
CSOAP Architecture

1

CSOAP Architecture

Rafik CHIBOUT, Valérie ISSARNY, Daniele SACCHETTI.

Version 1.0
Feedback: rafik.chibout@inria.fr

Contents

1. Introduction.. 2

2. CSOAP Server subsystems.. 2

2.1. Transport subsystem... 3
2.2. Message model subsystem .. 4
2.3. Encoding subsystem.. 9
2.4. Provider subsystem... 15
2.5. Handlers subsystem.. 17
2.6. Deployment subsystem.. 19
2.7. Global Managing subsystem .. 24
2.8. CSOAP Client subsystem.. 26

3. CSOAP Generator ... 28

3.1. Introduction .. 28
3.2. CSOAP Generator Architecture ... 29
3.3. WSDL elements and java generated classes... 30

4. Appendix ... 35

CSOAP Architecture

2

1. Introduction

CSOAP is essentially a SOAP engine for resource-constrained devices such as PDA (Personal Digital
Assistant), which is able to deploy Web Services and to manage RPCs (Remote Procedure Call) from
SOAP clients and dispatch them to services. CSOAP is also a framework for developing Web Services
and their clients. CSOAP implementation follows the Sun’s JAX-RPC Specification, which gives a
standard for SOAP-based RPC to support the development of SOAP-based interoperable and portable
Web services (see Appendix and http://java.sun.com/xml/jaxrpc/index.jsp for more
details).

1. CSOAP Infrastructure

As shown by Figure 1 CSOAP is two parts: CSOAP Server part running into the Server-Side and CSOAP
Client part running into the Client-Side. CSOAP Server manages the deployed services, listen to the
SOAP messages come from Clients and dispatch them to services. CSOAP Client provides a set of
methods which allows a simple development of Client Application that invokes some services deployed
on CSOAP Server. CSOAP is organized into subsystems which make it modular and extensible. The
follow Section will show these subsystems and will give their design.

2. CSOAP Server subsystems

In addition to the advantages of the Sun’s JAX-RPC specification, CSOAP comprises several subsystems
working together with the aim of separating responsibilities cleanly and making CSOAP modular.
Subsystems enable parts of a system to be used without having to use the whole of it (or hack the code).
Figure 2 shows the relationship between the different subsystems of CSOAP Server.

In this section we detail the CSOAP subsystems: the Transport subsystem that is charged of the reception
and response over the transport protocol is described in section 2.1, the Model Message that implements
the Sun JAXM specification for SOAP messages is described in section 2.2, the Encoding subsystem
based on Sun JAX-RPC specification that translates XML data into java object and vice versa is described
in section 2.3, the Handlers subsystem based on Sun JAX-RPC specification allows a further processing
of the SOAP messages is described in section 2.5, the Provider subsystem that executes services is
described in section 2.4, the Deployment subsystem that allows the deployment and configuration of
services is described in section 2.6, the GlobalManaging subsystem that is charged of the coordination of
the subsystems is described in section 2.7 and finally the CSOAP Client subsystem is based on the Model
Message subsystem and provides the methods to make service calls to client applications is described in
section 2.8.

CSOAP Architecture

3

2. CSOAP Server subsystems

2.1. Transport subsystem

The Transport subsystem is principally defined to guarantee the CSOAP independence towards the
transport protocol. In CSOAP, only HTTP transport is actually supported. As you can see in Figure 3 the
CSOAPServlet (provided by CSOAP) extends the class HTTPServlet and overrides the doPost()
that receives the SOAP messages and the service deployment messages and forward them to the CSOAP
Engine. A SOAP message is distinguished from a deployment message by the destination endpoint of the
HTTP message: AdminClient in the case of the deployment and a service name the case of a SOAP
message.

3. HTTP-Transport implementation

Figure 3 shows the relation between CSOAPServlet and the GlobalManagerServer class that is
the entry point to the CSOAP Engine. The receiveWsdd() method of GlobalManagerServer is
called when a service deployment file is received, and receiveSOAP() method of
GlobalManagerServer is called when a SOAP Message is received.

 Deployment

subsystem

Encoding
subsystem

Provider
subsystem

Model
Message

Global
Managing
subsystem

CSOAP
Client

subsystem

Transport subsystem

Handlers
subsystem

CSOAP Architecture

4

2.2. Message model subsystem

This subsystem takes care of translating the data message received (or to be sent) into a standard model
and it is based on the Sun’s JAX-M Specification
(http://java.sun.com/xml/jaxm/index.jsp).

envelope

header body

header entry body entry

4. Syntax of SOAP Message

As you can see in the figure above, the syntax of a SOAP message is fairly simple. A SOAP message
consists of an envelope containing:
• an optional header containing zero or more header entries
• a body containing zero or more body entries

Some of the XML elements of a SOAP message define namespaces, each in terms of a URI and a local
name, and encoding styles, a standard one of which is defined by SOAP.

Header entries may be tagged with the following optional SOAP attributes:
• actor which specifies the intended recipient of the header entry in terms of a URI
• mustUnderstand which specifies whether or not the intended recipient of the header entry is

required to process the header entry

The body is the part of the SOAP message that contains the information required to invoke a service (i.e.,
the service name, method name and the parameter values). SOAP defines the fault entry that is a body
entry and is used for reporting errors.

Each SOAP Message element implements the javax.xml.soap.SOAPElement interface which
handles the element name, the attributes, the encoding style and the optional child elements. Look at the
following UML schema in Figure 5.

Figure 6 shows how CSOAP implements the SOAP message structure seen in Figure 4 using the classes
shown in Figure 5: a SOAPMessage object is created with a SOAPPart object that has a
SOAPEnvelope object. By default, the SOAPEnvelope object has got an empty SOAPBody object
and an empty SOAPHeader object. The SOAPBody object is required, and the SOAPHeader object,
though optional, is used in the majority of cases. If the SOAPHeader object is not needed, it can be
deleted. The access to the SOAPHeader and SOAPBody objects is given by the
SOAPEnvelope.getHeader() and SOAPEnvelope.getBody() methods.

CSOAP Architecture

5

5. Class diagram of SOAP Message elements

CSOAP Architecture

6

6. Class diagram of SOAP Message

The sequence diagram in Figure 7 shows how a client can build a SOAPMessage object.
The SOAPMessage can be created by newInstance() method of SOAPMessageFactory class.
The SOAPMessage contains a SOAPPart which is returned by getSOAPPart() method.
The SOAPPart is used to retrieve SOAPEnvelope.
The SOAPEnvelope provides the getSOAPBody() method to retrieve a SOAPBody and
getSOAPHeader() method to retrieve SOAPHeader.
The SOAPBody may create SOAPBodyElement that provides some getter and setter methods for the
name, the type, and the text node and it further provides the possibility to create SOAPElement
children.
The SOAPHeader may create a SOAPHeaderElement which provides some setter and getter
methods for actor and mustUnderStand fields.

