Demystifying Neural Word Embeddings

Yoav Goldberg
yoav.goldberg@gmail.com

September 2015

Language

Language

People use language to communicate

Language

People use language to communicate

Language is Everywhere

Language

People use language to communicate

Language is Everywhere

- Newspapers

Language

People use language to communicate

Language is Everywhere

- Newspapers
- Scientific articles

Language

People use language to communicate

Language is Everywhere

- Newspapers
- Scientific articles
- Medicine (patient records)

Language

People use language to communicate

Language is Everywhere

- Newspapers
- Scientific articles
- Medicine (patient records)
- Patents

Language

People use language to communicate

Language is Everywhere

- Newspapers
- Scientific articles
- Medicine (patient records)
- Patents
- Law

Language

People use language to communicate

Language is Everywhere

- Newspapers
- Scientific articles
- Medicine (patient records)
- Patents
- Law
- Product reviews

Language

People use language to communicate

Language is Everywhere

- Newspapers
- Scientific articles
- Medicine (patient records)
- Patents
- Law
- Product reviews
- Blogs
- Facebook, Twitter

A lot of text.

Need to understand what's being said.
this is where we come in.

NLP

NLP

What does it mean to understand?

NLP

What does it mean to understand?
I focus on the building blocks

Understanding the Structure

The soup, which I expected to be good, was bad

Understanding the Structure

The soup, which I expected to be good, was bad

Understanding the Structure

This is called Syntactic Parsing.

Understanding the Structure

The soup, which I expected to be good, was bad

Understanding the Structure

The soup, which I expected to be good, was bad

Understanding the Structure

The gromp, which I furpled to be drogby, was spujky

Understanding the Structure

The gromp, which I furpled to be drogby, was spujky
/EAu.cs.biu.ac.il/~yogo/: x
u.cs.biu.ac.il/~yogo/parse/index?text=The+gromp\%2C+which+I+furpled+to+be+drogby\%2C+was+spuj

Greedy parsing to Stanford Dependencies

Understanding the Structure

Can understand structure without understanding words.

But the words are also important.

I almost gave you a talk about parsing.

Today we will focus on the words.

Understanding the Words

soup was bad

Understanding the Words

soup was bad
soup was awful

Understanding the Words

soup was bad
soup was awful
soup was lousy

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky
chowder was nasty

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky
chowder was nasty pudding was terrible

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky
chowder was nasty
pudding was terrible cake was bad

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky
chowder was nasty
pudding was terrible cake was bad
hamburger was lousy

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky
chowder was nasty pudding was terrible cake was bad
hamburger was lousy
service was poor

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky
chowder was nasty
pudding was terrible cake was bad
hamburger was lousy
service was poor atmosphere was shoddy

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky
chowder was nasty
pudding was terrible cake was bad
hamburger was lousy
service was poor
atmosphere was shoddy
hammer was heavy

Understanding the Words

soup was bad
soup was awful
soup was lousy
soup was abysmal
soup was icky
chowder was nasty pudding was terrible cake was bad hamburger was lousy
service was poor atmosphere was shoddy hammer was heavy

- To the computer, each word is just a symbol, so these are all the same.
- But to us, some are more similar than others.
- We'd like a word representation that can capture that.

Representing Words

Use a dictionary?

Representing Words

Use a dictionary?

Doesn't scale.

Representing Words

The distributional Hypothesis

Dr. Baroni saw a hairy little wampinuck sleeping behind a tree

Representing Words

The distributional Hypothesis

Dr. Baroni saw a hairy little wampinuck sleeping behind a tree

The Distributional Hypothesis - Haris, 1954
Words in similar contexts tend to have similar meanings
Firth, 1957
"you should know a word by the company it keeps"

Co-occurrence

he curtains open and the moon shining in on the barely ars and the cold, close moon " . And neither of the w rough the night with the moon shining so brightly, it made in the light of the moon. It all boils down, wr surely under a crescent moon , thrilled by ice-white sun, the seasons of the moon ? Home, alone, Jay pla m is dazzling snow, the moon has risen full and cold un and the temple of the moon , driving out of the hug
in the dark and now the moon rises, full and amber a bird on the shape of the moon over the trees in front
But I could n't see the moon or the stars, only the rning, with a sliver of moon hanging among the stars
they love the sun, the moon and the stars. None of the light of an enormous moon. The plash of flowing w man 's first step on the moon ; various exhibits , aer
the inevitable piece of moon rock . Housing The Airsh oud obscured part of the moon. The Allied guns behind

