
CSoap User Guide

 1

CSoap User Guide
Rafik CHIBOUT, Mirco MUSOLESI.

Version 1.0

Feedback: rafik.chibout@inria.fr

Contents

1. Introduction .. 2

1.1. Simple Object Access Protocol (SOAP) .. 2

1.2. Web Services Description Language (WSDL)... 2

1.3. CSoap.. 3

1.4. What's in CSoap release?... 4

2. Installing CSoap ... 4

2.1. Starting and verifying the basic setup.. 5

3. Getting started .. 6

3.1. Simple deployment of Web Services... 6

3.2. Web Services undeployment... 7

3.3. Simple CSoap Client... 7

4. The CSoap Web Service Deployment Descriptor (WSDD)... 8

4.1. Introducing WSDD... 8

4.2. WSDD general schema .. 8

4.3. Mapping between XML and Java Data in CSoap ... 10

4.4. Advanced WSDD - Specifying more options ... 12

5. Advanced CSoap Client ... 17

6. CSoap Generator -Using WSDL with CSoap ... 19

6.1. Introducing CSoap Generator ... 19

6.2. Using CSoap Generator... 20

6.3. Generated files ... 20

6.4. WSDL elements and java generated classes.. 20

6.5. CSoap Client With generated Stub .. 24

CSoap User Guide

 2

1. Introduction
Before introducing CSoap, we describe the SOAP protocol and the WSDL language, because these technologies

represent the basic knowledge required to understand CSoap and to use it.

1.1. Simple Object Access Protocol (SOAP)

It is important for application development to allow Internet communication between programs. Today's

applications communicate using Remote Procedure Calls (RPC) between objects like DCOM and CORBA, but

HTTP was not designed for this. RPC represents a compatibility and security problem; firewalls and proxy servers

will normally block this kind of traffic. A better way to communicate between applications is over HTTP, because

HTTP is supported by all Internet browsers and servers. SOAP was created to accomplish this. SOAP provides a

way to communicate between applications running on different operating systems, with different technologies and

programming languages.

SOAP is an XML-based communication protocol and encoding format. Originally conceived by Microsoft and

Userland software, it has evolved through several generations and the current specification of W3C, SOAP 1.2, is

fast growing in popularity and usage. The W3C's XML Protocol working group is in the process of turning SOAP

into a true open standard. SOAP is widely viewed as the backbone to a new generation of cross-platform cross-

language distributed computing applications, termed Web Services.

SOAP usually exchanges messages over HTTP: the client posts a SOAP request, and receives either an HTTP

success code and a SOAP response or an HTTP error code.

A SOAP message is an ordinary XML document containing the following elements:

• A required Envelope element that identifies the XML document as a SOAP message. It contains:

• An optional Header element that contains header information

• A required Body element that contains call and response information and an optional Fault element that

provides information about errors that occurred while processing the message

All the elements above are declared in the default namespace for the SOAP envelope

http://www.w3.org/2001/12/soap-envelope and the default namespace for SOAP encoding and data

types is http://www.w3.org/2001/12/soap-encoding.

Look at this SOAP Message skeleton:

1.2. Web Services Description Language (WSDL)

WSDL is an XML format used to describe network services as a set of endpoints operating on messages containing

either document-oriented or procedure-oriented information. The operations and messages are described abstractly,

and then bound to a concrete network protocol and message format to define an endpoint. Related concrete

<?xml version="1.0"?>

<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <soap:Header>

 ...

 ...

 </soap:Header>

 <soap:Body>

 ...

 ...

 <soap:Fault>

 ...

 </soap:Fault>

 </soap:Body>

</soap:Envelope>

http://www.w3.org/2001/12/soap-encoding
http://www.w3.org/2001/12/soap-envelope

CSoap User Guide

 3

endpoints are combined into abstract endpoints (services). WSDL is extensible to allow description of endpoints and

their messages regardless of what message formats or network protocols are used to communicate, however, the

only bindings described in this document describe how to use WSDL in conjunction with SOAP 1.1, HTTP

GET/POST, and MIME.

As communications protocols and message formats are standardized in the web community, it becomes increasingly

possible and important to be able to describe the communications in some structured way. WSDL addresses this

need by defining an XML grammar for describing network services as collections of communication endpoints

capable of exchanging messages. WSDL service definitions provide documentation for distributed systems and

serve as a recipe for automating the details involved in applications communication.

A WSDL document defines services as collections of network endpoints, or ports. In WSDL, the abstract definition

of endpoints and messages is separated from their concrete network deployment or data format bindings. This allows

the reuse of abstract definitions: messages, which are abstract descriptions of the data being exchanged, and port

types which are abstract collections of operations. The concrete protocol and data format specification for a

particular port type constitutes a reusable binding. A port is defined by associating a network address with a

reusable binding, and a collection of ports define a service. Hence, a WSDL document uses the following elements

in the definition of network services:

Types: a container for data type definitions using some type system (such as XSD).

Message: an abstract, typed definition of the data being communicated.

Operation: an abstract description of an action supported by the service.

Port Type: an abstract set of operations supported by one or more endpoints.

Binding: a concrete protocol and data format specification for a particular port type.

Port: a single endpoint defined as a combination of a binding and a network address.

Service: a collection of related endpoints.

These elements are described in detail at http://www.w3.org/TR/wsdl.

1.3. CSoap

CSoap is essentially a SOAP engine for resource-constrained devices such as PDA (Personal Digital Assistant),

which, is able to deploy Web Services and to manage RPCs (Remote Procedure Call) from SOAP clients and

dispatch them to services. CSoap is also a framework for developing Web Services and the clients of them. CSoap

implementation follows the Sun’s JAX-RPC Specification, referred as the JSR-101 specification, which gives a

standard for SOAP-based RPC to support the development of SOAP-based interoperable and portable Web services

(see http://java.sun.com/xml/jaxrpc/index.jsp for more detail). The current version of CSoap is

an open source software written in Java language, and it may be running under Java VM or CVM (Virtual Machine

for limited devices).