CSOAP Architecture

7

7. Sequence diagram of SOAPMessage Building

CSOAP uses an XML parser based on SAX and compliant with JAXP (Java API for XML Processing,
see http://java.sun.com/xml/jaxp/index.jsp) to create a SOAPMessage starting from its
XML representation.
Using JAXP compliant parsers involves implementing org.xml.sax.helpers.DefaultHandler
interface. This interface allows catching events generated by the parser while reading XML files, when it
detects the start or the end of an XML element. The generated event contains the name of the XML
element along with its attributes.
In CSOAP the interface org.xml.sax.helpers.DefaultHandler is implemented by the class
csoap.xml.soap.SAXHandler that receives in input the SOAP message as an InputSource
object and builds a SOAPMessage object.
The class csoap.xml.soap.SAXHandler uses two state transition tables. In Figure 8 you can see
the table that is examined when an XML start element is found and the startElement() method of
the csoap.xml.soap.SAXHandler is invoked. The state will be updated taking into account the
content of the table and the right object will be created and added to the SOAPMessage object. For
example when the start of Envelope element is found, a SOAPEnvelope object is created and all its
attributes and elements are added.

CSOAP Architecture

8

End element state table in Figure 9 is examined at the end of each XML element, when the
endElement() method of the csoap.xml.soap.SAXHandler is invoked.

Stat/Element Envelope Header Body Fault Any Element
0 1
1 2 3
2 4
3 7 6
4 4
5
6 3 6
7 10
8 6
9

10 10
11

8. State transition table (start element)

Stat/Element Envelope Header Body Fault Any Element

0 1
1 2 3
2 4
3 7 6
4 4
5
6 3 6
7 10
8 6
9

10 10
11

9. State transition table (end element)

Sending a SOAP Message requires writing SOAPMessage on XML text representation, but the SAX
parsers are not able to write an XML document. In CSOAP, this problem is resolved by XMLWriter,
which allows writing a SOAPMessage Object into an XML text representation.
CSOAP provides the interface csoap.xml.soap.XMLWriter and its implementation
csoap.xml.soap.XMLWriterImpl (see diagram in Figure 10) and the following is a brief
description of their methods:
• init() initialize the class instance
• startElement() adds a new XML element and sets it as the current element. The parent of this

new element is the current element
• addAttribute() adds an attribute to the current element
• addTextNode()adds a textNode text to the current element
• endElement() closes the current XML element and sets its parent as current element
• writeTo() writes the XML message in an outputStream
• getSOAPMessage() returns the XML message as a String

CSOAP Architecture

9

10. Class diagram of CSOAP XMLWriter

2.3. Encoding subsystem

This subsystem manages the mapping of Java data types into XML representations. In CSOAP, the
encoding is called serialization and transforms Java objects and data of primitive Java types into XML
data and decoding is called deserialization and transforms XML data into Java objects and primitive
types. The UML schema in Figure 11 shows the serializer and deserializer classes provided by CSOAP
Engine.

Each class implementing the interface SerializerBase or DeserializerBase contains the
attributes javaType and XMLType storing respectively the Java Class and the XML type handled by
the serializer/deserializer class.
The method serialize() provided by classes that implement the interface SerializerBase
transforms a java object of type javaType into an object of class SOAPElement (which, is described
in the above Section) of type XMLType by using a parsing mechanism.
The method deserialize() provided by classes that implement the interface DeserializerBase
transforms a java object of type SOAPElement containing an XML element of type XMLType into an
object of class SOAPElement of type XMLType by using a parsing mechanism.

As an example, the integer value 5 will be serialized by serializerSimpleType.serialize()
into:
<x type xsd:int xmlns:xsd=”http://www.w3.org/2001/XMLSchema”> 5 </x>
and contained in a SOAPElementImpl object with the following attribute values:
Name=”x”
type=”{http://www.w3.org/2001/XMLSchema:int}”
textNode=”5”.

CSOAP Architecture

10

11. Classes diagram of serialisers and deserializers

Here a more detailed description of the classes shown in figure 11:
• SerializerSimpleType: serializes all the primitive Java type (int, long …) into the

correspondent XML.
• DeserializerSimpleType: deserializes all the XML simple types (xsd:int,

xsd:float…) into their correspondent Java type.
• SerializerArrayType: serializes the one-dimension Java arrays containing elements of the

same type, both simple and complex types (only those supported by SerializerComplexType
and DeserializerComplexType).

• DeserializerArrayType: deserializes an XML type array soapenc:array into a Java array
of elements of the type corresponding to the elements contained in the XML array.

• SerializerComplexType: serializes a Java class that contains only public attributes.

CSOAP Architecture

11

• DeserializerComplexType: deserialises an XML complex type into the corresponding Java
class.

• SerializerBase64: serializes a binary data represented by an array of byte using base64
coding. This type is frequently used for the textual representation of binary files like images and
videos.

• DeserializerBase64: deserializes an XML element coded in base64 into a binary Java array.

This serializers and deserializers provided by CSOAP uses only the SAX parsing mechanism, that is
specified by “default” value of the mechanism attribute of serializer and deserializer classes.

All the serializer and deserializer classes are managed by a corresponding serializer or deserializer factory
that has the role to store serializers and deserializers and to provide them to the SOAP components asking
for them giving as input information the mechanism (in our case the “default” value of mechanism).
The following UML schema (Figure 12) shows serializer and deserializer factory classes provided by
CSOAP Engine.

12. Classes diagram of serializer factories and deserializer factories

All the serializer and deserializer factories of the same XML encoding style are stored by a
typeMappingImpl object that implements the interface
javax.xml.rpc.encoding.TypeMapping.
All type Mappings are registered into a type Mapping Registry with their encoding style.
The typeMappingRegistryImpl class implements javax.xml.rpc.encoding.
typeMappingRegistry. The type mapping class hierarchy is shown below (Figure 13).

CSOAP Architecture

12

13. Class diagram of typeMapping

The instances of classes implementing SerializerBase interface are stored in
SerializerFactoryImpl according to the Java and XML type they handle. These instances are
accessed through getSerializerAs() method of SerializerFactoryImpl by specifying a
serializer mechanism.

CSOAP Architecture

13

Method getSupportedMechanismTypes() provides the list of mechanisms supported by the
specific SerializerFactoryImpl.
The same class organization is used also for classes implementing the deserialization interface
DeserializerBase and managed by DeserializerFactoryImpl classes.

TypeMappingImpl contains four arrays:
• XMLTypes containing XML types represented by QName type (QName represents a qualified name

as defined in the XML specification. The value of a QName contains a Namespace URI, local part and
prefix).

• javaClasses containing Class elements and representing Java types.
• serializerFactories containing serializerFactory elements.
• deserializerFactories containing deserializerFactory elements.

