INMIDIO User’s Guide

Table of Contents

1 OVEIVIEW aeeuereeeeeereeecereeecereeecseseecsssssessssssssssssssssssssssssosssssssssssssssssssssssssssssssssssssss 1

PN D 123 11 (0% 11 =) 1 1 PR
2.1 SyStem reqUIremMents......ccceeerescsercsssrossaressrsssssssssassssssssssnsessasssssasessnses
2.2 DOWRIOA..ucciueiiiiiriiisniisiinsiinsaecsnicsncssassnesssecsseesseesssssssesssesssnsssnsssesssassssesssssssessssesssssssessasssasnns 2
2.3 1T | Y 2
2:4  RUNiciieiiinuiiinnnsniesesssissessssstsssssssssssssssstosssssssssessssstsssesssssssssssstosssssssssesssssssssesssssssssssssssssssssns 2

R I 1111 ) oy 2 SRR |

3.1.1 SLP/RMI CIENL. ...ttt ettt ettt ae st et esseeseenseeseennenseeneeneas 3
3.1.2 SLP/RMI SEIVICE ...eeeuvvieiiiieeiieeciieeeieeeetteeseveeeeteeestaeesteeesaseesaesesaseesssesesseessseesssesensseesseeanns 4
3.1.3 UPHP CHIENL....coiiiiiiiieee et ettt e et e b e e st e e e bt e e sabeeebaeesseeenseeenseean 5
3.1.4 UPIIP SEIVICE ..veevvieiieeiiecie ettt sttt ete e te e teesteesssesnseesseessaenseessnessseasseansesnseenseennns 5
3.1.5 WS-DiSCOVETY/SOAP CHENL ......veceiieeiieiiiiieiiesee sttt sveerreebeebeebe e seesens 7
3.1.6 WS-DiSCOVETY/SOAP SEIVICE....cccviiiiiieiiieeiieeitierteesereeeireeeteesteeeereesreeessseesssesssseeensses 7

T2 AN 1) 073 1 s . QR 9
4.1 Description of tools/languages provided by component 9

8.2 FAQ oooeoeeeeessssssssssssnsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssmssssssssssssssssssssssssasssssssens 9




1 Overview

Provider
INRIA

Introduction

The role of the INteroperable Mlddleware for service Discovery and service InteractiOn
(INMIDIQ) is to identify the discovery and interaction middleware protocols that execute on the
network and to translate the incoming/outgoing messages of one protocol into messages of
another, target protocol. The system parses the incoming/outgoing message and, after having
interpreted the semantics of the message, it generates a list of semantic events and uses this
list to reconstruct a message for the target protocol, matching the semantics of the original
message. The INMIDIO middleware acts in a transparent way with regard to discovery and
interaction middleware protocols and with regard to services running on top of them. The
supported service discovery protocols are UPnP, SLP and WS-Discovery, while the supported
service interaction protocols are SOAP and RMI.

Intended audience

System developers that seek to integrate heterogeneous middleware platforms and their
supported service-oriented architectures inside dynamic environments.

License
INMIDIO is available under the LGPL license terms.

Language
C

Environment (set-up) info needed if you want to run this sw (service)
INMIDIO requires running a web server on the machine.

Platform

Linux



2 Deployment

2.1 System requirements
Operating System: Linux

2.2 Download

Source code files and executable file are currently available either on the AMIGO GForge site'
under the mdwcore/sdi_sii structure (for Subversion users) or at the following web page:
http://www-rocq.inria.fr/arles/download/inmidio/index.html. Two separate files are available at
the latter: a zipped file containing the source code and the executable for the middleware and
a zipped file including the examples explained in the Tutorial section (3).

2.3 Install
Unzip the downloaded file in a directory $DIR.

Running the middleware requires a web server installed on the machine. If it is not already
installed, your can download and install Jakarta Tomcat?.

Copy $DIR/ib/libnanohttp.so {0 /usr/lib.

2.4 Run

To execute the middleware, run

$DIR/amigo monitor S$webserver dir

where swebserver dir is the directory where the web server used by the middleware is
installed.

! http://gforge.inria.fr/projects/amigo/

2 http://tomcat.apache.org/




3 Tutorial

In this section we describe some samples of clients and services provided as examples of
interoperability between service discovery (SD) and service interaction (Sl) for the different
protocols supported by the INMIDIO.

samples/
samples/lib
samples/lib/org
samples/lib/slpapi
samples/res
samples/res/conf

samples/build.xml

samples/clients
samples/clients/defaultPkg
samples/clients/slprmi samples
samples/clients/remotectrl

samples/services

samples/services/upnp-sample-tv

samples/services/slprmi_washer

samples/services/slprmi washer/slpd

samples/services/WSDiscovery sample client_and service
samples/services/WSDiscovery sample client and service/WSDiscoveryFramework-Buildl0003.msi
samples/services/WSDiscovery sample client and service/Client
samples/services/WSDiscovery sample client and service/Server

Figure 3-1: samples directory structure

Figure 3-1 shows the structure of the samples directory of INMIDIO. Below, for each client and
service, we describe the discovery and interaction process. The samples/res directory
contains shared resource and configuration files and the samples/l1ib directory contains the
libraries used by the different client and service samples.

