme

References 000

Who are you listening to? (1)

origin

French PhD student from Brittany (sea, crêpes, galettes, Mont Saint-Michel...), then from ENSTA Paris

My Personal Recipe o●oo

First part(s of the cake) 0000000000 Formalism

An algorithr

Some improveme

References 000

Who are you listening to? (1)

origin

French PhD student from Brittany (sea, crêpes, galettes, Mont Saint-Michel...), then from ENSTA Paris

My Personal Recipe o●oo

First part(s of the cake) 0000000000 Formalism

An algorithi

Some improveme

References 000

Who are you listening to? (1)

origin

French PhD student from Brittany (sea, crêpes, galettes, Mont Saint-Michel...), then from ENSTA Paris

My Personal Recipe 00●0 First part(s of the cake)

Formalism

An algorith 00000 Some improve

References 000

Who are you listening to? (2)

current status

- starting 3rd year, finishing on December, 31st (unless...)
- "cotutelle" France-Québec, here during winter

My Personal Recipe 000●

First part(s of the cake

Formalism 00000 An algorith

Some improvements

References 000

Who are you listening to? (3)

My (first) subject

Initially doing nonsmooth optimization (theoretically)...

(Fragments d'Optimisation Différentiable - Théorie et Algorithmes)

My (current) subject

.. but today: computational/combinatorial geometry cakes!

My Personal Recipe F 000● 0

First part(s of the cake)

Formalism 00000 An algorith

Some improvements

References 000

Who are you listening to? (3)

My (first) subject

Initially doing nonsmooth optimization (theoretically)...

(Fragments d'Optimisation Différentiable - Théorie et Algorithmes)

My (current) subject

.. but today: computational/combinatorial geometry cakes!

My Personal Recipe	First part(s of the cake)	Formalism	An algorithm	Some improvements	References
0000	●000000000	00000	00000		000
Plan					

- Pirst part(s of the cake)
- 3 Formalism
- 4 An algorithm
- 5 Some improvements

	nces
Cutting cakes rules	

cut:= line that completely cut the cake (no stopping in the middle)

second rule

My Personal Recipe	First part(s of the cake)	Formalism	An algorithm	Some improvements	References
0000	o●oooooooo	00000	00000		000
Cutting ca	kes rules				

cut:= line that completely cut the cake (no stopping in the middle)

WRONG!

second rule

My Personal Recipe	First part(s of the cake)	Formalism	An algorithm	Some improvements	References
0000	o●oooooooo	00000	00000		000
Cutting ca	kes rules				

cut:= line that completely cut the cake (no stopping in the middle)

WRONG!

GOOD!!

second rule

My Personal Recipe	First part(s of the cake)	Formalism	An algorithm	Some improvements	References
0000	o●oooooooo	00000	00000		000
Cutting ca	kes rules				

cut:= line that completely cut the cake (no stopping in the middle)

WRONG!

GOOD!!

second rule

My Personal Recipe	First part(s of the cake)	Formalism	An algorithm	Some improvements	References
0000	00●0000000	00000	00000		000
A first tast	- <u>-</u> 1				

One cut, 2 slices

My Personal Recipe	First part(s of the cake) 00●0000000	Formalism 00000	An algorithm 00000	Some improvements	References 000
A ("	. 1				

One cut, 2 slices

Two cuts, 4 slices

My Personal Recipe	First part(s of the cake) 000●000000	Formalism 00000	An algorithm 00000	Some improvements	References 000
A first tast	te - 2				

Three cuts, 6 slices

p cuts, 2p slices

'Proof': every cut makes 2 previous slices becoming 4 smaller slices $2p \rightarrow (2p-2) + 2 * 2 = (2p-2) + 4 = 2(p+1)$.

My Personal Recipe	First part(s of the cake)	Formalism	An algorithm	Some improvements	References
	000●000000	00000	00000	00000000	000
A first tast	te - 2				

Three cuts, 6 slices

us around the pizzas

p cuts, 2p slices

'Proof': every cut makes 2 previous slices becoming 4 smaller slices $2p \rightarrow (2p-2) + 2 * 2 = (2p-2) + 4 = 2(p+1)$.

My Personal Recipe	First part(s of the cake)	Formalism	An algorithm	Some improvements	References
0000	000●000000	00000	00000		000
A first tast	e - 2				

Three cuts, 6 slices

us around the pizzas

p cuts, 2p slices

'Proof': every cut makes 2 previous slices becoming 4 smaller slices $2p \rightarrow (2p-2) + 2 * 2 = (2p-2) + 4 = 2(p+1)$.

My Personal Recipe	First part(s of the cake) 0000●00000	Formalism 00000	An algorithm 00000	Some improvements	References 000
Other was	dettates 1				
Other poss	sidilities - 1				

What about 7 parts ?

