
 
 
 
 

iCOCOA 
Software  

Developer’s Guide 
Graham Thomson, Sebastien Bianco 

 



July 2008  public 
 

 

Abstract  
 
This software developer’s guide presents in detail, the architecture of the iCOCOA middleware, how to use each 
of the methods of the iCOCOA public API, as well as detailing of advanced iCOCOA middleware configuration.  
 

Keyword list  
 
HOWTO, ambient intelligence, networked home system, semantic concept, ontology, service description 
vocabulary, service description language, semantic reasoning, service matching, service composition, service 
adaptation, service execution, middleware.  
 

Table of Contents  
 
1 iCOCOA Overview............................................................................................................ 3 
2 iCOCOA Deployment ........................................................................................................ 4 

2.1 System requirements .................................................................................................. 4 
2.2 Download ................................................................................................................... 4 
2.3 Install .......................................................................................................................... 4 

3 iCOCOA Architecture........................................................................................................ 5 
4 iCOCOA Public API Tutorial ............................................................................................ 8 

4.1 iCOCOA API ............................................................................................................. 8 
4.1.1 Adding and removing a service.......................................................................... 8 
4.1.2 Adding an ontology............................................................................................ 9 
4.1.3 Retrieving a service by name or type ................................................................. 9 
4.1.4 Retrieving information related to a registered service ..................................... 10 
4.1.5 Retrieving (composed) services that match a task ........................................... 10 
4.1.6 Retrieving all services ...................................................................................... 11 
4.1.7 Clearing the repository ..................................................................................... 11 
4.1.8 Setting a new matcher to be used by the repository......................................... 11 

4.2 Advanced iCOCOA Configuration .......................................................................... 12 
5 References ........................................................................................................................ 12 
 

 
INRIA Rocquencourt – ARLES  2/12 



July 2008  public 
 

 

1 iCOCOA Overview  
 
Provider  
INRIA Paris-Rocquencourt  
 
Introduction  
Short description of the service/module  
 
Development status  
Prototype complete.  
 
Intended audience  
Users of the iCOCOA who wish to create semantic service descriptions for services, and use the 
semantic composition, adaptation and execution middleware.  
 
License  
The GNU Lesser General Public License v3.0 (http://www.gnu.org/licenses/lgpl.html).  
 
Language  
Java, WSDL, BPEL.  
 
Platform  
JDK 5 (Note that the ActiveBPEL library, upon which iCOCOA depends, is not supported at JDK 6).  
 
Tools  
The eclipse IDE, available at www.eclipse.org, is recommended to build the iCOCOA software and 
examples.  
 
Files  
All source code files are available via anonymous checkout from the Amigo SVN repository at: 
https://gforge.inria.fr/scm/?group_id=160.  
 
Documents  
In addition to this User’s Guide, an iCOCOA Developer’s Guide, an integrated Howto for all Amigo 
middleware components, iCOCOA examples with accompanying tutorials, and iCOCOA API 
documentation, are available for download at https://gforge.inria.fr/frs/?group_id=160.  
 
Bugs  
The following exception will be encountered when attempting to run iCOCOA using a Java 6 JVM:  
java.lang.ClassCastException: 
com.sun.xml.internal.messaging.saaj.soap.ver1_1.Envelope1_1Impl cannot be cast to 
java.lang.String org.apache.axis.SOAPPart.getAsString(SOAPPart.java:554) 
org.apache.axis.SOAPPart.writeTo(SOAPPart.java:322) 
org.apache.axis.SOAPPart.writeTo(SOAPPart.java:269) 
org.apache.axis.Message.writeTo(Message.java:539) 
org.apache.axis.transport.http.AxisServlet.sendResponse(AxisServlet.java:902) 
org.apache.axis.transport.http.AxisServlet.doPost(AxisServlet.java:777) 
javax.servlet.http.HttpServlet.service(HttpServlet.java:710) 
org.apache.axis.transport.http.AxisServletBase.service(AxisServletBase.java:327) 
javax.servlet.http.HttpServlet.service(HttpServlet.java:803)  

This is due the ActiveBPEL library upon which iCOCOA depends, which is not supported at JDK 6. 
Please use a Java 5 SDK / JVM.  