CSoap provides the following key features:

• Speed. CSoap uses SAX (event-based) XML parser to achieve a greater speed.

• Flexibility. The CSoap architecture gives the developer complete freedom to insert extensions into the

engine for custom header processing, add some processing before/after service’s running.

• Interoperability/Portability/Stability. CSoap follows Sun's JAXRPC (Java API for XMLbased RPC)

specification that gives to CSoap interoperability, portability and stability.

• Small footprint. The memory footprint of CSoap implementation is of 90Kb that let CSoap run on

resource-constrained devices, such as PDA.

• Transport independent. The core of the engine is completely transport-independent. The current version

of CSoap is used only via HTTP transport but it’s possible to use CSoap into other transport-protocols,

such as SMTP, FTP….

• WSDL support. CSoap uses the WSDL documents to automatically generate the client stubs to access

remote services and the necessary files to deploy services on CSoap Server.

To use CSoap you need the following knowledge:

• Core Java data types, classes and programming concepts.

• What threads are, race conditions, thread safety and synchronization.

http://www.w3.org/TR/wsdl

CSoap User Guide

 4

• What a classloader is, what hierarchical classloaders are, and the common causes of a

"ClassNotFoundException".

• How to diagnose trouble from exception traces, what a NullPointerException (NPE) and other common

exceptions are, and how to fix them.

• What a web application is, what a servlet is, where classes, libraries and data go in a web application.

• How to start your application server and deploy a web application on it.

• What a network is, the core concepts of the IP protocol suite and the sockets API. Specifically, what is TCP/IP.

• What HTTP is. The core protocol and error codes and HTTP headers.

• What XML is. Not necessarily how to parse it or anything, just what constitutes well-formed and valid XML.

1.4. What's in CSoap release?

This release includes the following features:

• Support of several Java types and their corresponding XML types: all Java primitive types,

Base64Binary type, User-defined classes, Array of primitive Java type or of user-defined classes.

• Generator tool for building Java Stub and service’s deployment files from WSDL documents.

• Support for session-oriented services, via HTTP cookies.

• HTTP servlet-based transport, which contains a CSoap Server instance and that can be plugged into servlet

engines such as Jetty, Tomcat…

• Complete samples for getting start with CSoap.

2. Installing CSoap

This section describes how to install CSoap. CSoap have to be plugged in a Servlet Container. CSoap release is

provided with Jetty Servlet Container, but it can be installed under others Servlet Containers that implement Servlet

API version 2.2 or greater.

You find the latest CSoap release for Windows and Linux at http://www-

rocq.inria.fr/arles/download/ozone/csoap-1.0.zip.

After having uncompressed the downloaded file, you will have this directories structure:

� bin: contains all CSoap scripts to start/stop/deploy… for Linux and Windows.

� lib: in this directory you will find csoap.jar and all JAR file libraries used by CSoap.

� public: is the public web directory, used by Jetty Server.

http://www-rocq.inria.fr/arles/download/ozone/csoap-1.0.zip
http://www-rocq.inria.fr/arles/download/ozone/csoap-1.0.zip

CSoap User Guide

 5

� csoap: this directory is CSoap context, that will contain the classes of the deployed services (see the next

Section for more detail).

� configuration/wsdd.conf: this file contains the deployed services descriptions –WSDD (you will see

more detail in WSDD Section).

� csoap/samples: this directory contains the java source and wsdd files of some services that you can deploy

and see them in action to test CSoap installation.

� doc: contains this document and CSoap Architecture document.

- CSoap Context

When you want to deploy a Web Service on CSoap, you have to copy the classes of the service to the

csoap/classes directory. If your service classes are already packaged into JAR files, you can copy it into the

csoap/lib directory and add it to the CLASSPATH variable. Also add any third party libraries that your service

depends on into the same directories.

Before running CSoap you have to create an environment variable called CSOAP_HOME, which refers to the

directory where CSoap is installed.

2.1. Starting and verifying the basic setup

To start CSoap Server use bin/csoap.sh (bin/csoap.bat) script. To stop CSoap use

bin/stopcsoap.sh (bin/stopcsoap.bat) .

By default, Jetty server is configured to run on port 8080. You can change the port in csoap.sh (csoap.bat)

To verify that Jetty and CSoap are well-installed, look at the following addresses : http://localhost:8080/

 http://localhost:8080/csoap/firsttest. You will see the following Web page:

http://localhost:8080/csoap/firsttest
http://localhost:8080/

CSoap User Guide

 6

3. Getting started
We consider as an example the Echo web service. This service provides an echoString method that

receives an input string and returns the same string. The following is the Java code of the Echo service:

3.1. Simple deployment of Web Services

To deploy the Echo service, the CSoap Server requires the definition of a deployment document referenced as

WSDD (Web Service Deployment Descriptor). For more detail about WSDD see Section 4.

The following is the basic WSDD for Echo service:

You'll find this file in csoap/samples/EchoService/deployEcho.wsdd

• <service name="Echo" provider="java:RPC">: define the name of the service. This name

will be used from client to invoke the service.

• <parameter name="className" value="EchoService.EchoImpl"/>: define the service

implementing class.

• <operation name="echoString" qname="operNS:echoString"…>: defines the service

method echoString.

• <operation….returnType="xsd:string ….>: defines the return type of the echoString

method.

• <parameter name="str" type="tns:string" … mode="IN"/>: the parameter

name="param" defines the name of the echoString’s parameter, type="xsd:string" defines

the xml type of this parameter and finally mode="IN" defines the mode of parameter (in this case is
IN).

To deploy the Echo service on the CSoap Server you can use the bin/deploy.sh (bin/deploy.bat) tool.