Asymmetric cuts - they don't all pass by the center/middle

My Personal Recipe	First part(s of the cake)	Formalism	An algorithm	Some improvements	References
0000	0000000000	00000	00000		000
Other pos	sibilities - 2				

Acually can't (really) have 5 slices: this is cheating. This does not respect the infinite cakes assumption.

But the 7-slices one still works: the 2p formula isn't valid...

My Personal Recipe	First part(s of the cake)	Formalism	An algorithm	Some improvements	References
0000	00000000000	00000	00000		000
Other poss	sibilities - 3				

Is it possible to get 8 slices in three cuts?

My Personal Recipe	First part(s of the cake)	Formalism	An algorithm	Some improvements	References
0000	00000000000	00000	00000		000
Other poss	ibilities - 3				

My Personal Recipe	First part(s of the cake)	Formalism	An algorithm	Some improvements	References
0000	0000000●00	00000	00000		000
Summary					

- symmetric cuts in 2D (all by the center): $p \text{ cuts} \Rightarrow 2p$ slices
- cutting in a "new dimension" doubles ; 2ⁿ slices!
- asymmetric cuts: it's harder

But what about a cake-shaped cake?

So here, p cuts mean p + 1 slices... because they're all parallel!

My Personal Recipe	First part(s of the cake)	Formalism	An algorithm	Some improvements	References
0000	0000000●00	00000	00000		000
Summary					

- symmetric cuts in 2D (all by the center): $p \text{ cuts} \Rightarrow 2p$ slices
- cutting in a "new dimension" doubles ; 2ⁿ slices!
- asymmetric cuts: it's harder

But what about a cake-shaped cake?

So here, p cuts mean p + 1 slices... because they're all parallel!

My Personal Recipe	First part(s of the cake)	Formalism	An algorithm	Some improvements	References
0000	0000000000	00000	00000		000
Summary					

- symmetric cuts in 2D (all by the center): p cuts $\Rightarrow 2p$ slices
- cutting in a "new dimension" doubles ; 2ⁿ slices!
- asymmetric cuts: it's harder

But what about a cake-shaped cake?

So here, p cuts mean p + 1 slices... because they're all parallel!

My Personal Recipe 0000 First part(s of the cake)

Formalism

An algorith 00000 Some improvement

References 000

Parallel sets in each dimension

But parallel set of cuts in each dimension also work: $p_1, p_2 \rightarrow (p_1 + 1) \times (p_2 + 1)$

(you can check the slices after the pizzas :3)

My Personal Recipe	First part(s of the cake)	Formalism	An algorithm	Some improvements	References
0000	000000000●	00000	00000		000
Conclusion					

So maybe not completely a piece of cake... Depends on: dimension n, number of cuts p, and which cuts.

Observations: new dimension means doubling the cuts, parallel cuts behave weirdly, 5 slices is hard to get...

Question

For a given set of cuts, how many slices do we get?

My Personal Recipe 0000	First part(s of the cake) 000000000●	Formalism 00000	An algorithm 00000	Some improvements	References 000
Conclusion					

So maybe not completely a piece of cake... Depends on: dimension n, number of cuts p, and <u>which cuts</u>.

Observations: new dimension means doubling the cuts, parallel cuts behave weirdly, 5 slices is hard to get...

Question

For a given set of cuts, how many slices do we get?

My Personal Recipe 0000	First part(s of the cake) 000000000●	Formalism 00000	An algorithm 00000	Some improvements	References 000
Conclusion					

So maybe not completely a piece of cake... Depends on: dimension *n*, number of cuts *p*, and <u>which cuts</u>.

Observations: new dimension means doubling the cuts, parallel cuts behave weirdly, 5 slices is hard to get...

Question

For a given set of cuts, how many slices do we get?

My Personal Recipe	First part(s of the cake)	Formalism	An algorithm	Some improvements	References
0000	0000000000	•0000	00000		000
Plan					

- 1 My Personal Recipe
- Pirst part(s of the cake)
- 3 Formalism
- An algorithm
- 5 Some improvements

My Personal Recipe 0000	First part(s of the cake)	Formalism 0●000	An algorithm 00000	Some improvements	References 000
Hyperplane	es - 1				

The cake *n*-dimensional, a 'cut' is an hyperplane. = linear (affine) subspace of dimension n - 1 (codimension 1). One hyperplane: $H = v^{\perp} = \{d \in \mathbb{R}^n : v^{\mathsf{T}}d = 0\}.$

p cuts: p hyperplanes: $H_i = v_i^{\perp}, \forall i \in [1 : p], (v_i)_i = \text{problem}$ data.

halfspaces of an hyperplane

 $\mathbb{R}^{n} = H_{i}^{-} \cup H_{i} \cup H_{i}^{+}, \qquad \begin{array}{l} H_{i}^{-} = \{d \in \mathbb{R}^{n} : v_{i}^{\top} d < 0\} \\ H_{i}^{+} = \{d \in \mathbb{R}^{n} : v_{i}^{\top} d > 0\} \end{array}$