 
INRIA Rocquencourt – ARLES  3/12 

http://www.gnu.org/licenses/lgpl.html
www.eclipse.org
https://gforge.inria.fr/scm/?group_id=160


July 2008  public 
 

2 iCOCOA Deployment  

2.1 System requirements  
In order to run iCOCOA, you must have the following software installed on your machine:  
Apache Axis 1.4 Final  
Apache Tomcat 5.5  
ActiveBPEL 4.1  

2.2 Download  
The required software can be downloaded from the following locations:  
Apache Axis 1.4 Final - http://ws.apache.org/axis/java/releases.html  
Apache Tomcat 5.5 - http://tomcat.apache.org/download-55.cgi  
ActiveBPEL 4.1 - http://www.active-endpoints.com/active-bpel-engine-overview.htm  
 

2.3 Install  
Installation instructions for the required software can be found at the following locations:  
Apache Axis 1.4 Final - http://ws.apache.org/axis/java/install.html  
Apache Tomcat 5.5 - http://tomcat.apache.org/tomcat-5.5-doc/index.html  
ActiveBPEL 4.1 - http://www.active-endpoints.com/active-bpel-engine-overview.htm  
 

 
INRIA Rocquencourt – ARLES  4/12 

http://ws.apache.org/axis/java/releases.html
http://tomcat.apache.org/download-55.cgi
http://www.active-endpoints.com/active-bpel-engine-overview.htm
http://ws.apache.org/axis/java/install.html
http://tomcat.apache.org/tomcat-5.5-doc/index.html
http://www.active-endpoints.com/active-bpel-engine-overview.htm


July 2008  public 
 

3 iCOCOA Architecture  
 

 
Figure 3-1 : The iCOCOA high-level architecture 

 
Figure 3-1 shows the high-level architecture of iCOCOA. Figure 3-1 a) shows the main components 
within iCOCOA. These include a user's device, which hosts the application which exploits iCOCOA, 
other remote devices, which host the services that the application wishes to use, and the Amigo home 
server, which host the iCOCOA Semantic Service Repository and Execution Engine. This 
configuration is flexible however, and can be reconfigured to suit the need of a deployment. The 
repository and execution can be hosted on independent machines, for example, should a particular 
deployment require it. Similarly, common services and/or application could be hosted on the Amigo 
home server.  
Figure 3-1 b) to d) show the basic steps involved in registering services, dynamically composing and 
application using the available services, and executing the application, respectively.  
Figure 3-1 b) shows a service registering itself with the Amigo Semantic Service Repository. The first 
step in this phase is that the service discovers the repository. The repository appears in the Amigo 
home network as a basic Amigo service, and can be discover using the standard Amigo basic service 
discovery mechanisms [Amigo-D3.5]. Next the service registers itself by passing its Amigo-S 
semantic service description to the repository.  
Providing an Amigo-S semantic service description for a service provides several features and 
advantages to the Amigo application developer:  

 
INRIA Rocquencourt – ARLES  5/12 



July 2008  public 
 

 
It allows semantic service descriptions to be created for basic services, where the service provides a 
collection of atomic capabilities. This allows the service to be discovered via semantic matching at 
both the service and capability levels, increasing the service's availability and promoting its 
interoperability.  
Semantic service descriptions can provide semantic concepts for a whole service, for each capability 
and its inputs and outputs, and optionally its pre-conditions and effects.  
It allows semantic descriptions of conversation-based services, where the capabilities the service 
provides are described as a workflow of sub-capabilities. This allows the expression of data and 
control dependencies between the service’s capabilities.  
Complex workflows can be created by composing capabilities using a variety of control constructs, 
e.g. Sequence, Choice.  
Context parameters can be described for a service, both at the level of individual capabilities, and for 
the service as a whole. Then, the service can be incorporated by the context-aware discovery 
mechanisms~\cite{AmigoD34}, which enables an application to optimise service selection based on 
services’ current context, and frees the application developer from the need to actively search for the 
optimal service.  
The quality of service parameters a service supports can be described both at the individual capability 
level, and for the service as a whole. This makes the service available to applications which employ 
the priority-based quality of service selection model provided by the Quality of Service Aware Service 
Selection Tool (QASST)~\cite{AmigoD34}, which allows the Amigo middleware to serve as many 
requests as possible while satisfying the majority of Amigo users.  
Multiple groundings can be supported, enabling interoperability between different service 
technologies.  
 