Words as Vectors

- Represent each word as a sparse, high dimensional vector of the words that co-occur with it.

```
moon = (the:324, shining:4, cold:1, brightly:2,
stars:12, elephant:0, ...)
```

- Words are similar if their vectors are similar.
- We measure similarity using geometric measures, for example cosine distance.
- But more intuitively, words are similar if they share many similar contexts.

Weighting

Re-weight the counts using corpus-level statistics to reflect co-occurrence significance

Positive Pointwise Mutual Information (PPMI)

$$
\operatorname{PPMI}(\operatorname{target}, c t x t)=\max \left(0, \log \frac{\mathrm{P}(\text { target }, \text { ctxt })}{\mathrm{P}(\text { target }) \mathrm{P}(\text { ctxt })}\right)
$$

Weighting

Adjusting raw co－occurrence counts：

| | bright | in | | |
| :--- | :---: | :---: | :--- | :--- | :--- |
| stars | 385 | 10788 | \ldots | \leftarrow Counts |
| stars | 43.6 | 5.3 | \ldots | \leftarrow PPMI |

Other weighting schemes：
－TF－IDF
－Local Mutual Information
－Dice

See Ch4 of J．R．Curran＇s thesis（2004）and S．Evert＇s thesis （2007）for surveys of weighting methods

Words as Vectors

We can arrange the words in a huge, sparse matrix, where each row is a word, and each column is a context.

Words as Vectors

We often apply SVD or similar technique of dimensionality reduction.

contexts

Words as Vectors - It works

Nearest neighbours to dog

- cat
- horse
- fox
- pet
- rabbit
- pig
- animal
- mongrel
- sheep
- pigeon

Words as Vectors - It works

Nearest neighbours to dog

2-word window

- cat
- horse
- fox
- pet
- rabbit
- pig
- animal
- mongrel
- sheep
- pigeon

Words as Vectors - It works

Nearest neighbours to dog

2-word window

- cat
- horse
- fox
- pet
- rabbit
- pig
- animal
- mongrel
- sheep
- pigeon

30-word window

- kennel
- puppy
- pet
- bitch
- terrier
- rottweiler
- canine
- cat
- to bark
- Alastian

word2vec

Web Images Videos News Maps More＊Search tools

About 384 results（ 0.56 seconds）

MLMU．cz－Radim Řehůřek－Word2vec \＆friends（7．1．2015 ．．

www．youtube．com／watch？v＝wTp3P2UnTfQ
Jan 14， 2015 －Uploaded by Marek Modrý
I＇ll go over a particular model published by Google，called word2vec，its optimizations，applications and ．．．

Word2Vec convergence on Vimeo

	https：／／vimeo．com／112168934
	Nov 18， 2014
	This is＂Word2Vec convergence＂by MaciejLyst on Vimeo，the home
	high quality videos and the people who

Statistical Semantic入門～分布仮説から word2vecまで \＃1 ．．．

www．ustream．tv／recorded／43497190 •
Statistical Semantic入門～分布仮説からword2vecまで\＃1．February 5， 2014 at 7：16pm ．．．

Statistical Semantic入門～分布仮説から word2vecまで \＃2，PFI ．．．

www．ustream．tv／recorded／43497424
Feb 5， 2014
非常に説明がわかりやすいです！「ゲーミフィケーション入門」と「マー
ケティングとスタートアッブの話」を見ましたが，どちらも非常に理解
しやすかった…

GigaOM Show：Samsung watch secrets spilled！B\＆N＇s Nook ．．．

O＊REILLY

Home	Community	Books
Catalog New \＆Upcoming		
Book		
－Theme		
Perl		
Java		
Web \＆Internet		
XML		
データベース		
Security		
Linux		
Unix		
Macintosh／OS X		
Windows		
スットワークジ标年管理		
ブログラミング		
ハードウェア		
Math		
－Series		
Hacks		
クックブック		
クイックリファレンス		
デスクトッブリファレンス		
The Missing Manual		
Make		
Head First		
Feature		
新刊情報		
カタログ（PDF）		
Make	ne	

