Can we find a short path, without a map? Can we parallelize maze-solving?

Romain Cosson

Based on joint works with Laurent Massoulié & Laurent Viennot

PhD Seminar

Ínnía-

Keywords: collaborative exploration, trees, competitive analysis

20 slides / 20 mins

Collective Tree Exploration

Online framework: the science of decision-making

Online problem = Information arrives over time. Examples :

Linear Search	(Where should I search for my lost wallet?)	Starter
Learning with expert advice	(Who should I trust?)	
Metrical Task Systems	(When should I move out to another city?)	
 Secretary problem 	(When should I stop a hiring process?)	
 Bandit problems 	(Should I be safe (exploitation) or be bold (exploration)?)	
List Update Problem	(How should I organize my bookshelf?)	
Collective Tree Exploration	(How to solve a maze, with a team?)	Main
Layered Graph Traversal	(How to find a short path, without a map?)	Dish

A simple example: Linear Search

Where should I look for my lost wallet?

- Introduced by Bellman in the 1950s
 - you start from $0 \in \mathbb{Z}$ in an infinite street, your Cost = #steps
 - *wallet* is lost at $x \in \mathbb{Z}$ at distance |x| = OPT (unknown)
 - Your strategy has competitive ratio α if you always find your wallet with at most

Cost $\leq \alpha \cdot \mathbf{OPT}$

Another example : Learning with Expert advice

Who should I trust when there are many self-claimed « experts »?

- Introduced independently in many fields in the late 20th century.
 - Each day $t \in \{1, ..., T\}$ there are n experts forecasting rain $(y_{t,n} = 1)$ or sun $(y_{t,n} = 0)$
 - **OPT** = number of mistakes made by the most accurate forecaster
 - Cost = the number of mistakes that you make
 - Your strategy has regret R(n, T) if it satisfies

 $Cost \le OPT + R(n, T)$

The multiplicative weights strategy has $R(n,T) = O(\sqrt{T \log n})$ regret

Recap: on online problems

- **OPT** : the optimal possible cost, if you had all the information !
- Cost : the actual cost you pay, Cost \geq OPT
- A strategy acheives :
 - Competitive ratio *α* if

 $Cost \leq \alpha \times OPT$

• Regret *R* if

Main dish !

• Layered Graph Traversal

Can you find the shortest path, when you don't have a map?

• Papadimitriou and Yannakakis, 1991 (online algorithms)

- Collective Tree Exploration
 - Is maze-solving parallelizable?
 - Fraigniaud, Gasieniec, Kowalski and Pelc, 2004 (distributed algorithms)

Layered Tree Traversal

Can you find the shortest path, Without a map?

Collective Tree Exploration

Can you find the shortest path, without a map?

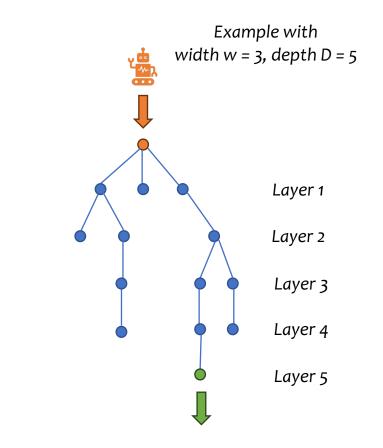
Notation : n = #nodes = #edges+1 and D = depth and w = width

- « **the width** » **:** max # nodes at given combinatorial depth
- « a layer » : set of nodes at the given combinatorial depth

Online Problem : Layers are revealed one after the other !

• **OPT** = **D** so an « $\alpha(w)$ -competitive path » has length

 $Cost \leq \alpha(w)D$



15 moves, i.e. 3-competitive

Is layered-feedback realistic?

length D

The unweighted variant

✓ **Observation:** In **unweighted** tree *n* = *wD*

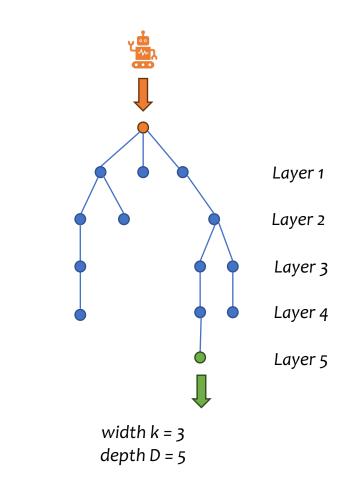
✓ Depth-First Search is thus O(w) - competitive

✓ **Question:** Can we do better than Depth-First Search?

Our work [CM]

✓ Yes! There is a $O(\sqrt{w})$ -competitive strategy

- \checkmark For a more general formulation of the problem
- ✓ Uses random choices!



Definition and Motivation

Collective Tree Exploration

Is maze-solving parallelizable?