The XML type at position “i” in array XMLTypes corresponds to the Java type at postion “i” in
javaClasses array. The serializerFactory and deserializerFactory store at the position
“i”, the serializer and deserializer corresponding to this couple of Java and XML types

Register method allows adding a new mapping by giving an XML type, a Java type and an instance of
SerializerFactory and DeserializerFactory storing serializers and deserializers of Java
and XML types.
Methods getSerializer() and getDeserializer() returns the serializer and deserializer
factory instances of these Java and XML types given as parameters.

typeMappingRegistryImpl contains two arrays:
• typeMappings containing elements of typeMapping type.
• encondings containing String elements.
Each typeMapping stored at position “i” in array typeMappings corresponds to the coding style
stored in encoding array at postion “i”.
Method register() allows adding a new typeMapping and its corresponding encoding style.
Method getTypeMapping() returns the typeMapping corresponding to the encoding style given as
parameter.

14. Create a new typeMapping

CSOAP Architecture

14

Sequence diagram in Figure 14 shows the creation and registration of a type mapping for a couple of Java
and XML types. SerializerFactoryImpl and deserializerFactoryImpl (referenced with
sf and df) store the serializer and deserializer aimed at mapping the Java and XML types and vice
versa.

The application creates an instance of the class serializerFactoryImpl and of the class
deserializerFactoryImpl. Then, it asks the typeMappingRegistry to create a new
typeMapping with the call createTypeMapping(). This typeMapping is initialized with the
right values of Java and XML types and the factory instances with the call register().
Finally, the application registers the typeMapping and the encoding style in the
typeMappingRegistry with method register().

Sequence diagram in Figure 15 shows how an application can use the typeMappingRegistry to find
the serializer and deserializer associated to a Java and an XML Types.

15. Using TypeMappingRegistry

The application makes use of the method getTypeMapping() of the typeMappingRegistry to
retrieve the encoding type it wants to use. The getSerializer() method of typeMapping
provides the serializerFactory for the Java (and/or XML) type specified.
The method getSerializerAs() of serializerFactory allows to retrieve the serializer by
giving the parsing mechanism value associated to it (in our case “default”). Then, the application can call
the serialize() method to execute the serialization: the input parameter is the Java object and it
returns a SOAPElement object containing the XML representation of the input object.
The same process is used for deserialization. Deserialize() method has a SOAPElement object in
input and returns a Java object containing the value stored by the SOAPElement object.

CSOAP Architecture

15

All the applications can create an instance of class TypeMappingRegistryImpl, register a new
mapping between a Java type and an XML type and use this mapping or the already registered mappings
to serialize Java objects and deserialize XML elements.

2.4. Provider subsystem

The provider is responsible for loading a Service instance and performing the requested Service method.
The Provider subsystem takes care of managing the scope type with which the provider runs the service.
The possible deployment scopes for a service are Session scope, Application scope or Request scope.
The services deployed with Application or Request scopes will be executed by a GlobalProvider
which is a global instance of RPCProvider class.
An instance of RPCProvider class is created for each client that invokes a Session service. The session
is maintained between the client and CSOAP Engine by an identifier given by CSOAP Engine and
exchanged into the HTTP cookies.
The getProvider() method selects (or creates) and return an adequate provider able to run the
requested service. If the service is deployed with a specified user-defined provider, the provider
subsystem creates an instance of this user-defined provider and manages it like the RPCProvider class
instances. The following (Figure 16) shows the class diagram of this subsystem.

16. Class diagram of Provider subsystem

The instance of providerManager contains an instance of class RPCProvider called
GlobalProvider that has is charged of the invocation of services deployed with scope Application
and Request. New instances of RPCProvider class are created when services are deployed with
Session scope. The three following diagrams show the different way ProviderManager handles a
service according to its deployment scope.

Figure 17 shows how ProviderManager handles a client request when the called service is deployed
with request scope. ProviderManager.getProvider() returns a reference to
GlobalProvider. CSOAP Server invokes the method runService() of GlobalProvider
giving all the information required for the service invocation. GlobalProvider creates an instance of
service, invokes the method and finally destroys the service instance. To sum up, one instance of the
service is created for each service call.

CSOAP Architecture

16

17. Sequence diagram of ProvideManager functioning (Service Request)

18. Sequence diagram of ProvideManager functioning(Service Application)

Figure 18 shows how ProviderManager handles a client request when the called service is deployed
with Application scope. ProviderManager.getProvider() returns a reference to
GlobalProvider. CSOAP Server invoke the method runService() of GlobalProvider that
creates an instance of the service if an instance of the service is not already available.

Figure 19 shows how ProviderManager handles a client request when the called service is deployed
with session scope. ProviderManager creates an instance of RPCProvider that is bound to the
client.
CSOAP Server invoke the method runService() of RPCProvider giving all the information
required for the service invocation.
RPCProvider creates an instance of service if an instance of the service is not already available.
All the service calls coming from the same client for this service are executed on the same instance of
service, unless the session between the client and CSOAP server has expired. The duration of the session
is fixed by the delay variable of class ProviderManager.

CSOAP Architecture

17

19. Sequence diagram of ProvideManager functioning(Service Session)

2.5. Handler subsystem

Sometimes we can need to process SOAP Messages before using them to invoke the Service (for
example: security process, message tracking process) or before sending them (for example: compression
process, redirection process…). CSOAP allows defining an Handler, that is a Java class which
implements the javax.xml.rpc.handler.Handler interface and implements a processing
algorithm over a SOAP message. The HandlerChain implements the
java.xml.rpc.handler.HandlerChain and is a composite Handler, i.e. it aggregates a
collection of Handlers. Handler subsystem takes care of the management of handlers and of their
execution. For more details see the class diagram in Figure 20.

The Handler Chains are either Global or Service-specific. The Global Chain processes all messages which
cross the CSOAP Engine, while the Service-specific Chain processes only the messages addressed to a
specific Service. Each of these Chains consists of two Chains, a Request chain and a Response chain. The
Request Chain processes the request messages and Response Chain processes the response messages.
CSOAP let the user configure these Chains.

An object SOAPMessageContext representing the SOAP message goes through the Handler chains.
As you can see in Figure 21, the SOAPMessageContextImpl implements the interface
javax.xml.rpc.handler.soap.SOAPMessageContext and contains some properties of
CSOAP Engine and a SOAP Message (implementing the javax.xml.soap.SOAPMessage
interface) that can be either a request Message or a response Message.

CSOAP Architecture

18

20. Class diagram of HandlerChain

21. Class diagram of SOAPMessageContext

CSOAP Architecture

19

The server-side message path is shown in Figure 22. The cylinders represent Handlers Chains (described
above).