－sponsor：

- 較職ならエン
- 派譄ならエン

word2vecによる自然言語処理

 word2vecについて，其本的な使い方を体験し，さらにその仕組みを学ぶ書籍です。
基本的な使い方から，自分の好きなコーバスの作り方，登䏱の背景，仕組み，さらには府用例や弱点につ いてもコンバクトなボリュームで椇覞できます。付䩮にはword2vecの出力結果を主成分分析を使って可視化する方法について解捝しています。
なお本書はEbook版のみの眅売となります。
著者の西尾さんによる本書の解题［リンク］

Catch O＇Reilly

N New Release
Ebook Store
ลォラの村
Make：Japan
\square ORJ on Twitter
3 Bookclub News
ORJ for Mobile

Feedback

皆さんのご意見をお聞かせくだ さい。ご購入いただいた書籍や オライリー・ジャバンへのご感䄄やこ意見，こ提案などをお間 かせください。より良い書籍づ くりやサービス改良のための参考にさせていただきます。 ［feedbackページへ］

Compare search terms *

word2vec Search term	dependency parsing Search term	+Add term

Interest over time ? Newa headines ? Forecast ?

</ \rangle

From Distributional to Distributed Semantics

The new kid on the block

- Deep learning / neural networks.
- "Distributed" word representations.
- Feed text into neural-net. Get back "word embeddings".
- Each word is represented as a low-dimensional vector.
- Vectors capture "semantics".
- word2vec (Mikolov et al)

word2vec

word2vec

- dog
- cat, dogs, dachshund, rabbit, puppy, poodle, rottweiler, mixed-breed, doberman, pig
- sheep
- cattle, goats, cows, chickens, sheeps, hogs, donkeys, herds, shorthorn, livestock
- november
- october, december, april, june, february, july, september, january, august, march
- jerusalem
- tiberias, jaffa, haifa, israel, palestine, nablus, damascus katamon, ramla, safed
- teva
- pfizer, schering-plough, novartis, astrazeneca, glaxosmithkline, sanofi-aventis, mylan, sanofi, genzyme, pharmacia

word2vec

Other appealing properties

Mikolov et al. (2013a,b,c)

$$
\begin{gathered}
b \quad a \quad a^{*} \quad b^{*} \\
\text { king }-\operatorname{man}+\text { woman }=\text { queen }
\end{gathered}
$$

Mikolov et al. (2013a,b,c)

$$
\begin{gathered}
b \quad a \quad a^{*} \quad b^{*} \\
\text { Tokyo }- \text { Japan }+ \text { France }=\text { Paris }
\end{gathered}
$$

Mikolov et al. (2013a,b,c)

$$
\begin{array}{ccc}
b & a \quad a^{*} \quad b^{*} \\
\text { best }- \text { good }+ \text { strong } & =\text { strongest }
\end{array}
$$

Mikolov et al. (2013a,b,c)

$$
\begin{array}{cc}
b & a \quad \begin{array}{c}
a^{*} \quad b^{*} \\
\text { best }-\operatorname{good} \\
\text { vectors in } \mathbb{R}^{n}
\end{array} \text { strong }=\text { strongest }
\end{array}
$$

Seems magical.

Seems magical.

"Neural computation, just like in the brain!"

Seems magical.

"Neural computation, just like in the brain!"

How does this actually work?

How does word2vec work?

word2vec implements several different algorithms:
Two training methods

- Negative Sampling
- Hierarchical Softmax

Two context representations

- Continuous Bag of Words (CBOW)
- Skip-grams

How does word2vec work?

word2vec implements several different algorithms:
Two training methods

- Negative Sampling
- Hierarchical Softmax

Two context representations

- Continuous Bag of Words (CBOW)
- Skip-grams

We'll focus on skip-grams with negative sampling.
intuitions apply for other models as well.

How does word2vec work?

- Represent each word as a dimensional vector.
- Represent each context as a dimensional vector.
- Initalize all vectors to random weights.
- Arrange vectors in two matrices, W and C.

