
�

�

�

�

�

�

��������	�
����

�

������

���	
�

����������

authors:

 agnes.de_la_chapelle@inria.fr

pierre-guillaume.raverdy@inria.fr

INRIA – ARLES Project 2

Table of content

1 INTRODUCTION ... 3

1.1 SERVICE DISCOVERY AND ACCESS ... 3
1.2 HETEROGENEOUS NETWORKS.. 3
1.3 OUTLINE.. 4

2 MSDA SOFTWARE OVERVIEW... 5

2.1 SYSTEM REQUIREMENTS .. 5
2.2 MSDA PACKAGES DESCRIPTION ... 6

2.2.1 MSDACore Project ... 6
2.2.2 MSDAPlugins ... 7
2.2.3 MSDATests .. 8
2.2.4 SOAPExt .. 8
2.2.5 SOAPTools .. 8

3 GETTING STARTED... 9

3.1 MSDA INSTALLATION (ECLIPSE) ... 9
3.2 MSDA COMPILATION ... 9

3.2.1 Basic compilation ... 9
3.2.2 MSDA schema update (simple) .. 9
3.2.3 MSDA schema update (complex) ... 11

3.3 MSDA STARTUP.. 11
3.3.1 MSDA components .. 11
3.3.2 Starting a service.. 12

3.3.2.1 UPnP Service ... 12
3.3.2.2 SLP Service.. 12

3.3.3 Starting the graphical UPnP client .. 12
4 MSDA STARTUP FILE.. 16

5 MSDA-AWARE CLIENT OPERATIONS ... 20

5.1 SERVICE DISCOVERY ... 20
5.1.1 MSDA request .. 20
5.1.2 Getting the results .. 21
5.1.3 Context information / context rules ... 22

5.2 SERVICE ACCESS .. 23
6 MOST COMMON PROBLEMS.. 24

6.1 MISSING MSDDEPLOY.WSDD ... 24
6.2 NULLPOINTEREXCEPTION WHEN GETTING THE IP ADDRESS ... 24
6.3 MSDA COMPONENT IS NOT ELECTED .. 25
6.4 SLP CLIENT CANNOT CONNECT TO MSDA OR ANY SLP SERVICE 25
6.5 WRONG ELEMENT .. 25

REFERENCES ... 26

INRIA – ARLES Project 3

1 Introduction
The pervasive/ubiquitous computing vision can now be realized, thanks to the deployment of

wirelessly accessible services (i.e., software components that can be accessed remotely through
a specific interface) into the environment to support mobile users in their daily life. Mobile devices
are also now powerful enough not only to access these services, but also to host applications
providing similar services to their environment. Unfortunately, pervasive computing environments
are highly heterogeneous, thus limiting actual interactions between users and services:

- The use of various middleware platforms (e.g., UPnP, Jini, Web services) results in the
concurrent use of discovery and access protocols that do not directly interoperate with
each other, further limiting the number of accessible services.

- The use of various wireless technologies (e.g., cellular networks, WiFi, or Bluetooth) and
network management models (e.g., ad hoc- or infrastructure-based) results in many
independent networks being available to users at a location. As users can only be
connected to a limited number of networks at the same time (often a single one), many
services may not be accessible (i.e., not IP reachable).

The Multi-Protocols Service Discovery and Access (MSDA) middleware platform aims to support
service discovery and access in heterogeneous networks. The MSDA allows clients using a
specific SD protocol (supported by MSDA), to discover services in any of the supported protocols
and in any of the networks connected to the Global Network. MSDA supports both wired and
wireless networks, as well as infrastructure-based (managed) and infrastructure-less (ad hoc)
networks. MSDA provides also a simple remote access to the discovered services assuming that
the clients know the services' stubs.

1.1 Service Discovery and Access
Over the years, many academic and industry-supported Service Discovery Protocols (SDPs)

have been proposed. These SDPs differ on their organization (i.e., centralized vs. decentralized
vs. hierarchical), methods (push vs. pull vs. symmetric), and timing (aperiodic vs. periodic). SDPs
usually have their own proprietary format for service description and service query. SDPs usually
target a specific area network (e.g., PAN, LAN, or WAN) and are tied to specific technologies
(e.g., SDP for Bluetooth).

Leading SDPs use a pull-based approach, which may be: (i) centralized where one or a few
repositories store the descriptions of the services available in the network (e.g., Jini, SLP, and
UDDI), (ii) distributed where service providers store locally service descriptions and clients send
service requests using the broadcast functionality provided by the network (e.g., SSDP and JXTA-
Search), or (iii) a combination of both.

Many access protocols have also been proposed, with the early one based on binary formats
(e.g., CORBA CDR), while recent ones are based on XML, such as XML-RPC or SOAP.

In MSDA, we recognize the prevalence of existing service discovery and access protocols. Our
goal is to enable clients to discover and access the MSDA platform with the most appropriate set
of protocols based on their needs and environment. We also assume that services are registered
using existing protocols.

1.2 Heterogeneous Networks
In MSDA, we consider an all-IP networking environment (i.e., all components use IP protocols to

provide transport), with heterogeneity arising from:

- Variations in the sets of IP-level configuration and communication functionalities supported in
the networks (e.g., IP multicast, DHCP),

INRIA – ARLES Project 4

- The different administrative domains of the networks (e.g., public/open versus
restricted/secure),

- The different classes of targeted applications.