22. Message path on the CSOAP Engine Server.

The message arrives (in some protocol-specific manner) at a Transport Listener. In this case the Listener
is a HTTP Servlet (is the unique listener provided by CSOAP). The Listener passes the message on the
protocol-specific data into CSOAP Engine. The CSOAP engine’s first job is to package the data into a
Message object (javax.xml.soap.Message), and put the Message into a
SOAPMessageContext. The SOAPMessageContext is also loaded with various properties by the
CSOAP Engine.
Once the SOAPMessageContext object is ready, the CSOAP Engine passes it to the Global Request
Chain. Each handler of the chain is invoked with handleRequest() method in request case and
handleResponse() method in response case. After the Global request chain, the engine locates a
Service request Chain, if configured, and then invokes any Handler specified therein.
Then, the Engine forwards the SOAPMessageContext object to provider subsystem. The provider will
find all the necessary information to invoke the service such as, class name, method name, values of
parameters.
The response returned by the service is put into a SOAPMessageContext object by the CSOAP
Engine. The SOAPMessageContext object goes through the Service Response Handler Chain and the
Global Response Handler Chain, and it is finally sent by the Transport Listener to the caller Client.
The Message Path on the client side is similar to that on the server side, except for the order of scoping
that is reversed. The Service chain, if any, is called first - on the client side.

2.6. Deployment subsystem

This subsystem provides a way of deploying services into CSOAP given their description, which contains
all the information related to the service (name, implementing class, methods and parameters, handler
chains and type Mapping). CSOAP defines an XML based grammar for the service description, called
WSDD (Web Service Deployment Descriptor). The description of all the deployed services is stored in a
file named wsdd.conf. This file is read at each CSOAP server startup and it is updated when a service
is deployed or undeployed.

The following is the structure of the WSDD grammar.

CSOAP Architecture

20

<wsdd>
 <deployment>
 <!-- handler declaration -->
 <handler name=″handlerName″ type=″handlerClass″>
 <parameter name=″handlerParamName″ value=″paramValue″/>
 </handler>
 <service name=″serviceName″ scope=″Request/Application/Session″
 provider=″providerClass″>
 <requestFlow>
 <!—list of handlers chains -->
 <handler type=″handlerName″>
 <requestFlow/>
 <responseFlow>
 <!—list of handlers chains -->
 <handler type=″handlerName″>
 <responseFlow/>
 <parameter name="className" value="java class name"/>
 <operation name=″operationName″ qname=″operationXMLName″
 returnQname=″XMLName″ returnType=″XMLType″/>
 <parameter name="parameterName" type="parameterType"
 mode="IN/OUT/INOUT"></operation>
 <beanMapping qname=″XMLType″ type=″javaClass″/>
 <typeMapping qname=″XMLType″ type=″javaClass″
 serializer=″serializerFactoryClass″
 deserializer=″deserializerFactoryClass″
 encodingStyle=″encodingStyleName″/>
 </service>
 <deployment>
</wsdd>

• <service name=″serviceName″ scope=″Request/Application/Session″
 provider=″providerClass″>
This tag allows defining the name of the service and the provider class. The default provider is
RCPProvider class. The user can develop and use a new provider to invoke the deployed web services.
The user must create a Java class that implements the runService() method and specify this class in
provider attribute.

• <parameter name="className" value="java class name"/>
This tag defines the Java class that the RPCProvider must associate to the service. Any public method
on that class may be called from any SOAP Client.

• <operation name=″operationName″ qname=″operationXMLName″

 returnQname=″XMLName″ returnType=″XMLType″/>
 </operation>
All the methods of the deployed service must be defined with the operation tag. This tag allows defining
the operation name, the XML operation name, XML return value name, method’s XML return type and
all parameters of this method.

CSOAP Architecture

21

• <parameter name="parameter name" type="parameter type"

mode="IN/OUT/INOUT">
For each operation you must define all the parameters. Each parameter is defined by a tag parameter
which contains the parameter’s name, parameter’s type and parameter’s mode (IN, OUT or INOUT).

• <Handler>
Defines a handler by giving the handler name and handler class.

• <requestFlow>
Indicates the list of Handlers that must be invoked when a call to this service is received, before the
service invocation. Each handler must be defined before by <handler> tag.

• <responseFlow>
Indicates the list of Handlers that must be invoked when a call to this service is received, after service
execution and before sending the SOAP Response message to the client.

A global handlers chain (Request and Response) is defined by using the "*" as a service name. All
handlers defined in <requestFow> and <responseFlow> inside the <service name="*"> are
invoked when a deployed service is invoked.

• <beanMapping qname=”XMLType type=”javaClass” >
Defines a mapping between the specified XMLType and a javaClass.

• <typeMapping qname="XMLType" type="javaClass"
 serializer="serializerFactoryClass"
 deserializer="deserializerFactoryClass"
 encodingStyle="encoding"/>
It’s like the <beanMapping> tag, but there are three extra attributes:

• serializer, is the Java class name of the serializer factory which provides the serializer to be
used to serialize an object of the specified Java class into XML.

• deserializer, is the class name of a deserializer factory that provides the deserializer to be
used to deserialize XML into the correct Java class.

• encodingStyle, which is the used encoding.

This structure is mirrored also by a class hierarchy of factories for runtime artefacts. The following
diagram (Figure 23) shows the classes and the types of runtime artefacts they produce.

CSOAP Architecture

22

23. Class diagram of deployment subsystem

• Deployment: reads the WSDD deployment files and adds the service descriptions, the Handler
chains and the typemapping contained in the file to the memory data structures represented by
instances of deployedService, handlerRegistryImpl et
typeMappingRegistryImpl classes.

• DeployedService: contains an array of Service class instances and allows the handling of this
structure with methods addService(), getService(), removeService().

• Service: stores a service description.
• BeanMapping: stores a mapping between a Java type(type) and an XML type(qname).
• TypeMapping: this class is a subclass of beanMapping and defines some new attributes to store

the serializer, the deserializer and the encoding that are used for mapping.
• Operation: represents a service method. It contains the name of the method, the XML name of the

method, the return type, the list of parameters that is represented as an array of
parameterOperation.

• ParameterOperation: contains the information about a method parameter: attribute name, type
and mode (IN, OUT or INOUT).

• HandlerRegistryImpl: it’s a registry of handler chains that implements the interface
javax.xml.rpc.handler.handlerRegistry. The method setHandlerChain() allows
configuring a new chain and associate it to a port. The method gethandlerChain() allows
retrieving the configured chain by giving its port name. See section 2.5 for more details.

• HandlerChainImpl: it’s an implementation of the interface
javax.xml.rpc.handler.handlerChain. The method handleRequest() allow the

CSOAP Architecture

23

execution of the processing of messages SOAP Request. The method handlerResponse()
allows the execution of the processing of messages SOAP Response and the method
handlerFault() allow the execution of the processing of messages SOAP Fault. See Section 2.5
for more details.

CSOAP uses an XML parser based on SAX and compliant with JAXP (Java API for XML Processing,
see http://java.sun.com/xml/jaxp/index.jsp) to read WSDD files. As already seen, using
JAXP parsers involves implementing org.xml.sax.helpers.DefaultHandler interface (see
section 2.2)
In this case, the interface org.xml.sax.helpers.DefaultHandler is implemented by the class
csoap.deployment.SAXHandler that builds csoap.deployment.Service objects for each
service entry inside the WSDD file.
The class csoap.deployment.SAXHandler makes use of two state transition tables. In Figure 24
you can see the table that is examined when an XML start element is found and the startElement()
method of the csoap.xml.soap.SAXHandler is invoked. The state will be updated taking into
account the content of the table and the right object will be created and added to the Service object. For
example when the start of Envelope element is found, a SOAPEnvelope object is created and all its
attributes and elements are added. End element state table in Figure 25 is examined at the end of each
XML element, when the endElement() method of the csoap.xml.soap.SAXHandler is
invoked.