Figure 3-1 c) shows an application being dynamically composed, based on the services currently 
available in the repository. Again, the first step in this phase is that the application discovers the 
repository using standard Amigo basic service discovery. Then the application passes an abstract task, 
which describes the parts of the application that rely on external services available in the environment 
to run in an abstract way, to the repository. The repository then attempts to select suitable services 
based on matching the capabilities, context-aware parameters, and QoS parameters declared for the 
provided services, against those requested in the abstract task. If suitable services are found, the 
repository than attempts to compose and if necessary, adapt the available services to fit the workflow 
of capabilities required by the abstract task. Finally, if a successful composition is found, the concrete 
task -the version of the abstract task now instantiated with real service capabilities, is deployed on the 
home server.  
Figure 3-1 d) shows an application executing the dynamically composed service, the concrete task, 
that realises the abstract task in the previous phase. The concrete task appears as a regular Amigo 
service, and be discovery and executed as such. In fact, other external applications could use the 
newly-composed service, should it match their task description. When a capability of the task is 
executed, the iCOCOA Execution Engine automatically orchestrates the execution of each of the 
composite service capabilities that feature in the task capability's workflow, one or more remote 
devices.  
Describing the service-based parts of application as a task offers the following features and advantages 
to the user:  
A task provides an abstract description of the required capabilities of an application. In doing so, we 
are not bound to any particular remote service in terms of the capabilities provided or the specific 
orchestration of these capabilities, increasing the availability and promoting interoperability of the 
potentially matching services.  
The required capabilities of a task can be identified by the semantic of the capability and of its inputs 
and outputs. This allows concrete details of the services’ provided capabilities used in a composition 
to be reliably and automatically adapted to the needs of the required capabilities in the absence of an 
exact match.  
An application may invoke capabilities of varying complexity, from lightweight atomic calls to 
complex, interleaved conversations (i.e. service workflows), for one or many tasks from within the 
same application.  

 
INRIA Rocquencourt – ARLES  6/12 



July 2008  public 
 

The conversation (workflow) of a required capability of a task is reconstituted by weaving together the 
conversations (workflows) of the provided capabilities of the available services. This offers automatic 
and reliable service composition, while offering fine-grained control over the placement of capabilities 
in the task, and guaranteeing that the data and control dependencies of each of the provided 
capabilities are preserved.  
The resulting (composed) service is generated as an executable ActiveBPEL bundle and automatically 
deployed. Orchestration of the execution of the composed service is handled automatically by the 
ActiveBPEL execution engine.  

 
INRIA Rocquencourt – ARLES  7/12 



July 2008  public 
 

 
 

4 iCOCOA Public API Tutorial  

4.1 iCOCOA API  
 
In this section, we shall look at each of the available methods in iCOCOA public API in turn, giving 
examples of use.  

4.1.1 Adding and removing a service  
 
To add a service to the repository, call the following method:  
 
/**  
 * Register a service in the repository. Adds the semantic description of the service 
 * together with its associated WSDL document. <p>  
 * Returns the URI of the service, as declared in the SDL description. This URI can  
 * further be used to remove the service using the removeService method.   
 * @param providedService  
 *                               SDL description of the service  
 * @param WSDLDocument 
 *                               WSDL Document of the service  
 * @return URI of the service (unique identifier to be used with removeService) 
 * @throws SemanticRepositoryException  
 *                                 if an error occurs during the parsing of the service, if an  
 * error occurs with a file, or if a similar service as ever been registered.  
 */  
public String addService(String providedService, String WSDLDocument) throws  
SemanticRepositoryException;  
 
This method registers a service in the repository. It adds the semantic description of the service 
together with its associated WSDL document.  
 
An example call to this method is:  
 
String id = semrep.addService( "file://local/path/to/service/description/MyService.owl", 
"file://local/path/to/wsdl/description/MyService.wsdl");  
 
To remove a service from the repository, call the following method:  
 
/**  
 * Unregister a service in the repository. Removes the semantic description of the  
 * service. The service is identified by its URI, which is the identifier that is returned by 
 * the addService(java.lang.String, java.lang.String) method.  
 * @param serviceURI  
 *                        URI of the service to unregister.  
 * @throws SemanticRepositoryException  
 *                         an exception if the removal of the service fails. E.g, if there is no  
 * registered service referenced by the given URI  
 */ 
public void removeService(String serviceURI) throws SemanticRepositoryException;  
 
This method un-registers a service in the repository and removes its semantic description. The service 
is identified by its URI, which is the identifier that is returned by the add service method.  