The examples proposed for SLP, RMI and UPnP are based on Java and those based on WS-
Discovery/SOAP are based on C#. All the Java samples can be recompiled and executed
using the tool ant®: we provide the associated samples/build.xml file that implements the
compile and run target operations.

3.1.1 SLP/RMI client
The code for the SLP/RMI clients is available at the directories:

samples/clients/defaultPkg
samples/clients/slprmi_ samples

These directories contain two examples: the first example will discover and interact with a
UPNP tv service (see section 3.1.4) while the second example discover and interact with the
WS-Discovery/SOAP hello service (see section 3.1.6). They are both based on the Openslp*
SLP library and on the Java JDK RMI implementation.

The middleware assumes a fixed association between the SLP discovery protocol and the RMI
interaction protocols for the development of clients and services. The assumed SLP/RMI
schema for discovery and interaction process for clients can be summarized as follows:

3 http://ant.apache.org/

* http://www.openslp.org/




- The client multicasts an SLP request for the service-type and receives an SLP response
with the address of the service.

- The address of the service is the used to access the RMI Registry: the client executes an
RMI lookup on the RMI Registry at the address and obtains an instance of the stub of the
service.

- The client finally invokes method call on the stub.

The ant target operations to compile and execute the first example are:

compile slprmi client tv
run_slprmi client tv

The service interface expected by the client is the following:

package defaultPkg;
public interface tv extends java.rmi.Remote,defaultPkg.power {} ;

package defaultPkg;
public interface power {
public void SetPower (Integer intX, rmiholders.IBooleanHolder Result)
throws java.rmi.RemoteException, java.lang.NoSuchMethodException ;

public void GetPower (rmiholders.IBooleanHolder Power) throws
java.rmi.RemoteException, java.lang.NoSuchMethodException ;

The ant target operations to compile and execute the second example are:

run_slprmi client hello
compile slprmi client hello

The service interface expected by the client is the following:

package defaultPkg;
public interface ServiceSoap extends java.rmi.Remote,defaultPkg.helloservice {} ;

package defaultPkg;
public interface Service {

public void HelloWorld(java.lang.String a ,rmiholders.IStringHolder c)
throws java.rmi.RemoteException;

public void AddOne (java.lang.Integer a, rmiholders.IIntegerHolder c )
throws java.rmi.RemoteException;

public void isTrue(java.lang.Integer a, rmiholders.IBooleanHolder c )

throws java.rmi.RemoteException;

3.1.2 SLP/RMI service
The code for SLP/RMI service is available at the directory:

samples/services/slprmi washer
samples/services/slprmi washer/slpd

The directory contains a service washer that will be discovered and interact with the UPnP
client in section 3.1.3 and the WS-Discovery/SOAP client in section 3.1.5. The service is
based on the provided Openslp® library and on the Java JDK RMI implementation. It also
requires a running SLP daemon.

> http://www.openslp.org/




The middleware assumes a fixed association between the SLP discovery protocol and the RMI
interaction protocols for the development of clients and services. The assumed SLP/RMI
schema for discovery and interaction process for services can be summarized as follows:

- Start slpd (as a root/Administrator user).
- The service starts an instance of an RMI Registry and registers itself with a given address.

- The service registers itself on the slpd daemon with its service-type and the same
address used for the registration on the RMI Registry.

The ant target operations to compile and execute the example are:

compile slprmi service washer
run_slprmi service washer

The interface provided by the service is the following:
package washer rmislp;
public interface WasherInterface extends Remote {
public void start(int x, String y) throws RemoteException;

public String stop(int a) throws RemoteException;
public int SetState(int state) throws RemoteException;

3.1.3 UPnNP client
The code for the UPnP client is available at the directory:

samples/clients/remotectrl

This directory contains a graphical client that allows at the same time, to discover and interact
with the SLP/RMI washer service (see section 3.1.2) and to discover and interact with the WS-
Discovery/SOAP hello service (see section 3.1.6). The UPnP client code is based on the
CyberLink UPNP library®.

The ant target operations to compile and execute the example are:

compile upnp client remotectrl
run_upnp client remotectrl

3.1.4 UPnNP service
The code for the UPnP service is available at the directory:

samples/services/upnp-sample-tv

The directory contains a service tv that will be discovered and interact with the RMI/SLP client
in section 3.1.1 and WS-Discovery/SOAP client in section 3.1.5. The UPnP service code is
based on the CyberLink UPnP library’.