In this context, we define an Elementary Network (EN) to be a set of devices that belong to the
same administrative domain and share the same IP-level set of communication functionalities
(e.g., home network, hotspot). Depending on their underlying characteristics, ENs may vary in
terms of size and/or dynamics (i.e., stable versus highly dynamic membership). We further define
a Global Network (GN) to be a dynamic composition of ENs, with some of the devices acting as
bridges/gateways between two or more ENs. Devices in the same GN, but in different ENs may
not be able to communicate (e.g., no global IP routing, security restrictions). We consider the
Internet and cellular networks as conduits enabling the interconnection of various ENs and also
consider that a discovery domain (i.e., the set of services being available to a client using a given
SD protocol) is contained within an EN. In our scenario, the music labels’ hotspots, the ad hoc
network, and Ben's home network are all ENs (See Figure 1).

Figure 1: Global Network Example

1.3 Outline
This document describes the installation, configuration, and use of the MSDA middleware

platform. In Section 2, we list the different software packages required to compile and use the
MSDA platform. In Section 3, we details the installation and compilation of the MSDA platform
under Eclipse. In Section 4 we detail how to start the MSDA platform and the format of the
startup/configuration files. Finally in Section 5 we list the most common problems encountered
during the compilation or the startup of the MSDA platform.

INRIA – ARLES Project 5

2 MSDA Software Overview

2.1 System requirements
In order to compile and run the MSDA middleware platform, the following components are

required.
• Windows or Linux operating systems
• Java 2 Standard Edition v1.4.2 or higher
• Eclipse IDE

Furthermore, a number of Java packages are also required:

• JaxMe packages (http://ws.apache.org/jaxme/):
o jaxme2.jar
o jaxme2-rt.jar
o jaxmeapi.jar
o jaxmejs.jar
o jaxmepm.jar
o jaxmexs.jar
o jaxrpc-api.jar
o qname.jar
o saaj.jar

• Axis/Xerces packages (http://ws.apache.org/axis/)
o wsdl4j.jar
o xercesImpl.jar
o xml-apis.jar
o xmlParserAPIs.jar

• Misc.:
o csoap.jar (provided with MSDA)
o httpParser.jar (provided with MSDA)
o secureMulti.jar (optional package for secure election, provided with MSDA)
o soaptools.jar (package from the SOAPTools project)
o Ant (ant-1.5.4.jar)
o Log4j (log4j-1.2.8.jar)

A number of Java packages are also required to support various SD protocols

• Siemens UPnP package1 (required for UPnP protocol support, must be downloaded):
o upnp101.jar

• PDP packages2 (required for PDP protocol support)
o PDP.jar
o PDPClient.jar

• SLP packages3 (required for SLP protocol support):
o openSlp.jar
o slp.jar

• Ariadne package4 (required for Ariadne protocol support):

1 available at http://www.plug-n-play-technologies.com/
2 available at http://www.it.uc3m.es/celeste/pdp/):
3 available at http://www.openslp.org/download.html

INRIA – ARLES Project 6

o osdp4m.jar

• OSGi packages5 (required for OSGi home gateway interaction):
o oscar.jar
o oscar-1.0.5.jar
o osgi.jar
o axisBundle.jar
o moduleloader.jar

2.2 MSDA packages description
The following files should be downloaded and imported into the Eclipse workspace for

compilation:

• MSDACore.zip for the MSDACore project that contains all the Java source code for the
MSDA platform.

• MSDAPlugins.zip for the MSDAPlugins project that contains implementations of MSDA
plugins for various discovery protocols (i.e., UPnP, SLP, PDP, and Ariadne).

• MSDATests.zip for the MSDATests project that contains various tests and sample
programs.

• SOAPExt.zip for the SOAPExt project that is used to automatically generate additional
code in the Java classes generated by JaxMe.

• SOAPTools.zip for the SOAPTools project that implements the SOAP processing
required by the SOAP implementation of the MSDA Service.

• MSDASupportingFiles.zip that contains various configuration files and additional Java
packages used for the deployment and use of the MSDA platform.

We now detail the content of the different Java projects.

2.2.1 MSDACore Project
This project contains the Java classes of the MSDA platform in the org.msda. class hierarchy.

It contains the following packages:

- org.msda.components.bridge contains all the classes related to the MSDA Bridge
component.

- org.msda.components.core contains MSDADaemon that manages the election
process, NetworkMonitor that manages the emission/reception of presence beacons
and MSDA messages between the different components in an elementary network, and
MSDANetwork that manages the registration of MSDA components into specific
communication groups (each is managed by the CommunicationManager inner class).

- org.msda.components.interfaces contains all the component interfaces used in
MSDA (i.e., plugin, bridge, manager, network group…).

- org.msda.components.manager contains all the classes related to the MSDA
Manager component.

o org.msda.components.manager.client contains specific classes from the MSDA
Manager related to the management of MSDA clients (through the MSDA Service).

4 available at http://www-rocq.inria.fr/arles/download/
5 available at http://www.oscar.org/

INRIA – ARLES Project 7

o org.msda.components.manager.object contains specific classes from the MSDA
Manager representing the objects used in the different tasks of the manager
(discovery and access).

o org.msda.components.manager.task contains specific classes from the MSDA
Manager for the processing of the different tasks of the manager (discovery and
access).

o org.msda.components.plugins contains the parent MSDA plugin class
(AbstractPlugin) as well as generic methods to be implemented by all plugins.

o org.msda.components.plugins.http contains the HTTP server and processing
methods for incoming client messages received by the MSDA service associated
with the SD plugin.

o org.msda.components.plugins.msdaservice contains two implementations of
the MSADA service (SOAP-based and plain XML MSDA messages). These two
implementations use HTTP as a transport protocol.

