
WSAMI Middleware Developer Guide

Author: Daniele Sacchetti – daniele.sacchetti@inria.fr

Table of contents
1. INTRODUCTION ..1
2. COMPILE, MAKEJAR, DIST AND RELEASE TARGETS...3
3. CSOAP...3
4. GATEWAY (GW) AND UNIVERSAL REPOSITORY (UR) SERVICES ...3
5. SERVICE LOCATION PROTOCOL (SLP) ...4
6. CORE BROKER TOOLS..5

1. Introduction
Compiling and building a new release of WSAMI Middleware requires the following software
installed on your machine:

- Java

- ant (version 1.6.2 or higher)

Once untarred wsami-src-doc-1.0.0.tar.gz in $WSAMIDIR directory, you have the following
directory tree:

$WSAMIDIR +--+ build.xml
 |
 + build +--+ class (temporray directory to generate .class)
 | + lib (temporray directory to generate .jar)
 |
 + dist +--+ common
 | + pda (contain the final release for PDAs)
 | + tomcat (contain the final release for PCs)
 |
 + docs (documentation)
 |
 + lib (libraries used to compile the WSAMI Midelewre)
 |
 + samples (some basic samples showing basic functionalities)
 |
 + services +---+ …
 | + … (Advanced examples of use of the Middleware)
 | + …
 | + UR (UR client used to update the local Web services
 | directory – see [ARCHGUIDE] and [USERGUIDE])
 |

 + src +-+ CoreBroker +--+ CSoap
 | + Axis
 | + IFUtils
 + csoap
 |
 + WSAMI
 |
 + NDService
 |
 + GWService
 |
 + URService
 |
 + WSAMI

You can see the options offered by the default environment to recompile and create a new release
of WSAMI Middleware by typing the following command from the $WSAMIuild.xml directory:

ant -projecthelp

You will get the following output:

Buildfile: build.xml
 Build file for wsami
Main targets:

 backup backup
 clean Clean
 compileCBIFUtils_dll Generates shared library ifacemgr.dll (Windows, Intel)
 compileCBIFUtils_so Generates shared library libifacemgr.so (Linux, Intel)
 compileCBIFUtils_so_pda Generates shared library libifacemgr.so (Linux, ARM)
 compileCSoap Compiles CSoap
 compileLIBNDSLP_dll Generates shared library NDslp.dll (Windows, Intel)
 compileLIBNDSLP_so Generates shared library libNDslp.so (Linux, Intel)
 compileSLP_pda Compiles slp (Linux, ARM)
 compilewsamiAxis Compiles wsami for Axis version
 compilewsamiCSoap Compiles wsami for CSoap version
 distAxis Generates distribution for Axis/Tomcat
 distCSoap Generates distribution for CSoap
 init Initialization
 makeApiDocs Generates Java Api Documentation
 makeDocs Generates User Guide Documentation
 makeJarCSoap Generates CSoap Jar file
 makeJarGWAxis Generates GW Jar file for Axis version
 makeJarURAxis Generates UDDI Jar file for Axis version
 makeJarswsamiAxis Generates wsami Jar files for Axis version
 makeJarswsamiCSoap Generates wsami Jar files for CSoap version
 release Generates wsami Release
 release-doc Generates wsami Release with documentation
 release-src Generates wsami Release with source files
 release-src-doc Generates wsami Release with source files and documentation

Default target: release

If you want to build a new version of the WSAMI Middleware, you must apply the following
modification to adapt the compilation scripts to your environment:
- $WSAMIDIR/build.xml: update the wsami.version property with an increasing version

number

- $WSAMIDIR/commonLinux.xml and commonWindows.xml: set wsami.dir to $WSAMIDIR

In the following sections we the above targets are examined in more detail.