This tool sends the service description file to CSoap Server. See this example:

Package EchoService;

Public class EchoImpl

{

 String echoString(String str)

 {

 return str;

 }

}

$bin/deploy.sh samples/EchoService/deployEcho.wsdd

<wsdd>

 <deployment xmlns="http://xml.csoap.org/csoap/wsdd/"

 xmlns:java="http://xml.csoap.org/csoap/wsdd/providers/java">

 <service name="Echo" scope="application" provider="JAVA:RPC">

 <parameter name="className" value="EchoService.EchoImpl"/>

 <operation name="echoString" qname="operNS:echoString"

 xmlns:operNS="urn:EchoService" returnQName="echo"

 returnType="xsd:string"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <parameter name="str" type="xsd:string"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema" mode="IN"/>

 </operation>

 </service>

 </deployment>

</wsdd>

CSoap User Guide

 7

CSoap adds Echo service description in configuration/wsdd.conf file.

Now, you have only deployed the service description but not yet the service classes. To complete the deployment of

this service, you have to copy the service classes (EchoImpl.class and EchoPortType.class) and all

user-defined classes used by the EchoImpl.class, if any, into csoap/WEB-INF/classes.

Now the service Echo is available on CSoap and you can invoke its echoString method from client.

Use the bin/EchoClient.sh (bin/EchoClient.bat) to invoke the service Echo.

3.2. Web Services undeployment

To undeploy a service, CSoap requires an undeployment descriptor in which you must give the name of the service

that you want to undeploy.

The following is an example of undeployment descriptor for Echo service:

To send this undeployment file to CSoap use also deploy tool, like in this example:

CSoap server removes automatically the service from the configuration/wsdd.conf file and the service

becomes unavailable.

To undeploy a service you can also remove manually the description part of service from the
configuration/wsdd.conf.

3.3. Simple CSoap Client

The following is a simple client of EchoService service:

<undeployment>

 <service name="Echo">

</undeployment>

1 package EchoClient;

2

3 import javax.xml.rpc.Call;

4 import javax.xml.namespace.QName;

5

6

7 public class SimpleEchoClient {

8 public static void main(String [] args) {

9 try {

10 String endpoint = "http://localhost:8080/csoap/Echo";

11

12 Call call = (Call) new csoap.xml.rpc.CallImpl();

13

14 call.setTargetEndpointAddress(endpoint);

15 call.setOperationName(new QName("urn:EchoService","echoString"));

16 call.setReturnType(new QName("http://www.w3.org/2001/XMLSchema",

17 "string"));

18 call.addParameter("param",

19 javax.xml.rpc.encoding.XMLType.XSD_STRING,

20 javax.xml.rpc.ParameterMode.IN);

21

22 String ret = (String) call.invoke(new Object[] { "Hello!" });

23 System.out.println("Sent 'Hello!', got '" + ret + "'");

24 }

25 catch (Exception e) {

26 System.err.println(e.toString());

27 }

28 }

}

$bin/deploy.sh samples/EchoService/undeployEcho.wsdd

CSoap User Guide

 8

You'll find this file in csoap/samples/EchoClient/SimpleEchoClient.java.

So what's happening here? In line 12 we create a new Call object. In line 14, we set up our endpoint URL - this is

the destination for our SOAP message. In line 15 we define the operation (method) name of the Web Service. In line

16 we set return XML type of echoString method. In line 18 we assign the name param to the first (and alone)

parameter on the echoString method and we also define the type of the parameter

(javax.xml.rpc.encoding.XMLType.XSD_STRING) and whether it is an input, output or inout parameter

(in this case it is an input parameter). And in line 22 we actually invoke the service, passing in an array of parameter

values (in this case just one String value).

You can see what happens to the arguments by looking at the SOAP request that goes out on the wire (look at the

coloured section below, and notice they match the values in the code above):

The client writing is simplified by the using of auto-generated Stub. See Section 6 for more details.

4. The CSoap Web Service Deployment Descriptor (WSDD)

4.1. Introducing WSDD

After having developed your services, you need to deploy them on CSoap Server to make them available for clients.

Deploying a service involves copying the service classes into the deployed service directory and deploying service

description on CSoap Server. The description of services is written in CSoap WSDD (Web Service Deployment

Description) which gives all necessary XML-based targets to describe and configure a service.

4.2. WSDD general schema

Here you can see an example of the general schema of a WSDD file.

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd=="http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body>

 <ns1:echoString xmlns:ns1="urn:EchoService">

 <param xsi:type="xsd:string">Hello!</testParam>

 </ns1:echoString>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

<deployment xmlns="http://arles.inria.fr/csoap/wsdd/">

 <service name="service Name" provider="java:RPC"
 scope=”Request/Application/Session”>

 <!-- handlers definition optional target -->

 </handler>

 </handler>

 <parameter name="className" value="java class name"/>

 <operation name="method name" qname="XML method name"

 returnQName="return QName" returnType="XML type">

 <parameter name="parameter name" type="XML parameter type"

 mode="IN/OUT/INOUT">

 </operation>

 <!-- beanMapping defintion optional target -->

 <beanMapping>

 </beanMapping>

 <!-- typeMapping defintion optional target -->

 <typeMapping>

CSoap User Guide

 9

In this section we describe only mandatory targets, the optional targets are described in separate sections.

• <service name="service Name" provider="java:RPC">

In this part you define the name of the service which will be used by clients to invoke the service. The

provider attribute defines the provider class that will be used to run the service. The default provider in

CSoap is csoap.server.RPCProvider class and is specified by the java:RPC value of provider

attribute. You can define your own provider class that will be used to run the services instead of the the default

one. The provider class must contain a runService() method that has the role to implement the service call.

• <parameter name="className" value="java class name"/>

Specifies the class that must be used by provider when a call to the service is received (e.g.,

csoap.samples.echoService.echo for the service EchoService).