- org.msda.components.utils contains manager and thread classes for local
components within the stack.

- org.msda.context contains all the classes for the management (collection, exchange,
and processing) of context information.

- org.msda.framework contains the main class that process the startup/configuration file
and the start the MSDA platform.

- org.msda.gui (and its subpackages) contains all the classes for the GUI panels used
by the MSDA platform to provide information on the MSDA Manager and Bridges.

- org.msda.msd and org.msda.msd.impl are automatically generated by JaxMe and
contains all the description of all the information exchanged by MSDA components as
well as marshalling/unmarshalling methods between Java and XML.

- org.msda.MSDClientAPIService contains the API of the MSDA service registered in
the different SD protocols.

- org.msda.util (and its subpackages) contains various classes to support MSDA
components (e.g., global definitions, processing of propagation lists, management of
multicast communications, security…).

In addition to the source folder, this project also contains a jaxme folder that contains two XML
schemas (msd.xsd and net_profile.xsd) as well as two ant script (build_msd.xml and
build_netprofile.xml):

- The msd.xsd XML schema is used to automatically generate with JaxMe the Java classes
located in org.msda.msd.*. These classes corresponds to the objects exchanged between
MSDA components, and contains the marshalling and unmarshalling code for XML <>
Java serialization.

- The profile_network.xsd schema is for the automatic generation of the Java classes
related to the network profile.

- Each ant script (build_msd.xml and build_netprofile.xml) is used to launch JaxMe and
generate the relevant Java classes for the two above schemas.

2.2.2 MSDAPlugins
The MSDAPlugins project contains several implementations of SDA Plugins:

- org.msda.plugins.ariadne for the Ariadne SD protocols for MANETS.

- org.msda.plugins.ariadne.osgi for the OSGi home gateway.

INRIA – ARLES Project 8

- org.msda.plugins.ariadne.pdp for the PDP SD protocol for 1-hop ad hoc network.

- org.msda.plugins.ariadne.slp for the SLP protocol.

- org.msda.plugins.ariadne.upnp for the SSDP protocol that is part pf UPnP. This
plugin uses the Siemens implementation of the UPnP stack.

Each plugin extends the AbstractPlugin class in the org.msda.components.plugins package.

2.2.3 MSDATests
The MSDATest project contains multiple implementations of client applications that interact

with MSDA to discover and access services in the Global Network. Implementations are provided
for the Ariadne, PDP, SLP, and UPnP discovery protocols (in the current implementation, all
services are SOAP services).

- org.msda.clientsamples.ariadne (and its subpackages)

- org.msda.clientsamples.pdp.rfid

- org.msda.clientsamples.slp (and its subpackages)

- org.msda.clientsamples.upnp (and its subpackages)

In addition, several packages are provided to test internal components of the MSDA platform
as well as group communications.

- org.msda.tests (and its subpackages)

Finally, a UPnP servce using the Siemens UPnP stack is provided.

- org.msda.upnpdevice.sample (and its subpackages)

2.2.4 SOAPExt
SOAPExt is a compile-time application used to automatically extend the source code generated
by JaxMe (located in org.msda.msd). Specifically, this project adds the necessary methods to
request the MSDA type associated to the Java class. This additional code is necessary for the
SOAP-MSDA conversion.

2.2.5 SOAPTools
SOAPTools iare run-time tools used by the AbstractPlugin class to process incoming SOAP

messages from a client accessing the MSDA Service. SOAPTools convert the SOAP messages
(e.g., SOAP data structures) into the corresponding MSDA message (e.g., Java classes).

Note: If the MSDA data schema is updated (see Section 3.2) with new data structures, this
project must be updated accordingly otherwise incoming SOAP messages may be rejected.

INRIA – ARLES Project 9

3 Getting Started
In this section, we detail the installation, compilation, and startup of the MSDA platform.

3.1 MSDA Installation (Eclipse)
The following four projects should be created: MSDACore, MSDAPlugins, SOAPExt,

SOAPTools. For each project, the source code file system should be imported from the
corresponding archive file. Each project classpath should be configured (in particular the location
of the additional packages). To avoid duplication and potential version conflicts, is it
recommended to copy all additional jar components in the MSDACore project’s lib directory.

In this documentation, we assume that the MSDA executable packages are installed in the
$INSTALLDIR directory and that the MSDA platform is started from the command line.

The following folders/files from the MSDASupportingFiles.zip archives should also be copied in
the execution folder.

• MSDDeploy.wsdd should be copied into the $INSTALLDIR/configuration folder

• MSDA startup files should be copied in the $INSTALLDIR folder

• Context/profile files should be copied in the $INSTALLDIR folder

3.2 MSDA Compilation
To ease the development of the MSDA platform, we use the Open Source project JaxMe6 to

automatically generate the Java classes (along with the XML <> Java marshalling methods) for
the objects exchanged between MSDA components (i.e., discovery requests, service descriptions,
control messages, access requests and response messages).