2. Compile, makeJar, dist and release targets
 compilewsamiAxis Compiles wsami for Axis version
 compilewsamiCSoap Compiles wsami for CSoap version
 distAxis Generates distribution for Axis/Tomcat
 distCSoap Generates distribution for CSoap
 makeJarswsamiAxis Generates wsami Jar files for Axis version
 makeJarswsamiCSoap Generates wsami Jar files for CSoap version
 release Generates wsami Release
 release-doc Generates wsami Release with documentation
 release-src Generates wsami Release with source files
 release-src-doc Generates wsami Release with source files and documentation

The targets compilewsamiAxis and compilewsamiCSoap are used to compiles the Java files
implementing the WSAMI Middleware into .class files in $WSAMIDIR/build/class.
The targets makeJarswsamiAxis and makeJarswsamiCSoap are used to create the jar file (libraries)
from the compiled .class files in $WSAMIDIR/build/lib.
The targets distAxis and distCSoap are used to create a complete distribution of WSAMI
Middleware (with all the files necessary to install on a machine: libraries, configuration files, ...) in
$WSAMIDIR/dist/tomcat and $WSAMIDIR/dist/pda.
The targets release, release-doc, release-src and release-src-doc are used to create the in
$WSAMIDIR/dist/wsami-x.y.z.tar.gz file to be distributed and containing all the distributions
and the source code and/or the documentation.

For more details about the different distributions available for WSAMI Middleware (PDA/PC,
Linux/Windows with Cygwin) see [USERGUIDE] and [ARCHGUIDE].

3. CSoap
 compileCSoap Compiles CSoap
 makeJarCSoap Generates CSoap Jar file

The WSAMI Middleware includes CSoap, a Java implementation of SOAP that can run over J2ME
Personal Profile.
For more information about CSoap, see [CSOAPARCH] and [CSOAPUSER] and for more
information about how WSAMI Middleware makes use of CSoap see [USERGUIDE] and
[ARCHGUIDE].

The targets compileCSoap and makeJarCSoap are respectively used to compile CSoap and build
the jar files in $WSAMIDIR/build.

4. Gateway (GW) and Universal Repository (UR) services

 makeJarGWAxis Generates GW Jar file for Axis version
 makeJarURAxis Generates UR Jar file for Axis version

These targets are used to build the jar files that implement the advanced services (Gateway and

Universal Repository) offered by the WSAMI Middleware (for more details about these services,
see [USERGUIDE] and [ARCHGUIDE]).
The generated jar files will be included in the WSAMI version for PC but not for in the PDA
version because these services are not designed to run on PDAs.

5. Service Location Protocol (SLP)

 compileLIBNDSLP_dll Generates shared library NDslp.dll (Windows, Intel)
 compileLIBNDSLP_so Generates shared library libNDslp.so (Linux, Intel)
 compileSLP_pda Compiles slp (Linux, ARM)

For service discovery, the WSAMI Middleware makes use of OpenSLP SLP implemention: a SLP
server that must be running along with WSAMI Middleware and a SLP library implementing the
client-side functionalities (i.e., search for services available on the local network using multicast
requests). The interaction between the Naming and Discovery Service and SLP is described in
more detail in [ARCHGUIDE].
The nodes running WSAMI Middleware can be divided in two categories: standard nodes with only
one network interface and gateway nodes with two network interfaces where the Gateway Service
is deployed. For mode details about gateway nodes, see [USERGUIDE] and [ARCHGUIDE].

OpenSLP provides the following releases:
- OpenSLP Java API 1.0.0 that provides client-side functionalities to search for services only on

one network interface and that does not provide a SLP server.
- OpenSLP 1.2.0 (implemented in C) that provides both a SLP server and client-side

functionalities to search for services on multiple network interfaces.

• For the server side, the WSAMI Middleware provides a SLP server for each supported

platform:
o PDA/Linux: $WSAMIDIR/dist/pda/bin/slpd: version 1.0.11
o PC/Linux: $WSAMIDIR/dist/tomcat/bin/slpd: version 1.0.11
o PC/Cygwin+Windows: $WSAMIDIR/dist/tomcat/bin/slpd.exe: version 1.0.11

• If you want to update the version installed on the WSAMI Middleware for PC you can
download from OpenSLP web site and copy the slpd (or slpd.exe for Windows) to the
right directory (see above).