• <operation name="method name" qname="XML method name" xmlns:operNS="URI"

 returnQName="return QName" returnType="xml type">

 <parameter …..>

 </operation>

All the methods of the deployed service must be defined with the operation target. In this target you must define

the java method name, the XML method name, XML return value name, method’s XML return type. Each

parameter of this method is specified by the following <paramater> tag:

• <parameter name="parameter name" type="parameter type"

 mode="IN/OUT/INOUT">

This tag contains the parameter name, type and mode (IN, OUT or INOUT).

To deploy more than one service you can write a WSDD file for each service or one WSDD file that contains all

deployment descriptors of services into <wsdd> target. See the following schema:

<wsdd>

 <!- - deploy service 1 -->

 <deployment>

 <service name="MyService1" provider="java:RPC">

...

 </service>

 </deployment>

 <!-- deploy service 2 -->

 <deployment>

 <service name="MyService2" provider="java:RPC">

...

 </service>

 <deployment>

...

</wsdd>

CSoap User Guide

 10

4.3. Mapping between XML and Java Data in CSoap

Using WSDD requires knowing how XML type mapping is mapped to Java type. Interoperability is an ongoing

challenge between SOAP implementations. For this reason the basic mapping between Java types and

WSDL/XSD/SOAP in CSoap is determined by the JAX-RPC specification. See chapters 4 and 5 of the specification

for details.

Standard mappings from XML to Java

The following table specifies the Java mapping for the built-in simple XML data types. These XML data types are

as defined in the XML schema namespace [http://www.w3.org/2001/XMLSchema] referenced by xsd

prefix and the SOAP encoding namespace [http://schemas.xmlsoap.org/soap/encoding/]

referenced by soapenc prefix.

XML type Java type

xsd:base64Binary byte[]

xsd:Boolean Boolean

xsd:byte Byte

xsd:dateTime java.util.Calendar

xsd:decimal java.math.BigDecimal

xsd:double Double

xsd:float Float

xsd:int Int

xsd:integer java.math.BigInteger

xsd:long Long

xsd:qname javax.xml.namespace.Qname

xsd:short Short

xsd:string java.lang.String

An element declaration with nillable attribute set to true for a built-in simple XML data type is mapped to

corresponding Java wrapper class for the Java primitive type.

For example the schema instance

<xsd:element name="code" type="xsd:int" nillable="true"/>

With the following element:

<code xsi:nil="true"/>

is mapped to java.lang.Integer class. The following table specifies the mapping of element declarations with

nillable attribute set to true for the built-in simple XML types.

XML Type Java Type

xsd:Boolean Java.lang.Boolean

xsd:byte Java.lang.Byte

xsd:double Java.lang.Double

xsd:float Java.lang.Float

xsd:int Java.lang.Int

xsd:long Java.lang.Long

xsd:short Java.lang.Short

The SOAP 1.1 specification indicates that all SOAP encoded elements are nillable. So in the SOAP encoded case,

SOAP encoded simple XML type is mapped to the corresponding Java wrapper class for the Java primitive type. An

example is mapping of the soapenc:int to the java.lang.Integer. The following table shows the Java

mapping of the SOAP encoded simple types.

CSoap User Guide

 11

SOAP Type Java Type

soapenc:base64 byte[]

soapenc:boolean java.lang.Boolean

soapenc:byte java.lang.Byte

soapenc:decimal java.math.BigDecimal

soapenc:double java.lang.Double

soapenc:float java.lang.Float

soapenc:int java.lang.Integer

soapenc:long java.lang.Long

soapenc:short java.lang.Short

soapenc:string java.lang.String

CSoap User Guide

 12

4.4. Advanced WSDD - Specifying more options

WSDD descriptors can also contain other advanced information about services that we cover in this section.

Scoped Services

CSoap supports three different ways of scoping service objects (the actual Java objects which implements your

methods):

• "Request" scope, the default, will create a new object each time a SOAP Request comes in for your service.

• "Application" scope will create a singleton shared object to service all requests.

• "Session" scope will create a new object for each session-enabled client who accesses your service.

To specify the scope option, you add a scope attribute into the <service> target where the value is “Request”,

“Application” or “Session” like this example of service scoped with “Session”:

Handlers and Chains

Sometimes you need to do some processing over SOAP Messages before using them to invoke the service (ex

security process, message tracking process) or before sending them (ex compression process, redirection process…).

CSoap allows defining this process into a java class that called Handler. The handler is a java class which

implements the javax.xml.rpc.handler.Handler interface and executes a SOAP message processing. The

handleRequest() method of Handler perform any processing of the request message and

handleResponse() method perform any processing of the response message. CSoap WSDD provides the

<handler> target to define a handler, a <requestFlow> target, which, can contain a collection of defined-

handlers that will be invoked when a SOAP request message is received, and a <responseFlow> target which

contains a collection of defined-handlers that will be invoked when a SOAP response message is going to be sent.

The collection of handlers defined by <requestFlow> and <responseFlow> are either Global or Service-

specific, the Global collection perform any processing of all messages which crosses the CSoap Engine and the

Service-specific collection perform any processing of only the messages on its way to go or go back of the specified

Service. The Global collection must be defined into the service named «*» and the Service-specific collection must

be defined into the concerned service. We give here an example of Service-specific collection of handlers which

contains one handler named showMessages implemented by class csoap.util.handlers.ShowMessage.

<service name="echoService" Provider="java:RPC"

 scope="Session">

...

</service>

<deployment xmlns="http://xml.apache.org/axis/wsdd/"

 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

 <!-- define the logging handler configuration -->

 <handler name="showmessages"

 type="csoap.util.handlers.HandlerRequestMessage">

 </handler>

 <!-- define the service, using the handlerRequest we just defined -->

 <service name="echoService" provider="java:RPC">

 <requestFlow>

 <handler type="showmessage"/>

 </requestFlow>

 <responseFlow>

 <handler type="showmessage"/>

 </responseFlow>

 <parameter name="className" value="csoap.examples.echoService.echo"/>

..