My Personal Recipe 0000	First part(s of the cake)	Formalism 0●000	An algorithm 00000	Some improvements	References 000
Hyperplane	es - 1				

The cake *n*-dimensional, a 'cut' is an hyperplane. = linear (affine) subspace of dimension n - 1 (codimension 1). One hyperplane: $H = v^{\perp} = \{ d \in \mathbb{R}^n : v^{\mathsf{T}}d = 0 \}.$

p cuts: *p* hyperplanes: $H_i = v_i^{\perp}, \forall i \in [1 : p], (v_i)_i = \text{problem}$ data.

halfspaces of an hyperplane $\mathbb{R}^{n} = H_{i}^{-} \cup H_{i} \cup H_{i}^{+}, \qquad \begin{array}{l} H_{i}^{-} = \{d \in \mathbb{R}^{n} : v_{i}^{T}d < 0\} \\ H_{i}^{+} = \{d \in \mathbb{R}^{n} : v_{i}^{T}d > 0\} \end{array}$

My Personal Recipe 0000	First part(s of the cake)	Formalism 0●000	An algorithm 00000	Some improvements	References 000
Hyperplane	es - 1				

The cake *n*-dimensional, a 'cut' is an hyperplane. = linear (affine) subspace of dimension n - 1 (codimension 1). One hyperplane: $H = v^{\perp} = \{ d \in \mathbb{R}^n : v^{\mathsf{T}}d = 0 \}.$

p cuts: *p* hyperplanes: $H_i = v_i^{\perp}, \forall i \in [1 : p], (v_i)_i = \text{problem}$ data.

halfspaces of an hyperplane $\mathbb{R}^{n} = H_{i}^{-} \cup H_{i} \cup H_{i}^{+}, \qquad \begin{array}{l} H_{i}^{-} = \{d \in \mathbb{R}^{n} : v_{i}^{\mathsf{T}}d < 0\} \\ H_{i}^{+} = \{d \in \mathbb{R}^{n} : v_{i}^{\mathsf{T}}d > 0\} \end{array}$

My Personal Recipe	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 000
Hyperplane	es - 2				

Each cut: a - and a + side: each of the *p* cuts, intersection of each halfspaces...

My Personal Recipe 0000	First part(s of the cake)	Formalism 000●0	An algorithm 00000	Some improvements	References 000
Illustration					

Actually, # of slices and on which side of each cut it is.
My Personal Recipe 0000	First part(s of the cake)	Formalism 000●0	An algorithm 00000	Some improvements	References 000
Illustration					

Actually, # of slices and on which side of each cut it is.

My Personal Recipe	First part(s of the cake)	Formalism 0000●	An algorithm 00000	Some improvements	References 000
Technical 1	formalism				

There are *p* cuts, 2^p potential slices $(\forall i \in [1:p], \{-1,+1\})$ Slice $s = (s_1, \dots, s_p) \in \{\pm 1\}^p$ exists $\Leftrightarrow H_1^{s_1} \cap H_2^{s_2} \cap \dots \cap H_p^{s_p} \neq \emptyset$

$$\left\{ \begin{array}{l} H_i^+: v_i^\mathsf{T} d > 0 \Leftrightarrow + v_i^\mathsf{T} d > 0 \\ H_i^-: v_i^\mathsf{T} d < 0 \Leftrightarrow - v_i^\mathsf{T} d > 0 \end{array} \right. \Leftrightarrow s_i v_i^\mathsf{T} d > 0$$

slice *s* non-empty $\Leftrightarrow d_s \in$ slice $s \Leftrightarrow \forall i \in [1 : p], s_i(v_i^{\mathsf{T}} d_s) > 0$ Verifying *p* linear equations = very simple...

But there are 2^{*p*} such systems. Thus the interest of designing non-brute force algorithm.

My Personal Recipe	First part(s of the cake)	Formalism 0000●	An algorithm 00000	Some improvements	References 000
Technical f	formalism				

There are *p* cuts, 2^p potential slices $(\forall i \in [1:p], \{-1,+1\})$ Slice $s = (s_1, \dots, s_p) \in \{\pm 1\}^p$ exists $\Leftrightarrow H_1^{s_1} \cap H_2^{s_2} \cap \dots \cap H_p^{s_p} \neq \emptyset$

$$\begin{cases} H_i^+: v_i^\mathsf{T} d > 0 \Leftrightarrow + v_i^\mathsf{T} d > 0 \\ H_i^-: v_i^\mathsf{T} d < 0 \Leftrightarrow - v_i^\mathsf{T} d > 0 \end{cases} \Leftrightarrow s_i v_i^\mathsf{T} d > 0$$

slice *s* non-empty $\Leftrightarrow d_s \in$ slice $s \Leftrightarrow \forall i \in [1 : p], s_i(v_i^{\mathsf{T}}d_s) > 0$ Verifying *p* linear equations = very simple...