The msd.xsd schema file located in the jaxme/schema folder of the MSDACore project
contains the XML description of all these data types and the code generated by JaxMe is located
in the packages org.msda.msd amd org.msda.msd.impl. If you want to change the content of
MSDA messages, it is necessary to change the XML schema and process it. Directly changing
the automatically generated classes in org.msda.msd.* may generate errors (e.g., invalid name
or type in the unamrshaler of another class).

Do not directly modify the classes in the packages org.msda.msd and
org.msda.msd.impl.

3.2.1 Basic compilation
If no change is made to the MSDA schema, only the MSDACore and MSDAPlugins need to

compiled and exported as jar files into the $INSTALLDIR directory.

3.2.2 MSDA schema update (simple)
If the MSDA schema is updated but (i) no new data type is created, and (ii) names of existing

data types are not changed, then only a simple automatic code generation is necessary.

The Ant script jaxme/schema/build_msd.xml in the MSDACore project is used to
automatically generate the Java classes based on this schema. However, these classes require
additional processing (some methods need to be added to the automatically generated classes).
The SOAPExt project is used to modify the generated Java classes and make them compatible

6 http://ws.apache.org/jaxme/

INRIA – ARLES Project 10

with CSOAP, which is used for the client access to the MSDA Service. That project uses Java
reflection to add some required information.

We assume you use Eclipse to open the MSDA project and the SOAPExt project. Both project
are also in the same workspace

Modifying the MSDA schema requires the following steps:

1. Modify the schema (msd.xsd);

2. Execute the JaxMe Ant script (build_msd.xml) with the "Ant build" function.

3. Refresh the org.msda.msd package (recompile the project and regenerate the *.class
files);

4. Export the org.msda.msd and org.msda.msd.impl subpackages in the
jaxmeClasses.jar library of the SOAPExt project;

5. Execute the soap.SOAPExt main class of the SOAPExt project with the arguments
../MSDACore/src/org/msda/msd/impl urn:MSDClientAPIService

6. Refresh the org.msda.msd package (SOAPExt transparently updated the generated
classes, therefore the MSDACore project needs to be recompiled.

To check that the code generation has been completed, open a Java class file from the
org.msda.msd.impl package that ends with “…Impl.java”, (e.g., AddressImpl.java).
Then checks that a //Type metadata section has been added to the code similar to the one
below:

//Type metadata
private static csoap.wsdl.TypeDesc typeDesc=new csoap.wsdl.TypeDesc(AddressImpl.class);

static {
typeDesc.setXmlType(new javax.xml.namespace.QName("urn:MSDClientAPIService","AddressImpl"));
csoap.wsdl.ElementDesc elementField;

elementField=new csoap.wsdl.ElementDesc();
elementField.setFieldName("_location");
elementField.setXmlName(new javax.xml.namespace.QName("","_location"));
elementField.setXmlType(new

javax.xml.namespace.QName("http://www.w3.org/2001/XMLSchema","string"));
typeDesc.addFieldDesc(elementField);

elementField=new csoap.wsdl.ElementDesc();
elementField.setFieldName("_port");
elementField.setXmlName(new javax.xml.namespace.QName("","_port"));
elementField.setXmlType(new

javax.xml.namespace.QName("http://www.w3.org/2001/XMLSchema","integer"));
typeDesc.addFieldDesc(elementField);
}

/**
 * Return type metadata object
 */
public static csoap.wsdl.TypeDesc getTypeDesc() {
 return typeDesc;
}

INRIA – ARLES Project 11

3.2.3 MSDA schema update (complex)
If new elements are added to the MSDA schema, or if the names of existing elements are

changed, additional changes (to the ones described in the previous section) are necessary.
Specifically, all the classes processing SOAP messages in MSDA need to be updated to take into
account the new names or elements.

• In the package org.msda.MSDClientAPIService

o MSDClientAPIBindingStub

o MSDClientAPIPortType

• In the configuration folder:

o MSDDeploy.wsdd

o MSDServiceInterface.wsdl

o wsdd.conf

3.3 MSDA Startup
In this section, we assume that the MSDA platform is started from the console (and from the

execution directory).

3.3.1 MSDA components
The MSDA platform can easily be started with the following command line:

>java.exe -Djava.ext.dirs=. -cp MSDACore.jar org.msda.framework.FrameworkMain
config_dev1.xml

All the setup information (i.e., network interfaces and multicast addresses to use, startup of
MSDA Manager and/or Bridge, SD Plugins to use…) is located in the XML configuration file (e.g.,
config_dev1.xml). The format of the configuration file is detailed in Section 4.

Figure 2 Election panel

INRIA – ARLES Project 12

Figure 3 : Manager and bridge panels

When the MSDA stack is started, a first GUI window (see figure 4) is displayed providing
feedback on the election process. Once the election process is completed, a new GUI window
(see figure 5) containing two panels appear. The left panel provides information on the MSDA
Manager component (if started) while the right panel provides information on the MSDA Bridge
components (if any).

3.3.2 Starting a service
�������� �����	
���
�

A sample UPnP Service can be started from the MSDATest project.

>java.exe -Djava.ext.dirs=. -cp MSDATests.jar
org.msda.upnpdevice.sample.UpnPSampleDevices

�������� 	���	
���
�

In order to start an SLP service (and the SLP plugin as well), an active SLP registry is required
in the local area network. An open source implementation of the SLP registry can be found at
http://www.openslp.org/

An SLP service can then be registered directly from the command line or from an application
using the SLP API.