How does word2vec work?

While more text:

- Extract a word window:

A springer is [$\begin{array}{ccccccccc}a & \text { cow } & \text { or } & \text { heifer } & \text { close } & \text { to } & \text { calving }] \text {. } \\ c_{1} & c_{2} & c_{3} & w & c_{4} & c_{5} & c_{6}\end{array}$

- w is the focus word vector (row in W).
- c_{i} are the context word vectors (rows in C).

How does word2vec work?

While more text:

- Extract a word window:

A springer is [$\begin{array}{cccccccc}a & c o w & \text { or } & \text { heifer } & \text { close } & \text { to } & \text { calving } \\ c_{1} & c_{2} & c_{3} & w & c_{4} & c_{5} & c_{6}\end{array}$

- Try setting the vector values such that:
$\sigma\left(w \cdot c_{1}\right)+\sigma\left(w \cdot c_{2}\right)+\sigma\left(w \cdot c_{3}\right)+\sigma\left(w \cdot c_{4}\right)+\sigma\left(w \cdot c_{5}\right)+\sigma\left(w \cdot c_{6}\right)$ is high

How does word2vec work?

While more text:

- Extract a word window:

A springer is [$\begin{array}{cccccccc}\text { a } & \text { cow } & \text { or } & \text { heifer } & \text { close } & \text { to } & \text { calving }] \text {. } \\ c_{1} & c_{2} & c_{3} & w & c_{4} & c_{5} & c_{6}\end{array}$

- Try setting the vector values such that:
$\sigma\left(\boldsymbol{w} \cdot \boldsymbol{c}_{1}\right)+\sigma\left(\boldsymbol{w} \cdot \boldsymbol{c}_{2}\right)+\sigma\left(\boldsymbol{w} \cdot \boldsymbol{c}_{3}\right)+\sigma\left(\boldsymbol{w} \cdot \boldsymbol{c}_{4}\right)+\sigma\left(\boldsymbol{w} \cdot \boldsymbol{c}_{5}\right)+\sigma\left(\boldsymbol{w} \cdot \boldsymbol{c}_{6}\right)$
is high
- Create a corrupt example by choosing a random word w^{\prime}

$$
\left[\begin{array}{cccccccc}
\text { a cow } & \text { or comet } & \text { close } & \text { to } & \text { calving } \\
c_{1} & c_{2} & c_{3} & w^{\prime} & c_{4} & c_{5} & c_{6}
\end{array}\right.
$$

- Try setting the vector values such that:
$\sigma\left(w^{\prime} \cdot c_{1}\right)+\sigma\left(w^{\prime} \cdot c_{2}\right)+\sigma\left(w^{\prime} \cdot c_{3}\right)+\sigma\left(w^{\prime} \cdot c_{4}\right)+\sigma\left(w^{\prime} \cdot c_{5}\right)+\sigma\left(w^{\prime} \cdot c_{6}\right)$
is low

How does word2vec work?

The training procedure results in:

- w $\cdot \boldsymbol{c}$ for good word-context pairs is high.
- w c c for bad word-context pairs is low.
- w $\cdot c$ for ok-ish word-context pairs is neither high nor low.

As a result:

- Words that share many contexts get close to each other.
- Contexts that share many words get close to each other.

At the end, word2vec throws away C and returns W.

Reinterpretation

Imagine we didn't throw away C. Consider the product $W C^{\top}$

Reinterpretation

Imagine we didn't throw away C. Consider the product $W C^{\top}$

The result is a matrix M in which:

- Each row corresponds to a word.
- Each column corresponds to a context.
- Each cell correspond to w c, an association measure between a word and a context.

Reinterpretation

Does this remind you of something?

Reinterpretation

Does this remind you of something?
Very similar to SVD over distributional representation:

What is SGNS learning?

- A $V_{W} \times V_{C}$ matrix
- Each cell describes the relation between a specific word-context pair

$$
\vec{w} \cdot \vec{c}=?
$$

$$
=
$$

"Neural Word Embeddings as Implicit Matrix Factorization" Levy \& Goldberg, NIPS 2014

What is SGNS learning?