 
INRIA Rocquencourt – ARLES  8/12 



July 2008  public 
 

 
An example call to this method is:  
 
semrep.removeService(id);  
 

4.1.2 Adding an ontology  
 
To enable working with ontologies that available locally, but not on the network, ontologies can be 
added directly into the repository. This is useful if the ontology is still under development, and not yet 
published on the network, or if the application is running behind a firewall.  
 
To add an ontology, call the following method:  
 
/** 
 * Calling this method will add the specified local ontology to the repository. This method  
 * allows local copies of ontologies to be used, when required ontologies are not available 
 * over the network, e.g. when the application is run behind a firewall, or the ontologies 
 * are still in development and not yet published.  
 * @param filename  
 *                  the path to the local ontology file  
 * @throws SemanticRepositoryException  
 *                  if an exception occurred processing the ontology file  
 */ 
public void addOntology(String filename) throws SemanticRepositoryException;  
 

4.1.3 Retrieving a service by name or type  
 
To retrieve a service by name, we can use the following method:  
 
/**  
 * Retrieve a service by its name.  
 * @param serviceName  
 *                     the name of the required service 
 * @return the Service object corresponding to the given name  
 */ 
public String getServiceWithName(String serviceName);  
 
For example:  
 
semrep.getServiceWithName("http://my/ontology/MyService.owl#MyService");  
 
To retrieve a service by name, we can use the following method:  
 
/** 
 * Retrieve the set of services that match a semantic type.  
 * @param serviceType  
 *                     the semantic type of the required services  
 * @return a list of Service objects corresponding to the given semantic type  
 */ 
public String[] getServicesWithType(String serviceType);   
 
For example: 
  
semrep.getServicesWithType("http://my/onotology/MyTypes.owl#MyType");  
 

 
INRIA Rocquencourt – ARLES  9/12 



July 2008  public 
 

4.1.4 Retrieving information related to a registered service  
 
Several methods exist that allow information about a registered service to retrieved, such as a service’s 
WSDL description, its QoS parameters, and its type.  
 
To retrieve a WSDL description for a registered service, call this method:  
 
/**  
 * This method returns the associated WSDL description for the specified service.  
 * @param serviceName 
 *                    the service  
 * @return The WSDL description of the specified service, or null if the service is not  
 * registered with the repository  
 */ 
public String getWsdlForService(String serviceName);  
 
To retrieve the QoS properties for a registered service, call this method:  
 
/**  
 * Get the XML Fragment of a service description corresponding to its QoS properties.  
 * @param serviceName 
 *                    the name of the service we required the QoS properties  
 * @return an XML fragment containing QoS properties associated with the service.  
 */ 
public String getQoSProperties(String serviceName);  
 
And to retrieve the type information for a registered service, call this method:  
 
/**  
 * Get the semantic type of a service from its name.  
 * @param serviceName 
 *                    the name of the service that we want to know the name  
 * @return the semantic type of the service, <i>null</i>  
 */ 
public String getServiceTypeFromServiceName(String serviceName);  
 
Each of these methods takes simply the name of the service as a parameter, for example  
"http://my/ontology/MyService.owl#MyService".  
 

4.1.5 Retrieving (composed) services that match a task  
 
To retrieve the services that match a task description, call the method below. If no services match the 
task exactly, the repository will attempt to automatically compose a compatible service from those that 
are available in the repository.  
 

 
INRIA Rocquencourt – ARLES  10/12 



July 2008  public 
 

/**  
 * Retrieve a set of services that match the task description. If no service match exactly,  
 * repository will attempt to compose and deploy a match service from the services  
 * currently registered with the repository.  
 * @param taskURI 
 *                    the URI of the file containing the description of the required task 
 * @return a list of matching services if a match has been found, an empty list if no  
 * match is possible, or <i>null</i> if it was not possible to process the request 
 * @throws SemanticRepositoryException  
 *                     if an error occurs during the parsing of the service, or if the task  
 * description contains no required capability  
 */  
public String[] getServicesForTask(String taskURI) throws SemanticRepositoryException;  
 

4.1.6 Retrieving all services  
 
All services that are registered with the repository can be retrieved by calling the follwing method:  
 
/**  
 * Get a list of all service object managed by the repository.  
 * @return the list of all services, empty list if no services are manages by the repository.  
 */  
public String[] getAllServices();  
 

4.1.7 Clearing the repository  
 
During development, it can be useful to clear out the content of the repository. To do so, call the 
method below. However, it is not recommend to call this method on a live repository.  
 