But there are 2^p such systems. Thus the interest of designing non-brute force algorithm.

My Personal Recipe 0000	First part(s of the cake)	Formalism 0000●	An algorithm 00000	Some improvements	References 000
Technical f	formalism				

There are *p* cuts, 2^p potential slices $(\forall i \in [1:p], \{-1,+1\})$ Slice $s = (s_1, \dots, s_p) \in \{\pm 1\}^p$ exists $\Leftrightarrow H_1^{s_1} \cap H_2^{s_2} \cap \dots \cap H_p^{s_p} \neq \emptyset$

$$\begin{cases} H_i^+: v_i^\mathsf{T} d > 0 \Leftrightarrow + v_i^\mathsf{T} d > 0 \\ H_i^-: v_i^\mathsf{T} d < 0 \Leftrightarrow - v_i^\mathsf{T} d > 0 \end{cases} \Leftrightarrow s_i v_i^\mathsf{T} d > 0$$

slice *s* non-empty $\Leftrightarrow d_s \in$ slice $s \Leftrightarrow \forall i \in [1 : p], s_i(v_i^{\mathsf{T}}d_s) > 0$ Verifying *p* linear equations = very simple...

But there are 2^p such systems. Thus the interest of designing non-brute force algorithm.

My Personal Recipe 0000	First part(s of the cake) 0000000000	Formalism 00000	An algorithm ●0000	Some improvements	References 000
Plan					
i ian					

- 1 My Personal Recipe
- Pirst part(s of the cake)
- 3 Formalism
- 4 An algorithm
- 5 Some improvements

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 0●000	Some improvements	References 000
Main reasc	oning				

Algorithm from [RČ18]:

- recursive binary tree that adds hyperplanes one at a time
- each node has descendant(s) (s, +1) and/or (s, -1)
- checking one or two = main computational effort

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00●00	Some improvements	References 000

 My Personal Recipe
 First part(s of the cake)
 Formalism
 An algorithm
 Some improvements
 References

 0000
 00000
 00000
 00000
 000000
 000000
 00000000

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00●00	Some improvements	References 000

My Personal Recipe First part(s of the cake) Formalism An algorithm Some improvements References

My Personal Recipe	First part(s of the cake)	Formalism	An algorithm	Some improvements	References
			00000		

My Personal Recipe	First part(s of the cake)	Formalism	An algorithm	Some improvements	References
			00000		

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 000●0	Some improvements	References 000

Important property

At level k < p, for a slice $s \in \{\pm 1\}^k$,

$$\forall i \in [1:k], \exists d_s, s_i v_i^{\mathsf{T}} d_s > 0 \Rightarrow \begin{cases} \forall i \in [1:k], s_i v_i^{\mathsf{T}} d > 0 \\ + v_{k+1}^{\mathsf{T}} d > 0 \end{cases} ?$$
$$\forall i \in [1:k], s_i v_i^{\mathsf{T}} d > 0 \\ - v_{k+1}^{\mathsf{T}} d > 0 \end{cases}$$
?

If $v_{k+1}^{T}d_{s} > 0$, (s, +1) verified with the same d_{s} (if < 0, (s, -1) is). If $v_{k+1}^{T}d_{s} \simeq 0$, both for free! (formalized properly)

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 000●0	Some improvements	References 000

Important property

At level k < p, for a slice $s \in \{\pm 1\}^k$,

$$\forall i \in [1:k], \exists d_{s}, s_{i}v_{i}^{\mathsf{T}}d_{s} > 0 \Rightarrow \begin{cases} \forall i \in [1:k], s_{i}v_{i}^{\mathsf{T}}d > 0 \\ +v_{k+1}^{\mathsf{T}}d > 0 \end{cases} ? \\ \forall i \in [1:k], s_{i}v_{i}^{\mathsf{T}}d > 0 \\ -v_{k+1}^{\mathsf{T}}d > 0 \end{cases}$$
?

If $v_{k+1}^{\mathsf{T}} d_s > 0$, (s, +1) verified with the same d_s (if < 0, (s, -1) is). If $v_{k+1}^{\mathsf{T}} d_s \simeq 0$, both for free! (formalized properly)

My Personal Recipe 0000	ersonal Recipe First part(s of the cake) 0000000000		An algorithm 0000●	Some improvements 00000000	References 000
Illustration					

The point is "very close" to the new hyperplane, a small simple modification suffices.