 </service>

</deployment>

CSoap User Guide

 13

The first section defines a Handler called "showmessage" that is implemented by the class

csoap.util.handlers.HandlerRequestMessage. Then we define the EchoService service, already

seen in the first example, and we add the <requestFlow> and <responseFlow> elements inside the <service>

target. The <requestFlow> indicates a set of Handlers that should be invoked when the service is invoked,

before the provider. By inserting a reference to "showmessage", we ensure that the Request message will be

shown each time this service is invoked.

The <responseFlow> indicates a set of Handlers that should be invoked after service’s execution and before

sending the SOAP Response to the client.

The object that is passed to each Handler, when invoked, is a SOAPMessageContext object. To facilitate the

access to the CSoap Message and to the main properties of CSoap Engine, CSoap puts a SOAPMessage object

(implementing the javax.xml.soap.SOAPMessage interface and representing either a request Message or a

response Message) and these properties into the SOAPMessageContextImpl class. The

SOAPMessageContextImpl implements the

javax.xml.rpc.handler.soap.SOAPMessageContext interface.

The following code is a part of the showMessage Handler which prints the SOAP Message on the screen.

package csoap.util.handlers;

import javax.xml.soap.*;

public class ShowMessage implements javax.xml.rpc.handler.Handler

{

 public void destroy() {... }

 public boolean handleFault(javax.xml.rpc.handler.MessageContext

 messageContext) {

 return true;

 }

 public boolean handleRequest(javax.xml.rpc.handler.MessageContext

 messageContext) {

 try {

 javax.xml.soap.SOAPMessage msg = msgContext.getMessage();

 msg.writeTo(System.out);

 } catch (Exception e) {

 e.printStackTrace();

 }

 return true;

 }

 public boolean handleResponse(javax.xml.rpc.handler.MessageContext

 messageContext) {

 try {

 javax.xml.soap.SOAPMessage msg = msgContext.getMessage();

 msg.writeTo(System.out);

 } catch (Exception e) {

 e.printStackTrace();

 }

 return true;

 }

 public void init(javax.xml.rpc.handler.HandlerInfo handlerInfo) {

 }

}

CSoap User Guide

 14

The handlerRequest method is invoked by CSoap Engine after having received a SOAP request. The

handlerRequest method gets the SOAP message from SOAPMessageContext which contains all

information about the SOAP message and write the SOAP message on the screen.

The handlerResponse method is invoked by CSoap engine before sending a SOAP response message to the

client.

Serialization and Deserialization

The serialization (also known as marshalling or encoding) is the process of transforming a Java data type into an

XML representation. The deserialization (also known as unmarshalling or decoding) is the process of transforming

an XML data type into the corresponding Java data type.

CSoap includes the ability to serialize/deserialize all java simple types and gives two classes

(csoap.xml.rpc.encoding.SerializerComplexTypeFactory/

csoap.xml.rpc.encoding.DeserializerComplexTypeFactory) which are respectively able to

serialize and to deserialize user defined classes that have only public attributes.

To deploy some services which use user-defined classes you must tell CSoap which Java classes map to which XML

types. To do that, CSoap provides a <beanMapping> target allowing to specify a mapping between a Java type

and an XML type.

As an example of serialization and deserialization we take a hotel service providing methods listHotels() and

reservation(). The Hotel service uses a csoap.samples.hotelService.ClientInfo and

csoap.samples.hotelService.hotelDescription user-defined complex-type. To deploy the Hotel

service you need to specify to CSoap the type mapping between ClientInfo class and the XML Type

[urn:HotelService:Client] and between the hotelDescription class and the XML Type
[urn:HotelService:HotelDescription].

The follow code shows the hotel class.

The listHotels(String region) method returns an array of hotelDescription for the given region,

and the reservation(int hotelId, ClientInfo client, Date date, int numdays) method

makes a reservation in the hotel specified by it hotelId, for the given client, starting from date and lasting

numdays days.

The following code is a part of Java code of hotelDescription class:

Package csoap.samples.hotelService;

Public class hotel

{

 hotelDescription[] listHotels(String region)

 {

 }

 boolean reservation(int hotelId, Client client, Date date, int numdays)

 {

 }

}

package csoap.samples.hotelService

public class hotelDescription

{

 public int hotelID

 public String hotelName;

 public string hotelAddress;

 public long hotelPrice;

 public void setHotelId(int id);

 public int getHotelId();

 public void setHotelName(String str);

 public String getHotelName();

…..

CSoap User Guide

 15

and the follow is a part of Java code of ClientInfo class:

Look at the following WSDD description of hotel service which defines a type mapping for ClientInfo and
hotelDescription:

The <beanMapping> target allows defining a mapping between a qname that contains an XML type and type

that contains a Java type. So in this case, we maps the csoap.examples.hotelService.Client class to

package csoap.samples.hotelService

public class ClientInfo

{

 public String clientName;

 public string clientCard;

 public void setClientName(String str);

 public String getClientName();

…..

}

<deployment xmlns="http://arles.inria.fr/csoap/wsdd/"

 xmlns:java="http://arles.inria.fr/csoap/wsdd/providers/java">

 <service name="hotelService" provider="java:RPC">

 <parameter name="className"

 value="csoap.examples.hotelService.hotelServer"/>

 <operation name="reservation" qname="operNS:reservation"

 xmlns:operNS="urn:HotelService" returnQName="reservationStat"

 returnType="xsd:boolean"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <parameter name="hotelId" type="xsd:int"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

mode="IN"/>

 <parameter name="client" type="tNS:Client"

 xmlns:tNS="urn:HotelService" mode="IN"/>

 <parameter name="reservationDate" type="xsd:datetime"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

mode="IN"/>

 <parameter name="duration" type="xsd:int"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

mode="IN"/>

 </operation>

 <beanMapping qname="tNS:Client" xmlns:tNS="urn:HotelService"

 type="csoap.examples.hotelService.Client"/>

 <beanMapping qname="tNS:HotelDescription" xmlns:tNS="urn:HotelService"