3.4 Demonstration
The MSDASupportingFile.zip archive contains an MSDA folder with different libraries, scripts

and configuration files for testing the MSDA framework (the UPnP library must be downloaded
from Siemens):

• Confif_dev1.xml configures an MSDA Manager for network Network1 with an SLP SD
Plugin

• Confif_dev2.xml configures an MSDA Bridge between networks Network1 and
Network2.

• Confif_dev1.xml configures an MSDA Manager for network Network2 with a UPnP SD
Plugin

INRIA – ARLES Project 13

• start_client_slp.bati that starts an SLP graphical client

• start_client.bat that starts a UPnP graphical client.

• start_msda.bat that starts an MSDA stack based on a configuration file given in
parameter.

• start_service.bat that starts a UPnP test service.

The demonstration steps are:

1. Start the SLP registry (slpd.exe).

2. Launch 3 MSDA stacks with the three configuration files mentioned above.

3. Launch the UPnP service.

4. Launch the SLP graphical client.

After these three steps, 4 windows should be created as shown in Figure 4. The Manager for
Network 2 should also have (at least) 3 service descriptions (see Figure 5).

Figure 4: Demonstration setup

INRIA – ARLES Project 14

Figure 5: UPnP services discovered

Figure 6: MSDA Service Discovery

After all applications have started, press the button "Check MSD" on the SLP graphical client.
The client then connects to the MSDA Service recorded in the SLP registry and sends a discovery
request for an RFIDService. After the discovery timeout expires, one service description should be
available (see Figure 6). Press the "Access" button to go to the access panel (Figure 7). Pressing
the "Get Infos" button will then send an MSDA service access request to the remote service
through the two MSDA Managers and the MSDA Bridge and return some information.

MSDA execution logs are available for the three stacks (Device_1.log, Device_2.log,
Device_3.log).

INRIA – ARLES Project 15

Figure 7: MSDA Service Access

INRIA – ARLES Project 16

4 MSDA Startup File
The MSDA platform is provided an XML configuration file at startup that contains the

information related to the device, the network interfaces and if needed, the manager properties. In
the following, we describe in details the format of this file.

The XML configuration file is composed of a Device section providing profile information on the
device, a Framework section that contains all the MSDA configuration information, and multiple
Networks that provide different network configuration that may be used by this MSDA stack.

<Device>
 <Name>Device_1</Name>
 <Params type="type" value="linux notebook"/>
 <Params type="manufacturer" value="Compaq"/>
 <Params type="owner" value="R.C."/>
 <Params type="processor" value="pentium II"/>
</Device>

The <Device> node first contains a device name that should be unique within the elementary
network, and then an unbounded list of Params. Each Param contains two string (type and value).
This enables the definition of the device profile.

<Framework>
 <ActiveNetwork>Network_1</ActiveNetwork>
 <agreeBridge>0</agreeBridge>
 <contextMgmt>true</contextMgmt>
 <Manager>
 <Name>Manager_1</Name>
 <NetworkName>Network_1</NetworkName>
 <RemoteAccessPort>9009</RemoteAccessPort>
 <DirectMSDPort>8509</DirectMSDPort>
 <Plugins>
 <Name>Plugin UPnP Siemens 1.0</Name>
 <Creator>Siemens</Creator>
 <ClassName>plugins.upnp.MSDUPnPPlugin</ClassName>
 <HTTPServerPort>9506</HTTPServerPort>
 </Plugins>
 <Params type="getServicesTimeout" value="8000"/>
 <Params type="serviceAccessTimeout" value="5000"/>
 <NetworkCtx>./configuration/ctxHS.xml</NetworkCtx>
 </Manager>
</Framework>

The <Framework> node first lists the names of the networks this device is connected to (for
the list of networks at this end of the configuration file). At least one network is mandatory. Then
the configuration file indicates if an MSDA Bridge component should be started or not, and then
whether this stack should manage context information..The MSDA Bridge comonent interconnect
all active networks.

If this device accepts to be an MSDA Manager, the <Framework> node then contains a
<Manager> node. This node first assign a unique name (within the elementary network) to this
manager and then indicates the network potentially managed by this MSDA Manager. Only one
network should be listed, but several <Manager> nodes may exist within a <framework> node.

INRIA – ARLES Project 17

Then two port numbers are provided for managing remote access connection requests and direct
MSDA access (plain XML MSDA messages over TCP sockets). Then a list of <Plugins> nodes is
provided that lists the different SD plugins this MSDA manager handles. Each <Plugin> node first
contains the plugin name, its creator, the class name to instantiate, and the HTTP port for
accepting access requests.

Finally, the Manager node contains a list of parameters and optionally the location of the XML
file containing profile information about the network handled by this MSDA Manager.

A stack may have both one or more MSDA Manager components and one MSDA Bridge
component. In the example below, a simple MSDA stack is defined that only contains an MSDA
Bridge component for two networks.

<Framework>
 <ActiveNetwork>Network_1</ActiveNetwork>
 <ActiveNetwork>Network_2</ActiveNetwork>
 <agreeBridge>1</agreeBridge>
 <contextMgmt>true</contextMgmt>
</Framework>

If an MSDA Manager can provide several plugins, the file would contain several <Plugins>
node as it is shown below.