My Personal Recipe	First part(s of the cake)	Formalism	An algorithm	Some improvements	References
0000	0000000000	00000	00000		000
Plan					

- 1 My Personal Recipe
- Pirst part(s of the cake)
- 3 Formalism
- An algorithm

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 000
Doducing t	ha nada caun	+			

Reducing the node count

So $|v_{k+1}^{\mathsf{T}} d_{s}|$ small \Rightarrow probably 2 descendants.

idea: contrapositive $|v_{k+1}^{\mathsf{T}}d_s|$ 'large' \rightarrow less chance of both (s, +1) and (s, -1).

Only a heuristic, but reasonably efficient. Also, this order change is local - for each *s* it can change.

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements 0●000000	References 000
Reducing t	he node coun	+			

So
$$|v_{k+1}^{\mathsf{T}} d_{\mathfrak{s}}|$$
 small \Rightarrow probably 2 descendants.

idea: contrapositive $|v_{k+1}^{\mathsf{T}}d_s|$ 'large' \rightarrow less chance of both (s, +1) and (s, -1).

Only a heuristic, but reasonably efficient. Also, this order change is local - for each s it can change.

My Personal Recipe	First part(s of the cake)	Formalism	An algorithm	Some improvements	References
0000		00000	00000	00●00000	000
Illustration					

Black: hyperplanes already treated, \times is the current point/region. Dotted and blue: remaining hyperplanes. Here, the blue hyperplanes are "far" from the point, so it's more likely there is only 1 descendant (thus less nodes and a faster algorithm).

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 000

++- (and --+) corresponds to an empty region: + means right to H_1 , + over H_2 , - down left H_3 : such a point does not exist. The system is + : $d_1 > 0$, + : $d_2 > 0$, - : - $d_1 - d_2 > 0$

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 000

With p > 3, ++-??...?? always infeasible, whatever the remaining signs are.

Idea

- before the tree, compute every "infeasible" combination
- linear optimization (\simeq black-box) ightarrow linear algebra (nice!)
- but requires a <u>lot</u> of linear algebra

With p > 3, ++-??...?? always infeasible, whatever the remaining signs are.

Idea

- before the tree, compute every "infeasible" combination
- linear optimization (\simeq black-box) \rightarrow linear algebra (nice!)
- but requires a <u>lot</u> of linear algebra

With p > 3, ++-??...?? always infeasible, whatever the remaining signs are.

Idea

- before the tree, compute every "infeasible" combination
- linear optimization (\simeq black-box) ightarrow linear algebra (nice!)
- but requires a <u>lot</u> of linear algebra

With p > 3, ++-??...?? always infeasible, whatever the remaining signs are.

Idea

- before the tree, compute every "infeasible" combination
- linear optimization (\simeq black-box) \rightarrow linear algebra (nice!)
- but requires a lot of linear algebra

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements 00000000	References 000
Summary					

• The RC algorithm

- some improvements on the tree structure
- some improvements with duality (the linear algebra)
- best : using a little bit (using it cleverly)

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 000
Summary					

- The RC algorithm
- some improvements on the tree structure
- some improvements with duality (the linear algebra)
- best : using a little bit (using it cleverly)

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 000
Summary					
Summary					

- The RC algorithm
- some improvements on the tree structure
- some improvements with duality (the linear algebra)
- best : using a little bit (using it cleverly)

My Personal Recipe	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 000
Summary					

- The RC algorithm
- some improvements on the tree structure
- some improvements with duality (the linear algebra)
- best : using a little bit (using it cleverly)

My Personal Recipe 0000 First part(s of the cake) 0000000000 Formalism 00000 An algorith 00000 Some improvements