- We prove that for large enough d and enough iterations

"Neural Word Embeddings as Implicit Matrix Factorization" Levy \& Goldberg, NIPS 2014

What is SGNS learning?

- We prove that for large enough d and enough iterations
- We get the word-context PMI matrix

"Neural Word Embeddings as Implicit Matrix Factorization" Levy \& Goldberg, NIPS 2014

What is SGNS learning?

- We prove that for large enough d and enough iterations
- We get the word-context PMI matrix, shifted by a global constant

$$
\operatorname{Opt}(\vec{w} \cdot \vec{c})=\operatorname{PMI}(w, c)-\log k
$$

What is SGNS learning?

- SGNS is doing something very similar to the older approaches
- SGNS is factorizing the traditional word-context PMI matrix
- So does SVD!
- Do they capture the same similarity function?

SGNS vs SVD

Target Word	SGNS	SVD
cat	dog	dog
	rabbit	rabbit
	cats	pet
	poodle	monkey
	pig	pig

SGNS vs SVD

Target Word	SGNS	SVD
wine	wines	wines
	grape	grape
	grapes	grapes
	winemaking	varietal
	tasting	vintages

SGNS vs SVD

Target Word	SGNS	SVD
November	October	October
	December	December
	April	April
	January	June
	July	March

But word2vec is still better, isn't it?

- Plenty of evidence that word2vec outperforms traditional methods
- In particular: "Don’t count, predict!" (Baroni et al., 2014)
- How does this fit with our story?

The Big Impact of "Small" Hyperparameters

Hyperparameters

- word2vec is more than just an algorithm...
- Introduces many engineering tweaks and hyperpararameter settings
- May seem minor, but make a big difference in practice
- Their impact is often more significant than the embedding algorithm's
- These modifications can be ported to distributional methods!

Hyperparameters

- Preprocessing
- Association Metric
- Postprocessing

Hyperparameters

- Preprocessing
- Association Metric
- Postprocessing

Association Metric Hyperparameters

- Since SGNS and PMI are strongly related, we can import 2 of SGNS's hyperparameters to traditional PMI:

1. Shifted PMI
2. Negative Sampling Smoothing

- Both stem from the negative sampling procedure

Negative Sampling Smoothing

- Recall that SGNS picks $w^{\prime} \sim P$ to form negative (w^{\prime}, c) examples
- Our analysis assumes P is the unigram distribution

$$
P(w)=\frac{\# w}{\sum_{w^{\prime} \in V_{W}} \# w^{\prime}}
$$

Negative Sampling Smoothing

- Recall that SGNS picks $w^{\prime} \sim P$ to form negative (w^{\prime}, c) examples
- Our analysis assumes P is the unigram distribution
- In practice, it's a smoothed unigram distribution

$$
P^{0.75}(w)=\frac{(\# w)^{0.75}}{\sum_{w^{\prime} \in V_{W}}\left(\# w^{\prime}\right)^{0.75}}
$$

- This little change makes a big difference

Negative Sampling Smoothing

- This smoothing has an analogue in PMI
- Replace $P(w)$ with $P^{0.75}(w)$:

$$
P M I^{0.75}(w, c)=\log \frac{P(w, c)}{P^{0.75}(w) P(c)}
$$

- Yields a dramatic improvement with every method on every task

Experiments \& Results

- We compared several methods, while controlling for hyperparameters
- PPMI, SVD(PPMI), SGNS, GloVe
- Methods perform on-par in most tasks
- Slight advantage to SVD in word similarity
- SGNS is better at syntactic analogies
- SGNS is robust in general
- Negative sampling smoothing accounts for much of the differences observed in "Don't count, predict!"

Other Hyperparameters

- There are many other hyperparameters that can be investigated
- Perhaps the most interesting one is the type of context

What's in a Context?

What's in a Context?