 type="csoap.examples.hotelService.hotelDescription"/>

 </service>

CSoap User Guide

 16

the XML QName [urn:HotelService:Client]. The <beanMapping> assigns the default serializer and

deserializer factory to the specified java data type and xml type. These factories will be used to obtain a

serializer/deserializer for the java data type. The default csoap serializer factory is

csoap.xml.rpc.encoding.SerializerComplexTypeFactory and returns the

csoap.xml.rpc.encoding.SerializerComplexType serializer. The default deserializer factory is

csoap.xml.rpc.encoding.DeserializerComplexTypeFactory and returns the

csoap.xml.rpc.encoding.DeserializerComplexType deserializer. This WSDD defines the mapping

between hotelDescription class and [HotelService:HotelDescription], but this is not enough to

serialize an array of hotelDescription elements. It’s necessary to define a specific (custom) serializer and

deserializer of hotelDescription[], by using <typeMapping> target which is described in the next

Section.

Custom Serialization and Deserialization

To define custom serializer and deserializer factory which respectively contain a serializer and a deserializer able to

serialize and deserialize our Java data type and it corresponding XML type, CSoap provides a <typeMapping>

target. See the following schema of <typeMapping>:

Three extra attributes are added with respect to the <beanMapping> target:

• serializer, defines the Java class name of the Serializer factory which provides the serializer to be used to

marshal an object of the specified Java class into XML.

• deserializer, define the Java class name of a Deserializer factory that provides the deserializer to be used

to unmarshall XML into the correct Java class.

• encodingStyle, defines the used encoding.

(The <beanMapping> tag is really just shorthand for a <typeMapping> target with

serializer="csoap.xml.rpc.encoding.SerializerComplexTypeFactory",

deserializer="csoap.xml.rpc.encoding.DeserializerComplexTypeFactory", and
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/").

CSoap provides a serializer and deserializer factory for array data types:
csoap.xml.rpc.encoding.SerializerArrayFactory and

csoap.xml.rpc.encoding.DeserializerArrayFactory.

Now look at the complete WSDD deployment of hotelService, with the mapping between

hotelDescription[] and [HotelService:ArrayOfHotel]:

<typeMapping qname="XML type"

 type="java class type"

 serializer="serializer Factory"

 deserializer="deserializer Factory"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<deployment xmlns="http://arles.inria.fr/csoap/wsdd/"

 xmlns:java="http://arles.inria.fr/csoap/wsdd/providers/java">

 <service name="hotelService" provider="java:RPC">

 <parameter name="className"

 value="csoap.examples.hotelService.hotelServer"/>

 <operation name="listHotels" qname="operNS:listHotels"

 xmlns:operNS="urn:HotelService" returnQName="hotelEnumeration"

 returnType="rtNS:ArrayOfHotel" xmlns:rtNS="urn:HotelService">

 <parameter name="city" type="xsd:string"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema" mode="IN"/>

 </operation>

 <operation name="reservation" qname="operNS:reservation"

 xmlns:operNS="urn:HotelService" returnQName="reservationStat"

 returnType="xsd:boolean"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <parameter name="hotelId" type="xsd:int"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema" mode="IN"/>

 <parameter name="client" type="tNS:Client"

 xmlns:tNS="urn:HotelService" mode="IN"/>

 <parameter name="reservationDate" type="xsd:datetime"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema" mode="IN"/>

 <parameter name="duration" type="xsd:int"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema" mode="IN"/>

 </operation>

 <beanMapping qname="tNS:Client" xmlns:tNS="urn:HotelService"

 type="csoap.examples.hotelService.Client"/>

CSoap User Guide

 17

Sometimes you will need to write custom serializers and deserializers for application-specific data types, to do this

you need to develop the four following classes:

• SerializerFactory: A factory class that returns a serializer based on the parsing mechanism, such as

SAX and DOM. This class must implement javax.xml.rpc.encoding.SerializerFactory

interface.

• DeserializerFactory: A factory class that returns a Deserializer based on the parsing mechanism. This

class must implement javax.xml.rpc.encoding.DeserializerFactory interface.

• Serializer: This class is responsible for converting the java object into a corresponding XML structure.

This class must implement javax.xml.rpc.encoding.Serializer interface

• Deserializer: This class is responsible for converting the XML structure into its corresponding java object.

This class must implement javax.xml.rpc.Deserializer interface

As an example you can see the following CSoap classes provided to serialize and deserialize complex type objects

which are instances of classes containing only public attributes:
csoap.xml.rpc.encoding.SerializerComplexTypeFactory

csoap.xml.rpc.encoding.DeserializerComplexTypeFactory

csoap.xml.rpc.encoding.SerializerComplexType

csoap.xml.rpc.encoding.DeserializerComplexTypeFactory,

After having developed your serializer and deserializer classes, you must tell CSoap which types they must be used

for. You can do this with the <typeMapping> target in WSDD,

5. Advanced CSoap Client

Also on the client side it is possible to define handlers chains, bean mappings and type mappings options. To do so,

you must create a WSDD client-side file (it is the same as the WSDD server-side) and use the

csoap.GlobalManagingClient static class to pass the CSoap Client configuration contained in your WSDD

client file. The following example is the CSoap client for hotel service. In this example we will make use of

clientDeploy.wsdd file. The content of this file is the same of the deploy.wsdd file used above on the

server side.

1 import javax.xml.rpc.Call;

2 import javax.xml.namespace.QName;

3 import csoap.examples.hotelService.hotelDescription;

4

5 public class TestClient {

6 public static void main(String [] args) {

7 try {

8 FileInputStream wsddClient = new

9 FileInputStream("csoap/examples/hotelService/clientDeploy.wsdd");

10 csoap.GlobalManagingClient.receiveWsdd(wsddClient)

CSoap User Guide

 18

In lines 8, 9 and 10 we configure CSoap client with clientDeploy.wsdd file. In line 20 we set return XML

type of listHotels() method [urn:HotelService:ArrayOfHotelDescription]. In line 24

we invoke listHotels() with region value "Paris".