<Plugins>
 <Name>Plugin UPnP Siemens 1.0</Name>
 <Creator>Siemens</Creator>
 <ClassName>plugins.upnp.MSDUPnPPlugin</ClassName>
 <HTTPServerPort>9504</HTTPServerPort>
 </Plugins>
<Plugins>
 <Name>Plugin OpenSLP</Name>
 <Creator>OpenSLP</Creator>
 <ClassName>plugins.slp.MSDSLPPlugin</ClassName>
 <HTTPServerPort>9002</HTTPServerPort>
</Plugins>

The <Framework> node also enables some parameters to be defined with a <Params> node.
• getServicesTimeout : defines the timeout to perform a “getServices”
• serviceAccessTimeout : defines the timeout to perform a “serviceAccess”

<Params type="getServicesTimeout" value="8000"/>
<Params type="serviceAccessTimeout" value="5000"/>

In the configuration files, several networks can be defined but only the active networks will be
taken into account..

<Networks>
 <Name>network_2</Name>
 <Interface>eth0</Interface>
 <ControlGroup>239.255.255.1</ControlGroup>
 <ControlPort>9101</ControlPort>

INRIA – ARLES Project 18

 <DataGroup>239.255.255.101</DataGroup>
 <DataPort>9101</DataPort>
 <BridgeRemoteAccessPort>9201</BridgeRemoteAccessPort>
 <Params type="type" value="WiFi"/>
 <Params type="management" value="ad hoc"/>
 <Params type="owner" value="none"/>
 <Params type="bandwidth" value="11 Mbps"/>
</Networks>

Each network node first provides the name of the networks, then the identification of the
network interface to use followed by two pairs of IP addresse and port for the control and data
communication groups. The two IP addresses should be multicast IP addresses and the two ports
may either be identical or different. This is followed by the port number for incoming remote
access requests and a list of parameters.

The tables below summarize the elements required for each node of the startup file.

Framework node

ActiveNetwork The name of the active network

agreeBridge :If the value is 1, then the device agrees to become a bridge

contextMgmt If the value is true, then the bridge or manager will provide context
management, otherwise no context will be verify and everything will be
allowed.

Manager Optional definition(s) of MSDA Managers

Manager node

Name the name of the manager

NetworkName the name of the network

RemoteAccessPort the port for the remote access

DirectMSDPort the port of the direct MSDA service for socket connections

Plugins the children of this node provide all the require information to start a plugin

Params any needed parameter with its type and name

NetworkCtx Filename for device context information

Plugin node

Name the name of the plugin

Creator the creator name of the plugin

ClassName the name of the class to instantiate dynamically

HTTPServerPort the port number used by the HTTP server

Network node

Name the name of the network

INRIA – ARLES Project 19

Interface the identification of the network interface

ControlGroup the IP address used by the multicast group for the election

ControlPort the port number used by the multicast group for the election

DataGroup the IP address used by the multicast group for the MSDA

DataPort the port number used by the multicast group for the MSDA

BridgeRemoteAccessPort the port number used for service access

Params any needed parameter with its type and name

INRIA – ARLES Project 20

5 MSDA-aware Client Operations

5.1 Service Discovery
After configuring the manager and bridges, you can search for services with an MSDA-aware

client. The client can connect to the MSDA service using socket connections or SOAP
connections.

Case socket connection :
- searching for the MSDA service in the client’s protocol (UPnP, SLP, …);
- making a MSDA request for service discovery;
- making a MSDA message containing the request ;
- sending the message to the MSDA service;

Case SOAP connection :
- searching for the MSDA service in the client’s protocol (UPnP, SLP, …);
- making a MSDA request for service discovery;
- invoking the getServices method of the MSDA service.

5.1.1 MSDA request
The MSDA request contains :

- the client’s timeout to perform the request
(ReqCreationInformation.setLifetime(..));

- the name of the searched service (RequestService.setName(..));
- the methods of the service if you want to select more specifically a service;
- a client ID and a request ID sets to -1 if it is the first time the request is sent;
- some context rules/information

ReqProcessingInformation rpi = new ReqProcessingInformationImpl();
ReqCreationInformation rci = new ReqCreationInformationImpl();
Creator creator = new CreatorImpl();
UbisecID id = new UbisecIDImpl();
id.setName("Client");
creator.setMgrID(id);
creator.setNetID(id);
Calendar cal = Calendar.getInstance();
rci.setDate(cal);
rci.setTime(cal);
rci.setLifetime(BigInteger.valueOf(timeout));// in secondes
rci.setCreator(creator);
rpi.setCrea(rci);

// Name of the searched service
RequestService requestService = new RequestServiceImpl();
requestService.setName("serviceName");

ReqDescriptionInformation reqDescription = new ReqDescriptionInformationImpl();
reqDescription.setService(requestService);

MSDRequest msdRequest = new MSDRequestImpl();

msdRequest.setDescInfo(reqDescription);
msdRequest.setProcInfo(rpi);

PropagationInformation pi = new PropagationInformationImpl();
msdRequest.setPropaInfo(pi);

INRIA – ARLES Project 21

msdRequest.setClientID(BigInteger.valueOf(-1));
msdRequest.setReqID(BigInteger.valueOf(-1));

MSDA message to send to the MSDA service for socket connections

MessageContent content = new MessageContentImpl();
content.setRequest(msdRequest);

MSDMessage mess = new MSDMessageImpl();
mess.setSender(id);
mess.setType(BigInteger.valueOf(InfoType.Message.CLIENT_NEW_REQUEST));
mess.setContent(content);

Invoking the MSDA service for a discovery request using SOAP messages.