Element

Stat
deploym

ent
Handler Paramet

er
Service Request

Flow
Respons
eFlow

BeanMa
pping

TypeMa
pping

Wsdd operatio
n

0 1 0
1 2 3
2 4
3 5 6 7 8 9 15
4
5
6 10
7 12
8
9

10
11 5 7 8 9
12
13 8 9 15
14
15 16
16

24. WSDD State transition table (start element)

CSOAP Architecture

24

Element
Stat

deploym
ent

Handler Paramet
er

Service Request
Flow

Respons
eFlow

BeanMa
pping

TypeMa
pping

Wsdd operatio
n

0
1 2
2 1 14
3
4 2
5 13
6
7
8 13
9 13

10
11 14
12
13 14
14 0
15 3
16 15

25. WSDD State transition table (start element)

2.7. Global Managing subsystem

The Global Managing subsystem contains all server-side classes described below, and takes care of their
coordination. The Global Managing subsystem receives input messages from the CSOAPServlet
servlet. The following class diagram (Figure 26) shows the server-side classes and their relation-ships into
Global Managing.

26. Class diagram of Global Managing subsystem

CSOAP Architecture

25

Startup

The following sequence diagram (Figure 27) shows the CSOAP Server startup phase. The CSOAP Server
initialization consists in the creation of a static instance of class GlobalMangerServer that creates
one instance of deployedServices, one of TypeMappingRegistryImpl, and one of
HandlerRegistryImpl. It also creates an instance of the deployment class that parses the wsdd
file (wsdd.conf), by using csoap.deployment.SAXHandler class (described in Section 2.6),
and adds all the service objects returned by SAXHandler to deployedServices, registers the
handler chains and the type mappings in HandlerRegistryImpl and
TypeMappingRegistryImpl.

27. sequence diagram of CSOAP Server startup

Executing a Service Call on the Server Side
The sequence diagram in Figure 28 shows how CSOAP handles the reception of a SOAP request
message. The CSOAPServlet waits for SOAP messages and when a SOAP message is received from a
Client, the CSOAPServlet passes it to the GlobalManagerServer which creates a new instance of
callWebService and gives it the received SOAP message as an inputStream object.
The callWebService uses the Model Message subsystem to model the SOAP message into a standard
SOAPMessage object by using an event-based XML Parser, and it puts the SOAPMessage object into a
SOAPMessageContext. This object is then processed by handlers (see Section 2.5 for more details)
and then it is deserialized and passed to a RPCProvider instance (see Provider subsystem in section
 2.4) which, use the serialized information contained in SOAP message to invoke the method of the target
service and returns the result of the method invocation. The callWebService serializes this result into
a standard SOAPMessage object (called Response SOAP Message) by using the typeMapping given
by TypeMappingRegistry (see Section 2.3 for more detail) and puts the SOAPMessage into a
SOAPMessageContext, which, after having been processed by handlers, is sent to the caller Client
over HTTP.

CSOAP Architecture

26

28. Sequence diagram of a service call on CSOAP Server side

2.8. CSOAP Client subsystem

In Figure 29 you can see a class diagram of the CSOAP Client subsystem.

As previously said, CSOAP Client has the role to make easier the development of client applications and
to invoke web services. The main class in CSOAP Client is CallImpl class that implements interface
javax.xml.rpc.Call and provides the methods required to configure a RPC call (method name,
service address) and the invoke() that executes the service call.
CallImpl class contains an instance of class SOAPMessage that is used to model request and response
messages. It also makes use of class SOAPConnection that sends SOAP request messages and receives
SOAP response messages.

The developer can use the class CallImpl inside his application code or use the service Stub generated
by CSOAP Generator (see Section 3) that provides the same interface as Service and that hides class
CallImpl utilisation and configuration details.

CSOAP Architecture

27

29. CSOAP Client class diagram

The sequence diagram in Figure 30 shows the execution of a service call on CSOAP client side.

To invoke a Web Service deployed in CSOAP Server the user Client Application creates a new instance
of CallImpl which provides all necessary methods to define the service call. The data field to be
initialized for a call are: the operation qualified name and its return type (if any), and the method
parameter names and types.
When these field have been initialized, the invoke method can be called with the parameter values and the
service call will be made. This method takes care of the creation of a new instance of standard
SOAPMessage that is serialized taking into account all the message related information (operation
name, parameters values, parameters types…) by using the TypeMapping given by the
TypeMappingRegistry (see Section 2.3 for more detail).
The SOAPMessage is put into a SOAPMessageContext and goes through the handler chain. After
handler processing (see Section 2.5 for more detail), the Call creates a new instance of
SOAPConnection which provides a Call method that sends the given SOAPMessage to the given
endPoint URL. The SOAPConnection creates a new instance of HTTPConnection with the
given endpoint URL and invokes the writeTo method giving in input the HTTPConnection
outputStream. The content of the SOAPMessage is written into the outputStream and sent to
the endpoint URL.
When the remote server replies to the SOAP message, the received SOAP message result is put into
SOAPMessage and SOAPMessageContext and goes through the handlers. Finally the CallImpl

CSOAP Architecture

28

deserializes the response SOAPMessage and returns the result of the invoke method to the Client
Application as a Java object.

30. Sequence diagram of a service call on CSOAP Client side

3. CSOAP Generator

3.1. Introduction

The development of a Web service is a process that requires writing large pieces of code that follow in
many cases the same patterns. This is more evident in the case of the development of the software
components that are necessary for Web Service remote invocation. You have to write the stub and all the
classes related to the data serialization process. For these reasons, we have developed a code generator

CSOAP Architecture

29

that automatically generates a large part of client-side Java files that are involved in these mechanisms
and the WSDD deployment file given its well-formed WSDL file. These files are generated according to
CSOAP.

More specifically, with respect to Web services invocation, our component creates all the files that are
necessary to invoke a service that is described by a standard WSDL document; in other words, it
generates a stub class, an interface class, the related user-defined types (including holders for data
serialization) and exceptions classes.

3.2. CSOAP Generator Architecture

The class diagram in Figure 31 shows the CSOAP Generator classes.

31. Class diagram of CSOAP Generator

The class DeploymentGenerator is responsible for the generation of wsdd files.
generateWSDD() method allows the generation of a WSDD file from a WSDL file. The parameters
for this method are:

• fileName: is the name of the WSDL file.
• side: indicate a server or client side (s for server side and c for client side).
• verbose: boolean value, if is true the debug information is displayed.
• dirName: is the name of the directory where the files are generated. A directory tree is

generated according to the Java standard rules for classes and packages retrieving.
• implClass: is the name of a class that implements the service.
• scope: the value of service scoping (Request, Application or Session).