If you want only to specify type mappings for current service Client you can do this without a WSDD file

configuration, in fact CSoap provides the method registerTypeMapping() method of

csoap.xml.rpc.CallImpl that can be used to configure the method call. See the following example:

1 import javax.xml.rpc.Call;

2 import javax.xml.rpc.encoding.SerializerFactory;

3 import javax.xml.rpc.encoding.DeserializerFactory;

4 import javax.xml.namespace.QName;

5

6 import csoap.xml.rpc.encoding.SerializerComplexTypeFactory;

7 import csoap.xml.rpc.encoding.DeserializerComplexTypeFactory;

6 import csoap.xml.rpc.encoding.SerializerArrayFactory;

8 import csoap.xml.rpc.encoding.DeserializerArrayFactory;

9

10

11 import csoap.examples.hotelService.hotelDescription;

12

13 public class TestClient {

14 public static void main(String [] args) {

15 try {

16

17 String endpoint ="http://localhost:8080/csoap/services/HotelService";

18 SerializerFactory sf = null;

19 DeserializerFactory df = null;

20

21 csoap.xml.rpc.CallImpl csoapCall = new csoap.xml.rpc.CallImpl();

22 Class javaClass = hotelDescription.class ;

23 QName xmlType = new Qname("urn:HotelService","HotelDescription");

24 sf = (SerializerFactory)(new SerializerComplexTypeFactory());

25 df = (DeserializerFactory)(new DeserializerComplexTypeFactory());

26 csoapCall.registerTypeMapping(javaClass,xmlType,sf,df);

27

28 javaClass = HotelDescription[].class;

29 xmlType=new Qname("urn:HotelService","ArrayOfHotelDescription");

30 sf = (SerializerFactory)(new SerializerArrayFactory());

31 df = (DeserializerFactory)(new DeserializerArrayFactory());

CSoap User Guide

 19

In line 21 we create a csoap Call and in line 26 we register the type mapping between csoap.example.

hotelService.hotelDescription class and [urn:HotelService:HotelDescription] XML

type and we define serializer and deserializer factories
csoap.xml.rpc.encoding.SerializerComplexTypeFactory and

csoap.xml.rpc.encoding.DeserializerComplexTypeFactory

In line 32 we register a type mapping between csoap.example.hotelService.hotelDescription[]

java type and [urn:HotelService:ArrayOfHotelDescription] XML Type and we define serializer

and deserializer factories csoap.xml.rpc.encoding.SerializerArrayFactory and

csoap.xml.rpc.encoding.DeserializerArrayFactory

6. CSoap Generator -Using WSDL with CSoap

6.1. Introducing CSoap Generator

The development of a Web service is a process that requires writing large pieces of code that follow in many cases

the same patterns. This is more evident in the case of the development of the software components that are necessary

for Web Service remote invocation. You have to write the stub and all the classes related to the data serialization

process. For these reasons, we have developed a code generator that automatically generates a large part of client-

side Java files that are involved in these mechanisms and the WSDD deployment file given its well-formed WSDL

file. These files are generated according to CSoap.

CSoap User Guide

 20

More specifically, with respect to Web services invocation, our component creates all the files that are necessary to

invoke a service that is described by a standard WSDL document; in other words, it generates a stub class, an

interface class, the related user-defined types (including holders for data serialization) and exceptions classes.

6.2. Using CSoap Generator

The following is the syntax of the generator provided by CSoap:

• fileName : is the name of the WSDL file.

• side : indicates if the code has to be generated for the server or the client side (s for server side and c for client

side).

• dirName : is the name of the directory where the files will be generated.

• implClass : is the name of a class that implements the service.

• v : display debug information.

6.3. Generated files

The following table shows the files generated by CSoap Generator:

WSDL clause Java class(es) generated

For each entry in the type section A java class

 A holder if this type is used as an inout/out parameter

For each portType A java interface

For each binding A stub class

For each service A service interface

 A service implementation

 One deploy.WSDD file with operation meta data

 One undeploy.WSDD file

6.4. WSDL elements and java generated classes

In this section we give some examples of the classes generated for each WSDL elements.

Types

The names of Java class generated from a WSDL file will depend on the names of the types defined in the WSDL

file. For example, given the WSDL:

CSoap Generator will generate

%java csoap.wsdl.Generator -n fileName –s side -d dirName -c ImplClass -v

<xsd:complexType name="hotelDescription">

 <xsd:sequence>

 <xsd:element name="hotelId" type="xsd:int"/>

 <xsd:element name="hotelName" type="xsd:string"/>

 <xsd:element name="hotelAddess" type="xsd:string"/>

 <xsd:element name="hotelPrice" type="xsd:long"/>

 </xsd:sequence>

</xsd:complexType>

public class Phone implements java.io.Serializable {

 public hotelDescription() {...}

 public int getHotelId() {...}

 public void setHotelId(int id) {...}

 public java.lang.String getHotelName() {...}

 public void setHotelName(java.lang.String name) {...}

 public java.lang.String getHotelAddess() {...}

 public void setHotelPrice(long price) {...}

 public long getHotelPrice() {...}

 public void setHotelAddress(java.lang.String address) {...}

 public boolean equals(Object obj) {...}

}

CSoap User Guide

 21

Complex types

Arrays declaration

According to WSDL specification, arrays must be declared by restriction. In other words, if you have to declare an

array of Java String, you define it as an element belonging to a subset (a restriction) of the set of standard SOAP

arrays. More formally, an array is derived from a soapenc:array by restriction using the wsdl:arrayType

attribute, with the soapenc prefix associated to the URI http://schemas.xmlsoap.org/soap/encoding

namespace and the wsdl prefix http://schemas.xmlsoap.org/wsdl.