The ant target operations to compile and execute the example are:

Shttp://www.cybergarage.org/net/upnp/java/index.html

"http://www.cybergarage.org/net/upnp/java/index.html



run_upnp_service tv
compile upnp service tv

The interface provided by the UPnP device is the following:

<?xml version="1.0" ?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
<specVersion>
<major>1</major>
<minor>0</minor>
</specVersion>
<device>
<deviceType>urn:schemas-upnp-org:device:tv:1</deviceType>
<manufacturer>Amigo</manufacturer>
<manufacturerURL>http://www.extra.research.philips.com/euprojects/amigo</manufacturerURL>
<modelDescription>Amigo TV Device</modelDescription>
<modelName>TV</modelName>
<modelNumber>1.0</modelNumber>
<serialNumber>1234567890</serialNumber>
<UDN>uuid:AmigoTvDevice</UDN>
<UPC>1234567890</UPC>

<iconList>
<icon>
<mimetype>image/gif</mimetype>
<width>48</width>
<height>32</height>
<depth>8</depth>
<url>icon.gif</url>
</icon>
</iconList>
<serviceList>
<service>
<serviceType>urn:schemas-upnp-org:service:power:1</serviceType>
<serviceId>urn:schemas-upnp-org:serviceld:power:1</serviceId>
<SCPDURL>/service/power/description.xml</SCPDURL>
<controlURL>/service/power/control</controlURL>
<eventSubURL>/service/power/eventSub</eventSubURL>
</service>
</serviceList>
</device>

</root>

The interface provided by the UPnP service is the following:

<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0" >
<specVersion>
<major>1</major>
<minor>0</minor>

</specVersion>
<actionList>
<action>
<name>SetPower</name>
<argumentList>
<argument>
<name>PowerInt</name>
<relatedStateVariable>PowerInt</relatedStateVariable>
<direction>in</direction>
</argument>
<argument>
<name>Result</name>
<relatedStateVariable>Result</relatedStateVariable>
<direction>out</direction>
</argument>
</argumentList>
</action>
<action>
<name>GetPower</name>
<argumentList>
<argument>
<name>Power</name>
<relatedStateVariable>Power</relatedStateVariable>
<direction>out</direction>
</argument>
</argumentList>



</action>
</actionList>
<serviceStateTable>
<stateVariable sendEvents="yes">
<name>Power</name>
<dataType>boolean</dataType>
</stateVariable>
<stateVariable sendEvents="no">
<name>Result</name>
<dataType>boolean</dataType>
</stateVariable>
<stateVariable sendEvents="yes">
<name>PowerInt</name>
<dataType>int</dataType>
</stateVariable>
<stateVariable sendEvents="yes">
<name>PowerString</name>
<dataType>string</dataType>
</stateVariable>
</serviceStateTable>
</scpd>

3.1.5 WS-Discovery/SOAP client
The code for the WS-Discovery/SOAP client is available at the directory:

samples/services/WSDiscovery sample client and service/WSDiscoveryFramework-Buildl0003.msi
samples/services/WSDiscovery sample client and service/Client

This directory contains a client that allows at the same time, to discover and interact with the
SLP/RMI washer service (see section 3.1.2) and to discover and interact with the UPNP tv
service (see section 3.1.4). The WS-Discovery client code is based on
WSDiscoveryFramework-Build10003.msi® that implements WS-Discovery protocol and that
is developed as part of the Amigo IST-FP6 Project®. The installation and execution of the client
requires a Windows machine, Microsoft .NET Framework'® and Microsoft Visual Studio C#'".

3.1.6 WS-Discovery/SOAP service
The code for the WS-Discovery/SOAP service is available at the directory:

samples/services/WSDiscovery sample client and service/WSDiscoveryFramework-Buildl10003.msi
samples/services/WSDiscovery sample client and service/Server

The directory contains a service HelloWorldsService that will be discovered and interact with
the RMI/SLP client in section 3.1.1 and UPnP client in section 3.1.3. The WS-Discovery
service code is based on WsDiscoveryFramework-Build10003.msi'? that implements WS-
Discovery protocol and that is developed as part of the Amigo IST-FP6 Project’>. The
installation and execution of the client requires a Windows machine, Microsoft .NET
Framework'* and Microsoft Visual Studio C#'°.

¥ http://amigo.gforge.inria.fr/home/components/wp3/NET _Framework/download/index.html

? http://www.extra.research.philips.com/euprojects/amigo/

19 http://www.microsoft.com/net/default.mspx

" hitp://msdn.microsoft.com/vstudio/express/visualcsharp/

2 http://amigo.gforge.inria.fr/home/components/wp3/NET_Framework/download/index.html

13 http://www.extra.research.philips.com/euprojects/amigo/

 http://www.microsoft.com/net/default.mspx




The scope, service type and interface defined for the service are the following:

[ScopeAttribute ("urn:AmigoDemo") ]
[TypeAttribute ("HelloWorldService") ]

public Boolean isTrue (int x)

public int AddOne (int parameter)

public string HelloWorld(string parameter)

15 http://msdn.microsoft.com/vstudio/express/visualcsharp/




4 Appendix

4.1 Description of tools/languages provided by component

4.2 FAQ