- Importing ideas from embeddings improves distributional methods
- Can distributional ideas also improve embeddings?
- Idea: change SGNS's default BoW contexts into dependency contexts

Example

Australian scientist discovers star with telescope

Target Word

Australian scientist discovers star with telescope

Bag of Words (BoW) Context

Australian scientist discovers star with telescope

Bag of Words (BoW) Context

Australian scientist discovers star with telescope

Bag of Words (BoW) Context

Australian scientist discovers star with telescope

Syntactic Dependency Context

Australian scientist discovers star with telescope

Syntactic Dependency Context

"Dependency-Based Word Embeddings"
Levy \& Goldberg, ACL 2014

Syntactic Dependency Context

"Dependency-Based Word Embeddings"
Levy \& Goldberg, ACL 2014

Embedding Similarity with Different Contexts

Target Word	Bag of Words (k=5)	Dependencies
Hogwarts	Dumbledore	Sunnydale
	hallows	Collinwood
	half-blood	Calarts
	Malfoy	Greendale
	Snape	Millfield
Related to		
	Harry Potter	

Embedding Similarity with Different Contexts

Target Word	Bag of Words (k=5)	Dependencies		
Turing	nondeterministic	Pauling		
	non-deterministic	Hotelling		
	computability	Heting		
	deterministic	Lessing		
	Related to			Hamming

Embedding Similarity with Different Contexts

Target Word	Bag of Words $(\mathrm{k}=5)$	Dependencies
	singing	singing
	dance	rapping
dancing	dances	
(dance gerund)	dancers	
	tap-dancing	miming
	Related to	
dance		

What is the effect of different context types?

- Thoroughly studied in distributional methods
- Lin (1998), Padó and Lapata (2007), and many others...

General Conclusion:

- Bag-of-words contexts induce topical similarities
- Dependency contexts induce functional similarities
- Share the same semantic type
- Cohyponyms
- Holds for embeddings as well

Peeking into Skip-Gram’s Black Box

- In explicit representations, we can look at the features and analyze
- But embeddings are a black box!
- Dimensions are latent and don't necessarily have any meaning

Peeking into Skip-Gram’s Black Box

- Skip-Gram allows a peek...
- Contexts are embedded in the same space!
- Given a word w, find the contexts c it "activates" most:

$$
\arg \max _{c}(\vec{w} \cdot \vec{c})
$$

Associated Contexts

Target Word	Dependencies
	students/prep_at ${ }^{-1}$ educated/prep_at ${ }^{-1}$ Hogwartsstudent/prep_at stay/prep_at ${ }^{-1}$ learned/prep_at

Associated Contexts

Target Word	Dependencies
	machine $/ \mathrm{nn}^{-1}$
test $/ \mathrm{nn}^{-1}$	
Turing	theorem $/$ poss $^{-1}$
	machines $/ \mathrm{nn}^{-1}$
	tests $/ \mathrm{nn}^{-1}$

Associated Contexts

Target Word	Dependencies
	dancing/conj
dancing	dancing/conj $^{-1}$
	singing/conj
	singing/conj
	ballroom/nn

Analyzing Embeddings

- We show a way to linguistically analyze embeddings
- Together with the ability to engineer contexts...
- ...we now have the tools to create task-tailored embeddings!

But there's still one question left...

- How do you explain this?

$$
\text { king }-\operatorname{man}+\text { woman }=\text { queen }
$$

But there's still one question left...

- How do you explain this?

Tokyo - Japan + France $=$ Paris

But there's still one question left...

- How do you explain this?

best $\boldsymbol{-}$ good $\boldsymbol{+}$ strong $=$ strongest

Kings, Queens, and Vector Arithmetic

Analogies

man is to woman as king is to?

- Mikolov et al.: analogies can be recovered by simple vector arithmetic

$$
\text { king }- \text { man }+ \text { woman }=\text { queen }
$$

- Why does this work?

Why does vector arithmetic reveal analogies?

Why does vector arithmetic reveal analogies?

- We wish to find the closest x to king - man + woman

Why does vector arithmetic reveal analogies?

- We wish to find the closest x to king - man + woman
- This is done with cosine similarity:

$$
\arg \max _{x}(\cos (x, \text { king }-\operatorname{man}+\text { woman }))
$$

Why does vector arithmetic reveal analogies?

- We wish to find the closest x to king - man + woman
- This is done with cosine similarity:

$$
\begin{gathered}
\arg \max _{x}(\cos (x, \text { king }-\operatorname{man}+\text { woman }))= \\
\arg \max _{x}(\cos (x, \text { king })-\cos (x, \text { man })+\cos (x, \text { woman }))
\end{gathered}
$$

Why does vector arithmetic reveal analogies?