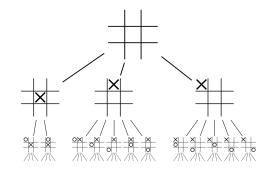
Collective Tree Exploration

12

Is solving a (tree) maze parallelizable?

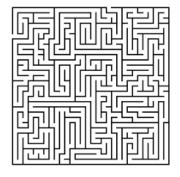
Notation : n = #nodes = #edges+1 and D = depth

- With 1 agent: right-hand on wall (RHW, aka DFS)
- With 2 agents: right+left-hand on wall (RHW+LHW)
- What about $k \ge 3$ agents? Moving synchronously at each round
- Exploration <-> Finding exit



Tic-tac-toe tree game

Silver coin of Knossos (Crete, 400 BC) Berlin state museum Collective Tree Exploration



A computer-generated (tree) maze

VOUS NE SORTIREZ JAMAIS D'ICI, ÉTRANGERS! CE TOMBEAU SERA VOIRE TOMBEAU!

24

« Collective Tree Exploration »

[FGKP 2004] Fraigniaud, Gasieniec, Kowalski, Pelc Collective Tree Exploration

Goal: Traverse all edges of unknown tree T = (V, E) with *n* nodes and depth *D*

✓ With $k \in \mathbb{N}$ agents moving synchronously at each round

Communication Models:

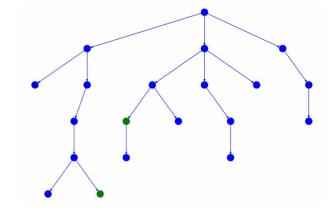
Centralized (full « complete » communication)

Distributed (restricted « write-read » communication)

Main result [FGKP 2004]:

✓ Distributed algorithm SPLIT in which explorers split evenly at intersections

✓ Runtime_{SPLIT}
$$\leq O\left(\frac{2n}{\log k} + D\right)$$



A tree with n = 20 and D = 6

The Competitive Ratio approach

What runtime could we hope for, had we know the tree in advance?

> **Offline variant :** OPT = Exploration time if tree were known in advance

 $D \le \text{OPT}$ and $\frac{n}{k} \le \text{OPT}$ in fact, $\frac{n}{k} + D \approx \text{OPT}$

> Consequence : SPLIT has a competitive ratio in $O\left(\frac{k}{\log k}\right)$

Runtime_{SPLIT} =
$$O\left(\frac{n}{\log k} + D\right) \le O\left(\frac{k}{\log k}\right)$$
 OPT

Recent results

Continuous analysis of online algorithms (online convex optimization)

✓ New idea: the explorers behave like electrons in an **electric network**

Latest results [C., Massoulié]

- Regret: **0**(*k***D**)
- Competitive Ratio: $O(\sqrt{k})$

Open Questions

Xo

Some Open Questions

Open Question 1: Is there a competitive collective **graph** exploration algo (competitive ratio) $c(k)\left(\frac{m}{k}+D\right)$ or in $\frac{2m}{k}+f(k,D)$ (regret) where *m* is *#* of edges, **D** is graph diameter, and $f(\cdot, \cdot)$ is some arbitrary function.

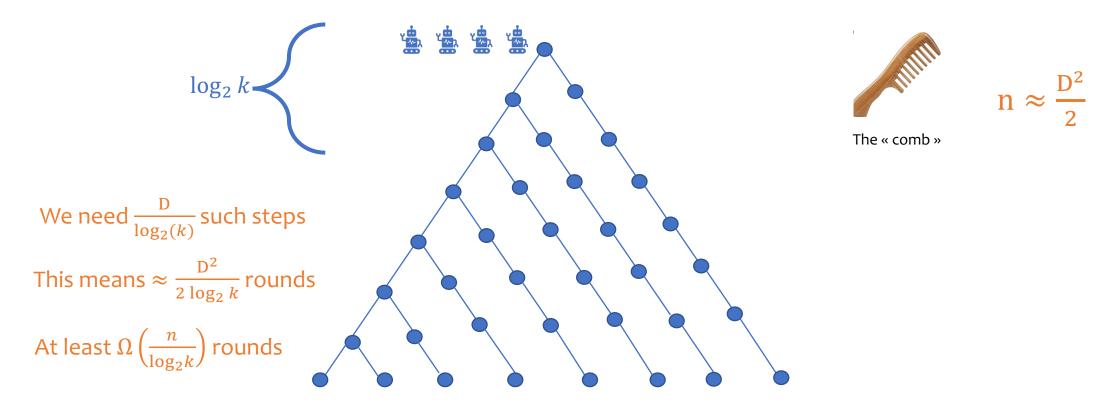
Open Question 2: Is there a (competitive) gap between **distributed** and **centralized** collective tree exploration?

Thankyou

Feel free to reach out

Office # C320

Why log k appears in SPLIT?



[HKLT 2014] This lower-bound applies to any « greedy » algorithm. def. « Greedy » = a robot never goes upwards, if there is an unexplored edge below