MSDDescriptionImpl[] results = msdService.getServices(msdRequest);

5.1.2 Getting the results
Whatever the client connection (socket or SOAP), the MSDA manager will return the first

results as soon as at least one is received or is in its cache. If the client’s timeout has expired, the
result will be null. But if the client’s timeout has not expired, then either the client is satisfied with
the results, or the client can still retrieve periodically the results until the request timeout expires.

In that goal, the client has to send a request with the correct client ID and request ID that
identify the running request. These two identifiers can be retrieved from a previous result.

MSDDescription[] res = msdService.getServices(msdRequest);

// Hack : <DeviceID> contains clientId#requestId
CreationInformation creation = res[i].getCreaInfo();
UbisecID deviceId = creation.getCreator().getDvcID();
String deviceName = deviceId.getName();
int index = deviceName.indexOf("#");
clientId = Integer.parseInt(deviceName.substring(0, index));
requestId = Integer.parseInt(deviceName.substring(index+1));

For a socket connection, keeping on retrieving the results will be done sending the request with
the client ID and request ID to the socket with a MSDA message of type
CLIENT_RUNNING_REQUEST :

MessageContent content = new MessageContentImpl();
content.setRequest(msdRequest);

MSDMessage mess = new MSDMessageImpl();
mess.setSender(id);
mess.setType(BigInteger.valueOf(InfoType.Message.CLIENT_RUNNING_REQUEST));
mess.setContent(content);

INRIA – ARLES Project 22

For a SOAP connection, keeping on retrieving the results will be done sending the request with
client ID and request ID :

MSDDescriptionImpl[] results = msdService.getServices(msdRequest);

5.1.3 Context information / context rules
If the network supports context management, the MSDA request can be completed by some

context rules and/or context information.

A request can contain user context information, service context information and/or network
context information.

ContextInformationTable ciNet = new ContextInformationTableImpl();
ContextElement elt = ContextUtil.getInstance().createCtxElement("Hop", 0);
ciNet.getCITable().add(elt);

ContextInformationTable ciSvc = new ContextInformationTableImpl();
elt = ContextUtil.getInstance().createCtxElement("Quality", "High");
ciUser.getCITable().add(elt);

ContextInformation ci = new ContextInformationImpl();
ci.setCINet(ciNet);
ci.setCISvc(ciSvc);

msdRequest.setCtxInfo(ci);

A request can contain user context rules, service context rules and/or network context rules.

// Network ContextRules HOP < 5
TypeValue compValue = new TypeValueImpl();
compValue.setInt(BigInteger.valueOf(5));
ComparisonNode compNode = new ComparisonNodeImpl();
compNode.setName(NetworkTemplate.HOP);
compNode.setOp("L");
compNode.setVal(compValue);
ContextNode ctxNode = new ContextNodeImpl();
ctxNode.setCa(compNode);

ContextRulesTree crNet = new ContextRulesTreeImpl();
crNet.setRoot(ctxNode);

// Service context rules (AND)

TypeValue v1 = new TypeValueImpl();
V1.setInt(BigInteger.valueOf(2));
ComparisonNode comp1 = new ComparisonNodeImpl();
comp1.setName("CtxValue");
comp1.setOp("!=");
comp1.setVal(v1);

TypeValue v2 = new TypeValueImpl();
V2.setStr("Medium");
ComparisonNode comp2 = new ComparisonNodeImpl();
comp1.setName("CtxQuality");
comp1.setOp("=");
comp1.setVal(v1);

INRIA – ARLES Project 23

ContextNode n1 = new ContextNodeImpl();
n1.setCa(comp1);
ContextNode n2 = new ContextNodeImpl();
n2.setCa(comp2);
CombinationNode rootCbi = new CombinationNodeImpl();
rootCbi.setOp("AND");
rootCbi.setCN1(n1);
rootCbi.setCN2(n2);

ContextNode rootNode = new ContextNodeImpl();
rootNode.setCi(rootCbi);

ContextRulesTree crSvc = new ContextRulesTreeImpl();
crSvc.setRoot(rootNode);

ContextRules ctxRule = new ContextRulesImpl();
ctxRule.setCRSvc(crSvc);
ctxRule.setCRNet(crNet);

msdRequest.setCtxRules(ctxRule);

5.2 Service Access
The current iprototype implementation of the MSDA platform only supports service access for

SOAP services. Furthermore, the client application also needs to have the service stub. However,
MSDA does not require a specific implementation of the service and is not required to have a
service stub..

Accessing a service is only possible after an MSDA search has returned the MSDA description
of the service to the client. Indeed, the client’s MSDA Manager maintains a temporary association
between the MSDA description returned to the client and a (temporary, local) service entry point.
As the client sends its access request to this custom service entry point, the MSDA Manager
automatically knows all the information (e.g., propagation list, service SDP, …) required to send
the access message to the end service. This temporary association permits the direct
retransmission of the access messages by the MSDA Manager without requiring the explicit
creation by the client of a communication channel to the end service. The client must therefore
first perform an MSDA discovery request, and must start to access the service before the
association timeout expires.

The client initialize the SOAP service stub with the temporary endpoint reference found in the
MSDA service description. This endpoint reference is composed of the MSDA service IP address,
the service endpoint reference in its network and the identification of the returned MSDA
Description. We use the “/” to separate the different strings. The MSDA Manager separate all
these information and, with the description identification, knows where to find the required
information.