References 000

Results; blue = times, black = time RC / time variant

Name	RC	AE	3C	ABC	D2	ABO	CD3	A)4
R-4-8-2	1.70 10 ⁻²	7.20 10 ⁻³	2.36	6.53 10 ⁻³	2.60	3.13 10 ⁻³	5.43	8.03 10 ⁻³	2.12
R-7-8-4	5.70 10 ⁻²	3.38 10 ⁻²	1.69	3.15 10 ⁻²	1.81	2.24 10 ⁻²	2.54	2.79 10 ⁻²	2.04
R-7-9-4	9.97 10 ⁻²	4.98 10 ⁻²	2.00	4.96 10 ⁻²	2.01	3.43 10-2	2.91	5.16 10 ⁻²	1.93
R-7-10-5	2.33 10 ⁻¹	1.16 10 ⁻¹	2.01	1.29 10 ⁻¹	1.81	1.05 10 ⁻¹	2.22	1.22 10 ⁻¹	1.91
R-7-11-4	2.36 10-1	1.22 10-1	1.93	1.20 10-1	1.97	8.49 10 ⁻²	2.78	1.32 10 ⁻¹	1.79
R-7-12-6	9.35 10 ⁻¹	5.05 10 ⁻¹	1.85	5.74 10 ⁻¹	1.63	5.13 10 ⁻¹	1.82	5.65 10 ⁻¹	1.65
R-7-13-5	9.11 10 ⁻¹	4.70 10 ⁻¹	1.94	5.41 10 ⁻¹	1.68	4.71 10 ⁻¹	1.93	5.33 10-1	1.71
R-7-14-7	3.69	2.15	1.72	2.39	1.54	2.42	1.52	2.42	1.52
R-8-15-7	6.43	3.56	1.81	3.92	1.64	4.30	1.50	4.57	1.41
R-9-16-8	1.51 10 ⁺¹	8.88	1.70	1.03 10 ⁺¹	1.47	1.34 10 ⁺¹	1.13	1.41 10 ⁺¹	1.07
R-10-17-9	3.45 10 ⁺¹	2.08 10 ⁺¹	1.66	2.50 10 ⁺¹	1.38	4.04 10 ⁺¹	0.85	3.53 10 ⁺¹	0.98
2d-20-4	3.48 10 ⁻¹	$1.76 \ 10^{-1}$	1.98	8.03 10 ⁻²	4.33	6.96 10 ⁻²	5.00	1.73 10 ⁻¹	2.01
2d-20-5	6.74 10 ⁻¹	3.54 10 ⁻¹	1.90	1.29 10-1	5.22	1.32 10 ⁻¹	5.11	3.59 10 ⁻¹	1.88
2d-20-6	1.19	6.04 10 ⁻¹	1.97	2.23 10 ⁻¹	5.34	2.70 10 ⁻¹	4.41	6.52 10 ⁻¹	1.83
2d-20-7	2.08	1.45	1.43	5.40 10 ⁻¹	3.85	6.21 10 ⁻¹	3.35	1.11	1.87
2d-20-8	3.69	1.85	1.99	6.36 10 ⁻¹	5.80	7.95 10 ⁻¹	4.64	1.92	1.92
sR-2	1.71 10 ⁺¹	4.26	4.01	3.11	5.50	4.14	4.13	1.05 10+1	1.63
sR-4	8.03 10 ⁺¹	3.68 10 ⁺¹	2.18	4.40 10 ⁺¹	1.83	1.41 10 ⁺²	0.57	2.02 10 ⁺²	0.40
sR-6	1.08 10+2	1.54 10 ⁺²	0.70	7.01 10 ⁺¹	1.54	2.58 10+2	0.42	4.04 10 ⁺²	0.27
perm-5	6.64 10 ⁻¹	$1.89 \ 10^{-1}$	3.51	6.87 10 ⁻²	9.67	8.53 10 ⁻²	7.78	3.75 10 ⁻¹	1.77
perm-6	5.80	1.32	4.39	5.19 10 ⁻¹	11.18	1.03	5.63	3.81	1.52
perm-7	5.70 10 ⁺¹	1.10 10 ⁺¹	5.18	4.16	13.70	2.12 10 ⁺¹	2.69	6.37 10 ⁺¹	0.89
perm-8	5.98 10 ⁺²	1.08 10+2	5.54	4.41 10 ⁺¹	13.56	6.46 10 ⁺²	0.93	1.59 10+3	0.38
r-3-7	5.83 10 ⁻¹	3.16 10 ⁻¹	1.84	2.79 10 ⁻¹	2.09	2.27 10 ⁻¹	2.57	3.64 10 ⁻¹	1.60
r-3-9	3.31 10 ⁻¹	2.92 10 ⁻¹	1.13	1.96 10 ⁻¹	1.69	1.41 10 ⁻¹	2.35	1.77 10-1	1.87
r-4-7	3.13	1.62	1.93	1.37	2.28	2.21	1.42	3.01	1.04
r-4-9	2.76	1.36	2.03	1.13	2.44	1.85	1.49	2.87	0.96
r-5-7	8.92	4.72	1.89	3.94	2.26	8.64	1.03	1.26 10 ⁺¹	0.71
r-5-9	9.02	4.47	2.02	3.72	2.42	7.92	1.14	1.06 10 ⁺¹	0.85
r-6-7	2.18 10 ⁺¹	1.20 10 ⁺¹	1.82	1.14 10 ⁺¹	1.91	2.89 10 ⁺¹	0.75	4.03 10 ⁺¹	0.54
r-6-9	2.63 10 ⁺¹	1.45 10 ⁺¹	1.81	1.17 10 ⁺¹	2.25	3.39 10 ⁺¹	0.78	4.89 10 ⁺¹	0.54
r-7-7	5.72 10 ⁺¹	3.30 10 ⁺¹	1.73	3.49 10 ⁺¹	1.64	1.17 10+2	0.49	1.60 10+2	0.36
r-7-9	4.68 10 ⁺¹	2.58 10 ⁺¹	1.81	2.45 10 ⁺¹	1.91	7.30 10 ⁺¹	0.64	8.74 10 ⁺¹	0.54
median/mean			1.93/2.23		2.05/3.70		1.93/2.48		1.52/1.32

Baptiste Plaquevent-Jourdain

PhD Pizza Party - January 2024

09/01/2024 27 / 32

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 000
Conclusion					

• Better improvement ratios on "structured" instances

- "real-world" instances are "structured" (so good ratios!)
- next steps: articles, code details, convincing advisors of why/how it works (, writing the thesis.....)