- We wish to find the closest x to king - man + woman
- This is done with cosine similarity:

$$
\begin{gathered}
\arg \max _{x}(\cos (x, \text { king }-\operatorname{man}+\text { woman }))= \\
\arg \max _{x}(\cos (x, \text { king })-\cos (x, \text { man })+\cos (x, \text { woman }))
\end{gathered}
$$

vector arithmetic $=$ similarity arithmetic

Why does vector arithmetic reveal analogies?

- We wish to find the closest x to king - man + woman
- This is done with cosine similarity:

vector arithmetic $=$ similarity arithmetic

Why does vector arithmetic reveal analogies?

- We wish to find the closest x to king - man + woman
- This is done with cosine similarity:

vector arithmetic $=$ similarity arithmetic

What does each similarity term mean?

- Observe the joint features with explicit representations!

queen \cap king	queen \cap woman
uncrowned	Elizabeth
majesty	Katherine
second	impregnate
\ldots	\ldots

Can we do better?

Let's look at some mistakes...

Let's look at some mistakes...

England $\boldsymbol{-}$ London + Baghdad $=$?

Let's look at some mistakes...

England $\mathbf{-}$ London + Baghdad $=$ Iraq

Let's look at some mistakes...

England - London + Baghdad $=$ Mosul?

The Additive Objective

$$
\cos (\text { Iraq, England })-\cos (\text { Iraq, London })+\operatorname{cos(Iraq,~Baghdad)~}
$$

$$
\cos (\text { Mosul, England })-\cos (\text { Mosul, London })+\operatorname{cos(Mosul,Baghdad)~}
$$

The Additive Objective

```
    cos(Iraq,England) - cos(Iraq,London) + cos(Iraq,Baghdad)
    0 . 1 5
    \uparrow
    0 . 1 3
cos(Mosul,England) - cos(Mosul,London) + cos(Mosul,Baghdad)
```


The Additive Objective

```
    cos(Iraq,England) - cos(Iraq,London) + cos(Iraq,Baghdad)
    0 . 1 5
```


0.13
$\cos ($ Mosul, England $)-\cos ($ Mosul,London $)+\cos ($ Mosul,Baghdad $)$

The Additive Objective

```
    cos(Iraq,England) - cos(Iraq,London) + cos(Iraq,Baghdad)
    0 . 1 5
```


0.13
$\cos ($ Mosul, England $)-\cos ($ Mosul,London $)+\cos ($ Mosul,Baghdad $)$

The Additive Objective

```
    cos(Iraq,England) - cos(Iraq,London) + cos(Iraq,Baghdad)
    0 . 1 5
```


0.13
$\cos ($ Mosul, England $)-\cos (M o s u l, L o n d o n)+\cos (M o s u l$, Baghdad $)$

The Additive Objective

```
    cos(Iraq,England) - cos(Iraq,London) + cos(Iraq,Baghdad)
```



```
cos(Mosul,England) - cos(Mosul,London) + cos(Mosul,Baghdad)
```

- Problem: one similarity might dominate the rest

How can we do better?

How can we do better?

- Instead of adding similarities, multiply them!

How can we do better?

- Instead of adding similarities, multiply them!

$$
\arg \max _{x}\left(\frac{\cos (x, \text { king }) \cos (x, \text { woman })}{\cos (x, \text { man })}\right)
$$

How can we do better?

- Instead of adding similarities, multiply them!

Multiplication > Addition

Kings, Queens, and Vector Arithmetic

-Why does vector arithmetic reveal analogies?
Because vector arithmetic is equivalent to similarity arithmetic.

- We can improve analogy recovery with the multiplicative objective

Conclusion

To Summarize

- In order to communicate...
- ... we need to understand language.
- The building blocks:
- Understanding structure.
- Understanding words.
- Representing words as vectors can go a long way
- ... but shouldn't be treated as magical.
- By understanding what's going on behind the scenes, one can improve and control the behavior of the models.
- better analogical reasoning.
- syntactic contexts \rightarrow more functional similarities.
- Understanding language is hard. Still a long way to go.

Thanks - for $\boldsymbol{+}$ listening $=$)