The class Generator extends the class DeploymentGenerator and provides the generation of
classes for all the data types described in WSDL file and a service stub.

CSOAP Architecture

30

generate() method requires the same parameters as generateWSDD() method of
DeploymentGenerator class.

The following table shows the files generated by the generate() method of CSOAP Generator
class.
WSDL clause Java class(es) generated
For each entry in the type section A java class
 A holder if this type is used as an inout/out parameter
For each portType A java interface
For each binding A stub class
For each service A service interface
 A service implementation
 One deploy.wsdd file with operation meta data
 One undeploy.wsdd file

3.3. WSDL elements and Java generated classes

Types
The names of the Java class generated from a WSDL file will be based on the type names definedin the
WSDL file, for example, given the following WSDL:

<xsd:complexType name="hotelDescription">
 <xsd:sequence>
 <xsd:element name="hotelId" type="xsd:int"/>
 <xsd:element name="hotelName" type="xsd:string"/>
 <xsd:element name="hotelAddess" type="xsd:string"/>
 <xsd:element name="hotelPrice" type="xsd:long"/>
 </xsd:sequence>
</xsd:complexType>

CSOAP Generator will generate:

public class Phone implements java.io.Serializable {

int hotelID;
String hotelName;
String hotelAddress;
String hotelPrice;

 public hotelDescription() {...}
 public int getHotelId() {...}
 public void setHotelId(int id) {...}
 public java.lang.String getHotelName() {...}
 public void setHotelName(java.lang.String name) {...}
 public java.lang.String getHotelAddess() {...}
 public void setHotelPrice(long price) {...}
 public long getHotelPrice() {...}
 public void setHotelAddress(java.lang.String address) {...}
 public boolean equals(Object obj) {...}
 public csoap.wsdl.typeDesc getTypeDesc() {...}
}

CSOAP Architecture

31

The generated class contains all the attributes defined in WSDL element <complexType> and the
associated setter and getter methods.
getTypeDesc() method returns a csoap.wsdl.typeDesc object containing the generated class
description. Class diagram in Figure 32 shows the class typeDesc.
That contains the type of the generated class (javaClass), the XML type associated to the Java class
and the attribute list. Each attribute is represented by an elementDesc element of the fields array.
elementDesc class contains all the information describing a class attribute (field name, XML name,
XML type, minimum occurrences, maximum occurrences).
typeDesc class is used by CSOAP to serivalize and deserialize object instances and complex classes.

32. Class diagram of TypeDesc

Arrays declaration

According to WSDL specification, arrays must be declared by restriction. In other words, if you have to
declare an array of Java String, you define it as an element belonging to a subset (a restriction) of the set
of standard SOAP arrays. More formally, an array is derived from a soapenc:array by restriction
using the wsdl:arrayType attribute, with the soapenc prefix associated to the namespace URI:
http://schemas.xmlsoap.org/soap/encoding and the wsdl prefix to
http://schemas.xmlsoap.org/wsdl.

The following example shows the definition of an array of String derived from the soapenc:array by
restriction:

 <xsd:complexType name="ArrayOfHotelDescription">
 <xsd:complexContent>
 <xsd:restriction base="soapenc:Array">
 <xsd:sequence>
 <xsd:element name="hotelDescription" minOccurs="0"
 maxOccurs="unbounded" type="tns:HotelDescription"/>
 </xsd:sequence>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>

CSOAP Architecture

32

It is worth noting that the name of the complex type must start with ArrayOf; this limitation derives
from the implementation of the WSIF library that we have used to manipulate the XML Schema
declaration inside the WSDL file.

Holders

This type may be used as an inout or out parameter. Java does not have the concept of inout/out
parameters. In order to achieve this behavior, JAX-RPC specifies the use of holder classes. A holder class
is simply a class that contains an instance of its type. For example, the holder for the
hotelDescription class would be

package csoap.examples.hotelService.holders;
public final class HotelDescriptionHolder implements
javax.xml.rpc.holders.Holder {
 public csoap.examples.hotelService.HotelDescription value;

 public HotelDescription Holder()
 {
 }

 public HotelDescription
Holder(csoap.examples.hotelService.HotelDescription value) {
 this.value = value;
 }
}
A holder class is only generated for a type if that type is used as an inout or out parameter. Note that the
holder class has the suffix "Holder" appended to the class name, and it is generated in a sub-package with
the "holders".
The holder classes for the primitive types can be found in javax.xml.rpc.holders.

PortTypes

The Service Definition Interface (SDI) is the interface that's derived from a WSDL's portType. This is
the interface you use to access the operations on the service. For example, given the WSDL

<message name="listHotelsRequest">
 <part name="region" type="xsd:string"/>
</message>

<message name="listHotelsResponse">
<part name="hotels" type="tns:ArrayOfHotelDescription"/>
</message>

<portType name="HotelInterface">
 <operation name="listHotles">
 <input message="tns:listHotelsRequest"/>
 <output message="tns:listHotelResponse"/>
 </operation>
</portType>

CSOAP Generator will generate

CSOAP Architecture

33

public interface HotelInterface extends java.rmi.Remote {
 public csoap.examples.hotelService.HotelDescription[]
listHotels(String region) throws
 java.rmi.RemoteException;
}

A note about the name of the SDI. The name of the SDI is typically the name of the portType.
However, to construct the SDI, CSOAP Generator needs information from both the portType and the
binding. (This is unfortunate and is a topic of discussion for WSDL version 2.)
JAX-RPC says: "The name of the Java interface is mapped from the name attribute of the
wsdl:portType element. If the mapping to a service definition interface uses elements of the
wsdl:binding, then the name of the service definition interface is mapped from the name of the
wsdl:binding element."
Note the name of the spec. It contains the string "RPC". So this spec, and CSOAP Generator, assumes
that the interface generated from the portType is an RPC interface.

Bindings

A Stub class implements the SDI. Its name is the binding name with the suffix "Stub". It contains the
code which turns the method invocations into SOAP calls using the CSOAP Service and Call objects. The
Stub letting you call the Service exactly as if it were a local object. In other words, you don't need to deal
with the endpoint URL, namespace, or parameter arrays which are involved in dynamic invocation via the
Service and Call objects. The Stub hides all that work for you.
Given the following WSDL:

<binding name="HotelSOAPBinding" type="tns:HotelInterface">
 ...
</binding>

CSOAP Generator will generate:

public class HotelSOAPBindingStub implements
HotelService.HotelInterface {
{
 public HotelSOAPBindingStub(URL endpointURL,
 javax.xml.rpc.Service service)
 {...}

public HotelService.Hotel[] listHotels(java.lang.String city) throws
java.rmi.RemoteException,HotelService.HotelException {
// implementation of Call listHotels
// return the result of invokation
}
}

Exceptions

You should pay particular attention in declaring exceptions; in fact, you must follow the standard defined
in JAX-RPC specification. Now we focussed in particular on service specific exceptions. To sum up, a

CSOAP Architecture

34

fault element, which is an optional element inside an operation block, specifies the format of any error
message related to the remote invocation of a particular service method. It is worth noting that according
to the WSDL specification, a fault message must have a single part.