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 000
Conclusion					

- Better improvement ratios on "structured" instances
- "real-world" instances are "structured" (so good ratios!)
- next steps: articles, code details, convincing advisors of why/how it works (, writing the thesis.....)

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 000
Conclusion					

- Better improvement ratios on "structured" instances
- "real-world" instances are "structured" (so good ratios!)
- next steps: articles, code details, convincing advisors of why/how it works (, writing the thesis.....)

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 000
Conclusion					

- Better improvement ratios on "structured" instances
- "real-world" instances are "structured" (so good ratios!)
- next steps: articles, code details, convincing advisors of why/how it works (, writing the thesis.....)

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 000
ו יוויס					

Bibliographic elements I

[RČ18] Miroslav Rada and Michal Černý. "A New Algorithm for Enumeration of Cells of Hyperplane Arrangements and a Comparison with Avis and Fukuda's Reverse Search". In: <u>SIAM Journal on Discrete Mathematics</u> 32 (Jan. 2018), pp. 455–473. DOI: 10.1137/15M1027930.

My Personal Recipe	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References ●00
Theoretica	l detour				

Very well-known in algebra / combinatorics... ... but very theoretically: Möbius function, lattices, matroids.

Very impressive results / algorithms for the cardinal (number of feasible systems, number of $J \in \partial_B$) Upper bound, formula (also combinatorial)...

My Personal Recipe	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References ●00
Theoretica	l detour				

Very well-known in algebra / combinatorics...

... but very theoretically: Möbius function, lattices, matroids.

Very impressive results / algorithms for the cardinal (number of feasible systems, number of $J \in \partial_B$) Upper bound, formula (also combinatorial)...
My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 0●0

With one more vector

• Given $(v_1, ..., v_{k-1})$; v_k ; $S_{k-1} \subseteq \{\pm 1\}^{k-1}$

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 0●0

With one more vector

- Given (v_1, \ldots, v_{k-1}) ; v_k ; $\mathcal{S}_{k-1} \subseteq \{\pm 1\}^{k-1}$
- $\forall s = (s_1, \dots, s_{k-1}) \in \mathcal{S}_{k-1}$, we know d_s^{k-1} s.t. : $\forall i \in [1:k-1], s_i v_i^T d_s^{k-1} > 0$

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 0●0

With one more vector

- Given (v_1, \ldots, v_{k-1}) ; v_k ; $\mathcal{S}_{k-1} \subseteq \{\pm 1\}^{k-1}$
- $\forall s = (s_1, \dots, s_{k-1}) \in \mathcal{S}_{k-1}$, we know d_s^{k-1} s.t. : $\forall i \in [1:k-1], s_i v_i^T d_s^{k-1} > 0$
- $\mathbf{v}_k^\mathsf{T} d_s^{k-1} > 0 \Rightarrow \begin{cases} +\mathbf{v}_k^\mathsf{T} d_s^{k-1} > 0\\ \mathbf{s}_i \mathbf{v}_i^\mathsf{T} d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} -\mathbf{v}_k^\mathsf{T} d > 0\\ \mathbf{s}_i \mathbf{v}_i^\mathsf{T} d > 0 \end{cases}? \to \mathsf{L.O.} \end{cases}$

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 0●0

With one more vector

• Given
$$(v_1, \ldots, v_{k-1})$$
; v_k ; $\mathcal{S}_{k-1} \subseteq \{\pm 1\}^{k-1}$

- $\forall s = (s_1, \dots, s_{k-1}) \in \mathcal{S}_{k-1}$, we know d_s^{k-1} s.t. : $\forall i \in [1: k-1], s_i v_i^T d_c^{k-1} > 0$
- $v_k^{\mathsf{T}} d_s^{k-1} > 0 \Rightarrow \begin{cases} + v_k^{\mathsf{T}} d_s^{k-1} > 0 \\ s_i v_i^{\mathsf{T}} d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} v_k^{\mathsf{T}} d > 0 \\ s_i v_i^{\mathsf{T}} d > 0 \end{cases} ? \to \mathsf{L.O.}$ • $v_k^{\mathsf{T}} d_s^{k-1} < 0 \Rightarrow \begin{cases} - v_k^{\mathsf{T}} d_s^{k-1} > 0 \\ s_i v_i^{\mathsf{T}} d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} + v_k^{\mathsf{T}} d > 0 \\ s_i v_i^{\mathsf{T}} d > 0 \end{cases} ? \to \mathsf{L.O.}$