MSDAAddress+"/serviceaccess/"+ServiceAddress+”/”+descID

INRIA – ARLES Project 24

6 Most common problems

6.1 Missing MSDDeploy.wsdd
Problem: When launching MSDA an error is reported claiming that MSDDeploy.wsdd is

missing.

[java] The args attribute is deprecated. Please use nested arg elements.
[java] Will start MSDDeamon
[java] Not an MSD Bridge
[java] - Total SD time
[java] 0 [main] INFO total_msd_processing_time.log - Total SD time
[java] Found Network context 1
[java] START PLUGIN
[java] CSOAP_HOME not defined
[java] configuration/wsdd.conf doesn't exist
[java] java.io.FileNotFoundException: configuration/MSDDeploy.wsdd (No such file or directory)
[java] at java.io.FileInputStream.open(Native Method)
[java] at java.io.FileInputStream.<init>(FileInputStream.java:106)
[java] at java.io.FileInputStream.<init>(FileInputStream.java:66)
[java] at ubisec.soap.SOAPTools.<init>(SOAPTools.java:43)
[java] at org.ubisec.plugins.AbstractPlugin.<init>(AbstractPlugin.java:65)
[java] at org.ubisec.plugins.slp.MSDSLPPlugin.<init>(MSDSLPPlugin.java:71)
[java] at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
[java] at

sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39)
[java] at

sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27
)

[java] at java.lang.reflect.Constructor.newInstance(Constructor.java:494)
[java] at java.lang.Class.newInstance0(Class.java:350)
[java] at java.lang.Class.newInstance(Class.java:303)
[java] at org.ubisec.components.MSDManager.startPlugin(MSDManager.java:979)
[java] at org.ubisec.components.MSDDaemon.<init>(MSDDaemon.java:179)
[java] at org.ubisec.framework.FrameworkMain.main(FrameworkMain.java:80)

Solution: When starting MSDA under Eclipse, you have to copy the configuration
directory that contains the MSDDeploy.wsdd file in the $MSDACORE_DIR/bin directory. When
cleaning/recompiling a project, this directory ($MSDACORE_DIR/bin) is sometimes deleted. It is
therefore necessary to copy the directory again there.

6.2 NullPointerException when getting the IP Address
Problem: When launching MSDA, a NullPointerException is raised when trying to get an IP

address.

[java] The args attribute is deprecated. Please use nested arg elements.
[java] Will start MSDDeamon
[java] Not an MSD Bridge
[java] - Total SD time
[java] 0 [main] INFO total_msd_processing_time.log - Total SD time
[java] Found Network context 1
[java] Could not initialize java.lang.NullPointerException
[java] java.lang.NullPointerException
[java] at org.ubisec.components.MSDDaemon.getIPAddress(MSDDaemon.java:245)
[java] at org.ubisec.components.MSDManager.<init>(MSDManager.java:179)
[java] at org.ubisec.components.MSDDaemon.<init>(MSDDaemon.java:160)
[java] at org.ubisec.framework.FrameworkMain.main(FrameworkMain.java:80)

INRIA – ARLES Project 25

Solution: The configuration file contains an interface name which does not exist on the device.
Check the names of the network interfaces and then check the configuration file.

6.3 MSDA component is not elected
Problem: MSDA component is not elected as a MSDA Manager and nothing happen

Solution: The network name defined in the <Manager> tag is not the same than the one
defined in the <activeNetwork> tag. You have to put the correct one in both tags (see below).

<Framework>
 <ActiveNetwork>Network_2</ActiveNetwork>
 <agreeBridge>0</agreeBridge>
 <contextMgmt>true</contextMgmt>
 <Manager>
 <Name>Manager_1</Name>
 <NetworkName>Network_1</NetworkName>
 <RemoteAccessPort>9310</RemoteAccessPort>
 <DirectMSDPort>8310</DirectMSDPort>

6.4 SLP Client cannot connect to MSDA or any SLP service
Problem: client cannot connect to the MSDA service registered in SLP

Solution: The MSDA service is in fact not correctly registered in SLP. This happens when a
previous MSDA service with another port or IP address has already been registered in the current
SLP daemon. You have just had to kill the “slpd” process and restart it.

6.5 Wrong element
Problem: MSDA component is not elected as an MSDA Manager and nothing happens

Solution: The network name defined in the <Manager> tag is not the same than the one
defined in the <activeNetwork> tag. You have to put the correct one in both tags (see below).

<Framework>
 <ActiveNetwork>Network_2</ActiveNetwork>
 <agreeBridge>0</agreeBridge>
 <contextMgmt>true</contextMgmt>
 <Manager>
 <Name>Manager_1</Name>
 <NetworkName>Network_1</NetworkName>
 <RemoteAccessPort>9310</RemoteAccessPort>
 <DirectMSDPort>8310</DirectMSDPort>

INRIA – ARLES Project 26

References

[1] Bluetooth. http://www.bluetooth.com
[2] Ariadne. http://www-rocq.inria.fr/arles/download/ariadne/index.html
[3] Jini. http://www.sun.com/software/jini/
[4] SLP. http://www.openslp.org/doc/rfc/rfc2608.txt
[5] UPnP. http://www.upnp.org
[6] UDDI. Universal description discovery and integration. http://www.uddi.org/
[7] CSOAP. http://www-rocq.inria.fr/arles/download/ozone/index.html