/** 
 * Remove all services and service descriptions from the repository. <p> 
 * Note: This method is intended for developers to provide a convenient means to clear  
 * the repository during development and testing. It is not recommend to call this  
 * method on a live repository.  
 */ 
public void clearRepository();  
 

4.1.8 Setting a new matcher to be used by the repository  
 
The repository can be configured to match services to tasks in different ways. To set a new matcher, 
call the following method:  
/**  
 * Set the type of matcher to be used by the repository.  
 * @param matcher  
 *                  the name of the matcher to be used.  
 * @throws SemanticRepositoryException  
 *                  if the name of the matcher is not recognised.  
 */  
public void setMatcher(String matcher) throws SemanticRepositoryException;  
 
By default, the repository will matches only identical concepts. That is, the capability semantic for a 
service’s provided capability must be identical to the capability semantic of the task’s required 
capability, for there to be a match between them. This is termed “syntactic” matching.  

 
INRIA Rocquencourt – ARLES  11/12 



July 2008  public 
 

 
INRIA Rocquencourt – ARLES  12/12 

The repository can be set to use this type of matching as follows:  
semrep.setMatcher("syntactic");  
 
In addition, the repository offers two other looser modes of matching. First, is “exact” matching  
– this will match concepts that are identical, but also concepts that are either explicitly equivalent 
(tagged with the owl:equivalentClass relation), or implicitly equivalent (it has similar properties 
of another class tagged with the owlowl:equivalentProperty relation). The repository can be set 
to use this type of matching as follows:  
semrep.setMatcher("exact");  
 
Second, is “weak” matching – this will match all concepts that exact matching does, but also this will 
match concepts that are identical, but also concepts that are within a stated radius of the to be matched 
concept. For example, if we have a radius of 1, the concept would be matched with either an 
immediate super-class or an immediate sub-class. The repository can be set to use this type of 
matching as follows:  
semrep.setMatcher("weak 1");  
 

4.2 Advanced iCOCOA Configuration  
 
The level of logging used throughout the iCOCOA middleware can be controlled through a 
configuration file.  
You can configure the path of your file that contains the log4J properties by using the environment 
variable "log4j.configfile". To set it, run the JVM with the option:  
-Dlog4j.configfile = "YourPath"  
If a path does not exist, then the default property file will be used for the log4j logger. The default file 
is "./log4j.prop". If no file is found, a default Appender will be set (System.err stream).  
By setting the environment property "log4j.debuglevel", the depth of logging information reported can 
be controlled (-1 -no message, 0 -debug, 1 -info, 2 -warning, 3 -error, 4 fatal). Only messages with a 
level greater than or equal to the current logging level will be displayed. The default value is "0".  
 
 

5 References  
 
[Amigo-D3.5] Amigo Consortium. Deliverable D3.5: Amigo overall middleware: Final prototype 
implementation & documentation. November 2007. Available at: http://www.hitech-
projects.com/euprojects/amigo/deliverables.htm.  

http://www.hitech-projects.com/euprojects/amigo/deliverables.htm
http://www.hitech-projects.com/euprojects/amigo/deliverables.htm

	iCOCOA Overview 
	2 iCOCOA Deployment 
	2.1 System requirements 
	2.2 Download 
	2.3 Install 

	3 iCOCOA Architecture 
	4 iCOCOA Public API Tutorial 
	4.1 iCOCOA API 
	4.1.1 Adding and removing a service 
	4.1.2 Adding an ontology 
	4.1.3 Retrieving a service by name or type 
	4.1.4 Retrieving information related to a registered service 
	4.1.5 Retrieving (composed) services that match a task 
	4.1.6 Retrieving all services 
	4.1.7 Clearing the repository 
	4.1.8 Setting a new matcher to be used by the repository 

	4.2 Advanced iCOCOA Configuration 

	5 References 