My Personal Recipe 0000	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 0●0

With one more vector

• Given
$$(v_1, \ldots, v_{k-1})$$
; v_k ; $\mathcal{S}_{k-1} \subseteq \{\pm 1\}^{k-1}$

•
$$\forall s = (s_1, \dots, s_{k-1}) \in \mathcal{S}_{k-1}$$
, we know d_s^{k-1} s.t. :
 $\forall i \in [1: k-1], s_i v_i^T d_s^{k-1} > 0$

•
$$v_k^{\mathsf{T}} d_s^{k-1} > 0 \Rightarrow \begin{cases} +v_k^{\mathsf{T}} d_s^{k-1} > 0 \\ s_i v_i^{\mathsf{T}} d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} -v_k^{\mathsf{T}} d > 0 \\ s_i v_i^{\mathsf{T}} d > 0 \end{cases}? \to \mathsf{L}.\mathsf{O}.$$

•
$$\mathbf{v}_k^{\mathsf{T}} d_s^{k-1} < 0 \Rightarrow \begin{cases} -\mathbf{v}_k^{\mathsf{T}} d_s^{k-1} > 0\\ \mathbf{s}_i \mathbf{v}_i^{\mathsf{T}} d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} +\mathbf{v}_k^{\mathsf{T}} d > 0\\ \mathbf{s}_i \mathbf{v}_i^{\mathsf{T}} d > 0 \end{cases} ? \to \mathsf{L}.\mathsf{O}$$

• $v_k^{\mathsf{T}} d_s^{k-1} = 0 \Rightarrow$ both systems \checkmark by perturbation

My Personal Recipe	First part(s of the cake) 0000000000	Formalism 00000	An algorithm 00000	Some improvements	References 00●
Circuits of	matroids				

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_J=1$ because if \geq 2, smaller subsets are of $\dim(\mathcal{N})=1$

 2^{p} LO feasibility $\leftrightarrow 2^{p} \mathcal{N}$ searches; subsets of size $\leq 1 + \operatorname{rank}(V)$ Issue (unresolved): "optimal" way to compute efficiently: if I s.t. $\dim(\mathcal{N}(V_{:,I})) = 1, I' \supseteq I$ useless to check

My Personal Recipe	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 00●
Circuits of	matroids				

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_J = 1$ because if ≥ 2 , smaller subsets are of dim $(\mathcal{N}) = 1$

Issue (unresolved): "optimal" way to compute efficiently: if I s.t. $\dim(\mathcal{N}(V_{:,I})) = 1, I' \supseteq I$ useless to check

My Personal Recipe	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 00●
Circuits of	matroids				

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_J = 1$ because if ≥ 2 , smaller subsets are of $\dim(\mathcal{N}) = 1$

 2^{p} LO feasibility $\leftrightarrow 2^{p} \mathcal{N}$ searches; subsets of size $\leq 1 + \operatorname{rank}(V)$ Issue (unresolved): "optimal" way to compute efficiently: if I s.t. $\dim(\mathcal{N}(V_{:,I})) = 1, I' \supseteq I$ useless to check

My Personal Recipe	First part(s of the cake)	Formalism 00000	An algorithm 00000	Some improvements	References 00●
Circuits of	matroids				

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_J = 1$ because if ≥ 2 , smaller subsets are of dim $(\mathcal{N}) = 1$

Issue (unresolved): "optimal" way to compute efficiently: if I s.t. $\dim(\mathcal{N}(V_{:,I})) = 1, I' \supseteq I$ useless to check

My Personal Recipe	First part(s of the cake) 0000000000	Formalism 00000	An algorithm 00000	Some improvements	References 00●
Circuits of	matroids				

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_J = 1$ because if ≥ 2 , smaller subsets are of dim $(\mathcal{N}) = 1$

 2^{p} LO feasibility $\leftrightarrow 2^{p} \mathcal{N}$ searches; subsets of size $\leq 1 + \operatorname{rank}(V)$

Issue (unresolved): "optimal" way to compute efficiently: if I s.t. $\dim(\mathcal{N}(V_{:,I})) = 1, I' \supseteq I$ useless to check

My Personal Recipe	First part(s of the cake) 0000000000	Formalism 00000	An algorithm 00000	Some improvements	References 00●
Circuits of	matroids				

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_J = 1$ because if ≥ 2 , smaller subsets are of dim $(\mathcal{N}) = 1$

2^{*p*} LO feasibility \leftrightarrow 2^{*p*} \mathcal{N} searches; subsets of size $\leq 1 + \operatorname{rank}(V)$ Issue (unresolved): "optimal" way to compute efficiently: if *I* s.t. $\dim(\mathcal{N}(V_{:,I})) = 1, I' \supseteq I$ useless to check