The following example shows the definition of an array of String derived from the soapenc:array by

restriction:

It is worth noting that the name of the complex type must start with ArrayOf; this limitation derives from the

implementation of the WSIF library that we have used to manipulate the XML Schema declaration inside the WSDL

file.

Holders

This type may be used as an inout or out parameter. Java does not have the concept of inout/out parameters. In order

to achieve this behaviour, JAX-RPC specifies the use of holder classes. A holder class is simply a class that contains

an instance of its type. For example, the holder for the hotelDescription class would be

A holder class is only generated for a type if that type is used as an inout or out parameter. Note that the holder class

has the suffix "Holder" appended to the class name, and it is generated in a sub-package with the "holders".

The holder classes for the primitive types can be found in javax.xml.rpc.holders.

<xsd:complexType name="ArrayOfHotelDescription">

 <xsd:complexContent>

 <xsd:restriction base="soapenc:Array">

 <xsd:sequence>

 <xsd:element name="hotelDescription" minOccurs="0"

 maxOccurs="unbounded" type="tns:HotelDescription"/>

 </xsd:sequence>

 </xsd:restriction>

 </xsd:complexContent>

 </xsd:complexType>

package csoap.examples.hotelService.holders;

public final class HotelDescriptionHolder implements javax.xml.rpc.holders.Holder {

 public csoap.examples.hotelService.HotelDescription value;

 public HotelDescription Holder()

 {

 }

 public HotelDescription Holder(csoap.examples.hotelService.HotelDescription value) {

 this.value = value;

 }

}

CSoap User Guide

 22

PortTypes

The Service Definition Interface (SDI) is the interface that's derived from a WSDL's portType. This is the interface

you use to access the operations on the service. For example, given the WSDL

CSoap Generator will generate

A note about the name of the SDI: the name of the SDI is typically the name of the portType. However, to

construct the SDI, CSoap Generator needs information from both the portType and the binding. (This is

unfortunate and is a topic of discussion for WSDL version 2.)

JAX-RPC says (section 4.3.3): "The name of the Java interface is mapped from the name attribute of the

wsdl:portType element. ... If the mapping to a service definition interface uses elements of the

wsdl:binding ..., then the name of the service definition interface is mapped from the name of the

wsdl:binding element."

Note the name of the spec. It contains the string "RPC". So this spec, and CSoap Generator, assumes that the

interface generated from the portType is an RPC interface.

Bindings

A Stub class implements the SDI. Its name is the binding name with the suffix "Stub". It contains the code which

turns the method invocations into SOAP calls using the CSoap Service and Call objects. It stands in as a proxy

(another term for the same idea) for the remote service, letting you call it exactly as if it were a local object. In other

words, you don't need to deal with the endpoint URL, namespace, or parameter arrays which are involved in

dynamic invocation via the Service and Call objects. The stub hides all that work for you.

Given the following WSDL:

CSoap Generator will generate:

<message name="listHotelsRequest">

 <part name="region" type="xsd:string"/>

</message>

<message name="listHotelsResponse">

<part name="hotels" type="tns:ArrayOfHotelDescription"/>

</message>

<portType name="HotelInterface">

 <operation name="listHotles">

 <input message="tns:listHotelsRequest"/>

 <output message="tns:listHotelResponse"/>

 </operation>

</portType>

public interface HotelInterface extends java.rmi.Remote {

 public csoap.examples.hotelService.HotelDescription[] listHotels(String region)

throws java.rmi.RemoteException;

}

<binding name="HotelSOAPBinding" type="tns:HotelInterface">

 ...

</binding>

public class HotelSOAPBindingStub implements HotelService.HotelInterface {

{

 public HotelSOAPBindingStub(URL endpointURL,

 javax.xml.rpc.Service service)

 {...}

public HotelService.Hotel[] listHotels(java.lang.String city)

throws java.rmi.RemoteException,HotelService.HotelException {

// implementation of Call listHotels

// return the result of invokation

}

}

CSoap User Guide

 23

Exceptions

You should pay particular attention in declaring exceptions; in fact, you must follow the standard defined in JAX-

RPC specification. Now we focussed in particular on service specific exceptions. To sum up, a fault element, which

is an optional element inside an operation block, specifies the format of any error message related to the remote

invocation of a particular service method. It is worth noting that according to the WSDL specification, a fault

message must have a single part.

The name of the Java exception is mapped from the name attribute of the message. For reference, you can look at

the following example:

The following is a fragment of the Java service endpoint interface derived from the above WSDL port type

definition:

<message name="HotelException">

 <part name="errorMessage" type="xsd:string"/>

</message>

...

<portType name="HotelInterface">

 ...

 <operation name="listHotels">

 <input>...</input>

 <output>...</output>

 <fault name="HotelException" message="HotelException"/>

 </operation>

 ...

</portType>

CSoap User Guide

 24

In this example you can note that the fault element is mapped to the com.HotelService.HotelException

exception that extends the java.lang.Exception class.

In this case the generator produces the following code for the definition of the user-defined exception class:

It is worth observing that the single message part in the fault maps to a field with a getter method in the mapped

exception. Moreover, it is declared as input parameter in the exception constructor.

6.5. CSoap Client With generated Stub

A typical usage of the stub classes would be as follows

public interface HotelInterface extend java.rmi.Remote {

 public csoap.examples.hotelService.HotelDescription(String region)

 throws java.rmi.RemoteException,

 HotelService.HotelException;

}

public class HotelException extends java.lang.Exception {

 public HotelException(java.lang.String errorMessage) {...}

 public getErrorMessage(){...}

}

public class client

{

 public static void main(String [] args) throws Exception {

 // Make a service

 String endpointURL="http://localhost:8080/csoap/services/HotelService"

 hotelInterface service = new HotelSOAPBindingStub(endpointURL,null);

 // Make the actual call

 HotelDescription[] list = service.listHotles("Paris");

}

}