The name of the Java exception is mapped from the name attribute of the message. For reference, you can
look at the following example:

<message name="HotelException">
 <part name="errorMessage" type="xsd:string"/>
</message>
...
<portType name="HotelInterface">
 ...
 <operation name="listHotels">
 <input>...</input>
 <output>...</output>
 <fault name="HotelException" message="HotelException"/>
 </operation>
 ...
</portType>

The following is a fragment of the Java service endpoint interface derived from the above WSDL port
type definition:

public interface HotelInterface extend java.rmi.Remote {
 public csoap.examples.hotelService.HotelDescription(String region)
 throws java.rmi.RemoteException,
 HotelService.HotelException;
}

In this example you can note that the fault element is mapped to the
com.HotelService.HotelException exception that extends the java.lang.Exception
class.

In this case the generator produces the following code for the definition of the user-defined exception
class:

public class HotelException extends java.lang.Exception {
 public HotelException(java.lang.String errorMessage) {...}
 public getErrorMessage(){...}
}

It is worth observing that the single message part in the fault maps to a field with a getter method in the
mapped exception. Moreover, it is declared as input parameter in the exception constructor.

CSOAP Architecture

35

4. Appendix

Sun’s JAXM Specification

public interface SOAPElement
extends Node, Element
An object representing an element of a SOAP message that is allowed but not specifically prescribed by a
SOAP specification. This interface serves as the base interface for those objects that are specifically
prescribed by a SOAP specification.
Methods in this interface that are required to return SAAJ specific objects may "silently" replace nodes in
the tree as required to successfully return objects of the correct type. See getChildElements() and
javax.xml.soap for details.

public interface SOAPEnvelope
extends SOAPElement
The container for the SOAPHeader and SOAPBody portions of a SOAPPart object. By default, a
SOAPMessage object is created with a SOAPPart object that has a SOAPEnvelope object. The
SOAPEnvelope object by default has an empty SOAPBody object and an empty SOAPHeader object.
The SOAPBody object is required, and the SOAPHeader object, though optional, is used in the majority
of cases. If the SOAPHeader object is not needed, it can be deleted, which is shown later.
A client can access the SOAPHeader and SOAPBody objects by calling the methods
SOAPEnvelope.getHeader and SOAPEnvelope.getBody. The following lines of code use
these two methods after starting with the SOAPMessage object message to get the SOAPPart object
sp, which is then used to get the SOAPEnvelope object se.
 SOAPPart sp = message.getSOAPPart();
 SOAPEnvelope se = sp.getEnvelope();
 SOAPHeader sh = se.getHeader();
 SOAPBody sb = se.getBody();

It is possible to change the body or header of a SOAPEnvelope object by retrieving the current one,
deleting it, and then adding a new body or header. The javax.xml.soap.Node method
deleteNode deletes the XML element (node) on which it is called. For example, the following line of
code deletes the SOAPBody object that is retrieved by the method getBody.
 se.getBody().detachNode();

To create a SOAPHeader object to replace the one that was removed, a client uses the method
SOAPEnvelope.addHeader, which creates a new header and adds it to the SOAPEnvelope object.
Similarly, the method addBody creates a new SOAPBody object and adds it to the SOAPEnvelope
object. The following code fragment retrieves the current header, removes it, and adds a new one. Then it
retrieves the current body, removes it, and adds a new one.
 SOAPPart sp = message.getSOAPPart();
 SOAPEnvelope se = sp.getEnvelope();
 se.getHeader().detachNode();
 SOAPHeader sh = se.addHeader();
 se.getBody().detachNode();
 SOAPBody sb = se.addBody();

It is an error to add a SOAPBody or SOAPHeader object if one already exists.
The SOAPEnvelope interface provides three methods for creating Name objects. One method creates
Name objects with a local name, a namespace prefix, and a namesapce URI. The second method creates

CSOAP Architecture

36

Name objects with a local name and a namespace prefix, and the third creates Name objects with just a
local name. The following line of code, in which se is a SOAPEnvelope object, creates a new Name
object with all three.
 Name name = se.createName("GetLastTradePrice", "WOMBAT",
 "http://www.wombat.org/trader");

public interface SOAPHeader
extends SOAPElement
A representation of the SOAP header element. A SOAP header element consists of XML data that affects
the way the application-specific content is processed by the message provider. For example, transaction
semantics, authentication information, and so on, can be specified as the content of a SOAPHeader
object.
A SOAPEnvelope object contains an empty SOAPHeader object by default. If the SOAPHeader
object, which is optional, is not needed, it can be retrieved and deleted with the following line of code.
The variable se is a SOAPEnvelope object.
 se.getHeader().detachNode();

A SOAPHeader object is created with the SOAPEnvelope method addHeader. This method, which
creates a new header and adds it to the envelope, may be called only after the existing header has been
removed.
 se.getHeader().detachNode();
 SOAPHeader sh = se.addHeader();

A SOAPHeader object can have only SOAPHeaderElement objects as its immediate children. The
method addHeaderElement creates a new HeaderElement object and adds it to the
SOAPHeader object. In the following line of code, the argument to the method addHeaderElement
is a Name object that is the name for the new HeaderElement object.
 SOAPHeaderElement shElement = sh.addHeaderElement(name);

public interface SOAPHeaderElement
extends SOAPElement
An object representing the contents in the SOAP header part of the SOAP envelope. The immediate
children of a SOAPHeader object can be represented only as SOAPHeaderElement objects.
A SOAPHeaderElement object can have other SOAPElement objects as its children.

public interface SOAPFault
extends SOAPBodyElement
An element in the SOAPBody object that contains error and/or status information. This information may
relate to errors in the SOAPMessage object or to problems that are not related to the content in the
message itself. Problems not related to the message itself are generally errors in processing, such as the
inability to communicate with an upstream server.
The SOAPFault interface provides methods for retrieving the information contained in a SOAPFault
object and for setting the fault code, the fault actor, and a string describing the fault. A fault code is one of
the codes defined in the SOAP 1.1 specification that describe the fault. An actor is an intermediate
recipient to whom a message was routed. The message path may include one or more actors, or, if no
actors are specified, the message goes only to the default actor, which is the final intended recipient.