• If you want to update the version installed on the WSAMI Middleware for PDA you must
download the source code and recompile using the ant target compileSLP_pda. You must
install the OpenSLP source on the directory specified in $WSAMIDIR/build.xml by the
property openslp.dir.linux. You need the toolchain cross-compiler for ARM
architecture (that you can download at http://www.handhelds.org).
Once you have obtained the slpd server for the ARM architecture, you can copy it to the
$WSAMIDIR/dist/pda/bin directory

• On the client side, the nodes that do not act as Gateway make use of OpenSLP Java API 1.0.0

because they have only one network interface and they only need to search for services on this
interface.
Gateway nodes make use of OpenSLP 1.2.0 because they have two network interfaces and they
need to search for services on both of them.
The OpenSLP 1.2.0 library is only provided in C, so the WSAMI Middleware (ND service)
makes use of it is through Java Native Interface (JNI).

The two ant targets compileLIBNDSLP_dll and compileLIBNDSLP_so produce a shared
library respectively for Windows ($WSAMIDIR/build/class/NDService/Axis/NDslp.dll)
and Linux ($WSAMIDIR/build/class/NDService/Axis/libNDslp.so) for PC. These targets
require OpenSLP to be installed and built in the directory specified in $WSAMIDIR/build.xml
by the property openslp.dir.linux or openslp.dir.Windows (see below). The generated
library contains the JNI and C functions that act as interface and allow the WSAMI Middleware
to make calls from Java to the C OpenSLP library provided by OpenSLP.
When you execute “ant distAxis”, the liNDslp.so (or NDslp.dll) will be copied from
$WSAMIDIR/build/class/NDService/Axis to $WSAMIDIR/dist/common/tomcat/shared/lib.

If you want to update the OpenSLP library used on the client-side (only PC/Intel, not PDA) by
the WSAMI Middleware:
• On Linux:

o install OpenSLP on the directory specified in $WSAMIDIR/build.xml by the
property openslp.dir.linux

o build the library ${openslp.dir.linux}/libslp/.libs/libslp.so (if it doesn’t
exist) following OpenSLP instructions

o type “ant distAxis”. The files ${openslp.dir.linux}/libslp/.libs/
libslp.so and $WSAMIDIR/build/class/NDService/Axis/libNDslp.so will be
copied to the directory $WSAMIDIR/dist/tomcat/shared/lib

• On Windows+Cygwin:
o install OpenSLP on the directory specified in $WSAMIDIR/build.xml by the

property openslp.dir.Windows
o build the library ${openslp.dir.Windows}/win32/libslp/Release/slp.dll (if

it doesn’t exist) following OpenSLP instructions
o type “ant distAxis”. The files $WSAMIDIR/build/class/NDService/Axis/

slp.dll and ${openslp.dir.Windows}/win32/libslp/Release/slp.dll will
be copied to the directory $WSAMIDIR/dist/tomcat/shared/lib

6. Core Broker Tools
 compileCBIFUtils_dll Generates shared library ifacemgr.dll (Windows, Intel)
 compileCBIFUtils_so Generates shared library libifacemgr.so (Linux, Intel)
 compileCBIFUtils_so_pda Generates shared library libifacemgr.so (Linux, ARM)

These targets allow to modify and rebuild the platform-dependent tools (power plugging, network
interfaces, routing table) described in [ARCHGUIDE].

The source code is available in $WSAMI/src/CoreBroker/IFUtils both for Linux and for
Windows (only for power plugging) and it includes the JNI code used to make calls from Java code
to the shared libraries, some libraries and source code files used to compile the tools. After the
execution of the ant targets, the shared library libifacemgr.so (of ifacemgr.dll for Windows)
will be available in directory $WSAMIDIR/dist/common/tomcatsharedlib or in directory
$WSAMIDIR/dist/common/pdasharedlib.

Bibliography
USERGUIDE

WSAMI Middleware User's guide

ARCHGUIDE:

WSAMI Middleware Architecture guide

CSOAPGUIDE

CSoap User Guide

CSOAPARCH

CSoap Architecture Guide