CSOAP Architecture

37

public interface SOAPBody
extends SOAPElement
An object that represents the contents of the SOAP body element in a SOAP message. A SOAP body
element consists of XML data that affects the way the application-specific content is processed.
A SOAPBody object contains SOAPBodyElement objects, which have the content for the SOAP body.
A SOAPFault object, which carries status and/or error information, is an example of a
SOAPBodyElement object.

public interface Detail
extends SOAPFaultElement
A container for DetailEntry objects. DetailEntry objects give detailed error information that is
application-specific and related to the SOAPBody object that contains it.
A Detail object, which is part of a SOAPFault object, can be retrieved using the method
SOAPFault.getDetail. The Detail interface provides two methods. One creates a new
DetailEntry object and also automatically adds it to the Detail object. The second method gets a
list of the DetailEntry objects contained in a Detail object.
The following code fragment, in which sf is a SOAPFault object, gets its Detail object (d), adds a
new DetailEntry object to d, and then gets a list of all the DetailEntry objects in d. The code also
creates a Name object to pass to the method addDetailEntry. The variable se, used to create the
Name object, is a SOAPEnvelope object.
 Detail d = sf.getDetail();
 Name name = se.createName("GetLastTradePrice", "WOMBAT",
 "http://www.wombat.org/trader");
 d.addDetailEntry(name);
 Iterator it = d.getDetailEntries();

public interface DetailEntry
extends SOAPElement
The content for a Detail object, giving details for a SOAPFault object. A DetailEntry object,
which carries information about errors related to the SOAPBody object that contains it, is application-
specific.

public abstract class SOAPMessage
extends Object
The root class for all SOAP messages. As transmitted on the "wire", a SOAP message is an XML
document or a MIME message whose first body part is an XML/SOAP document.
A SOAPMessage object consists of a SOAP part and optionally one or more attachment parts. The
SOAP part for a SOAPMessage object is a SOAPPart object, which contains information used for
message routing and identification, and which can contain application-specific content. All data in the
SOAP Part of a message must be in XML format.
A new SOAPMessage object contains the following by default:

• A SOAPPart object
• A SOAPEnvelope object
• A SOAPBody object
• A SOAPHeader object

CSOAP Architecture

38

The SOAP part of a message can be retrieved by calling the method
SOAPMessage.getSOAPPart(). The SOAPEnvelope object is retrieved from the SOAPPart
object, and the SOAPEnvelope object is used to retrieve the SOAPBody and SOAPHeader objects.
 SOAPPart sp = message.getSOAPPart();
 SOAPEnvelope se = sp.getEnvelope();
 SOAPBody sb = se.getBody();
 SOAPHeader sh = se.getHeader();

In addition to the mandatory SOAPPart object, a SOAPMessage object may contain zero or more
AttachmentPart objects, each of which contains application-specific data. The SOAPMessage
interface provides methods for creating AttachmentPart objects and also for adding them to a
SOAPMessage object. A party that has received a SOAPMessage object can examine its contents by
retrieving individual attachment parts.
Unlike the rest of a SOAP message, an attachment is not required to be in XML format and can therefore
be anything from simple text to an image file. Consequently, any message content that is not in XML
format must be in an AttachmentPart object.
A MessageFactory object may create SOAPMessage objects with behavior that is specialized to a
particular implementation or application of SAAJ. For instance, a MessageFactory object may
produce SOAPMessage objects that conform to a particular Profile such as ebXML. In this case a
MessageFactory object might produce SOAPMessage objects that are initialized with ebXML
headers.
In order to ensure backward source compatibility, methods that are added to this class after version 1.1 of
the SAAJ specification are all concrete instead of abstract and they all have default implementations.
Unless otherwise noted in the JavaDocs for those methods the default implementations simply throw an
UnsupportedOperationException and the SAAJ implementation code must override them with
methods that provide the specified behavior. Legacy client code does not have this restriction, however,
so long as there is no claim made that it conforms to some later version of the specification than it was
originally written for. A legacy class that extends the SOAPMessage class can be compiled and/or run
against succeeding versions of the SAAJ API without modification. If such a class was correctly
implemented then it will continue to behave correctly relative the the version of the specification against
which it was written.

Sun’s JAX-RPC Specification

public interface Deserializer
extends Serializable
The javax.xml.rpc.encoding.Deserializer interface defines a base interface for
deserializers. A Deserializer converts an XML representation to a Java object using a specific XML
processing mechanism and based on the specified type mapping and encoding style.

public interface DeserializerFactory
extends Serializable
The javax.xml.rpc.encoding.DeserializerFactory is a factory of deserializers. A
DeserializerFactory is registered with a TypeMapping instance as part of the
TypeMappingRegistry.

public interface Serializer
extends Serializable

CSOAP Architecture

39

The javax.xml.rpc.encoding.Serializer interface defines the base interface for serializers. A Serializer
converts a Java object to an XML representation using a specific XML processing mechanism and based
on the specified type mapping and encoding style.

public interface SerializerFactory
extends Serializable
The javax.xml.rpc.encoding.SerializerFactory is a factory of the serializers. A
SerializerFactory is registered with a TypeMapping object as part of the
TypeMappingRegistry.

public interface TypeMapping
The javax.xml.rpc.encoding.TypeMapping is the base interface for the representation of a
type mapping. A TypeMapping implementation class may support one or more encoding styles.
For its supported encoding styles, a TypeMapping instance maintains a set of tuples of the type {Java
type, SerializerFactory, DeserializerFactory, XML type}.

public interface TypeMappingRegistry
extends Serializable
The interface javax.xml.rpc.encoding.TypeMappingRegistry defines a registry of
TypeMapping instances for various encoding styles.

public interface Call
The javax.xml.rpc.Call interface provides support for the dynamic invocation of a service
endpoint. The javax.xml.rpc.Service interface acts as a factory for the creation of Call
instances.
Once a Call instance is created, various setter and getter methods may be used to configure this Call
instance

public interface SOAPMessageContext
extends MessageContext
The interface javax.xml.rpc.soap.SOAPMessageContext provides access to the SOAP
message for either RPC request or response. The javax.xml.soap.SOAPMessage specifies the
standard Java API for the representation of a SOAP 1.1 message with attachments.

public interface Handler
The javax.xml.rpc.handler.Handler interface is required to be implemented by a SOAP
message handler. The handleRequest, handleResponse and handleFault methods for a
SOAP message handler get access to the SOAPMessage from the SOAPMessageContext. The
implementation of these methods can modify the SOAPMessage including the headers and body
elements.

public interface HandlerChain
extends List

CSOAP Architecture

40

The javax.xml.rpc.handler.HandlerChain represents a list of handlers. All elements in the
HandlerChain are of the type javax.xml.rpc.handler.Handler.
An implementation class for the HandlerChain interface abstracts the policy and mechanism for the
invocation of the registered handlers.

public interface HandlerRegistry
extends Serializable
The javax.xml.rpc.handler.HandlerRegistry provides support for the programmatic
configuration of handlers in a HandlerRegistry.
A handler chain is registered per service endpoint, as indicated by the qualified name of a port. The
getHandlerChain returns the handler chain (as a java.util.List) for the specified service
endpoint. The returned handler chain is configured using the java.util.List interface. Each element
in this list is required to be of the Java type javax.xml.rpc.handler.HandlerInfo.

public class HandlerInfo
extends Object
implements Serializable
The javax.xml.rpc.handler.HandlerInfo represents information about a handler in the
HandlerChain. A HandlerInfo Instance is passed in the Handler.init method to initialize a Handler
instance.

