
MICS: Mediator synthesIs to CONNECT componentS

Overview

As part of the Connect synthesis enabler, we implemented the mapping-based approach to
automatically generate the mediator model. This implementation is made up of three modules:

 - (i) The ontology-encoding module,
 - (ii) The interface-mapping module, and
 - (iii) The mediator-synthesis module.

The ontology-encoding module associates numerical codes to ontology concepts in order to
optimize the subsumption testing required during interface mapping. It further takes into account
union of concepts. It uses Pellet to reason about the ontology.

The interface-mapping module identifies the semantic correspondence between the actions of
the components' interfaces. We formalize interface mapping as a Constraint Satisfaction
Problem (CSP) for which we use Choco (an open-source java library for CSP solving) to find
all the possible solutions.

The mediator-synthesis module relies on these mappings to generate the mediator. In a first
step, we generate the parallel composition of the mapping processes and verify that the overall
system successfully terminates using the LTSA (Labelled Transition System Analyser) model
checker. In a second step, we are improving the algorithm so as to deal with ambiguous
mappings, i.e., when an action from one component may semantically be mapped to different
actions from the other component.

The MICS tool has been implemented using Java.

 Contributors

 - Amel Bennaceur
 - Valérie Issarny

 1 / 9

http://clarkparsia.com/pellet/
http://choco.emn.fr/
http://www.doc.ic.ac.uk/ltsa/
index.php?option=com_content&view=article&id=97:amel-bennaceur&catid=90:actual
index.php?option=com_content&view=article&id=94:valerie-issarny&catid=90&Itemid=113

MICS: Mediator synthesIs to CONNECT componentS

 Supporting Grant

 - Connect -- IST FP7 FET IP - Emergent Connectors for Eternal Software Intensive
Networked Systems

 Related Research Projects

 - Dynamic Synthesis of Connectors

 Download

 - MICS tool

 Case Studies

File Management

 GMES
 Description

We consider the scenario presented in the Connectproject involving GMES-based systems that
are a representative example of Systems of Systems.
GMES
(Global Monitoring for Environment and Security) is the European Programme for the
establishment of a European capacity for Earth Observation.

In particular, the emergency management thematic directs efforts towards a wide range of
emergency situations involving different European organisations due to, e.g., the cross-border
location or criticality. The target GMES system involves highly heterogeneous networked
system, which are connected on the fly as they appear in the environment.

 2 / 9

http://connect-forever.eu/
index.php?option=com_content&view=article&id=124:dynamic-synthesis-of-middleware-connectors&catid=45:ongoing-research-activities
documents/software/mics/mics.jar
http://www.gmes.info/

MICS: Mediator synthesIs to CONNECT componentS

We more specifically concentrate on the connection with a video capturing networked system,
which may have various concrete instances, ranging from fixed cameras to robots with video
sensing capabilities (UGV: Unmanned Ground Vehicle) or flying drones (UAV: Unmanned Aerial
Vehicle). In addition, the videos may be accessed from other heterogeneous systems, including
applications run on the mobile handheld devices of the various actors on site, and the ones
executed by Command and Control (C2) centres.

 Ressources

gmes_preliminary.zip (ongoing)

 Purchase Order Mediation
 Description

To illustrate our approach and provide insight into the benefits of using it to support
interoperability between heterogeneous systems, we used the Purchase Order Mediation
scenario from the Semantic Web Service (SWS) Challenge . It represents typical real-world
problems that are as close to industrial reality as practical. They are intended as common
ground to discuss semantic (and other) Web Service solutions and make different solutions
becoming comparable with respect to the set of features supported for a particular scenario.
The Purchase Order Mediation scenario describes two commercial systems that have
implemented using heterogeneous industrial standards and protocols.

The first system, called Blue, is a customer ordering products. It initiates a purchase process by
starting an order and adding items to it. Then, it places the order giving its client identifier.
Finally, it expects a confirmation for each individual item belonging to the order. The exchanged
information is formatted using the RosettaNet . RosettaNet is an
XML-based standards for the global supply chain and interaction across companies.The
interface signature for Blue (abstracted from WSDL 2.0) is given below, where we provide only
the ontology concepts associated with the syntactic terms embedded in the interface:

 - createOrder(Ø,{orderID})
 - addToOrder({orderID,item},Ø)
 - placeOrder({clientID,orderID},Ø)
 - confirmItem({orderID,item},Ø)

The second system, called Moon uses two backend systems to manage its order processing,
namely a Customer Relationship Management system (CRM) and an Order Management

 3 / 9

documents/software/mics/gmes_preliminary.zip
http://sws-challenge.org/wiki/
http://www.rosettanet.org/

MICS: Mediator synthesIs to CONNECT componentS

System (OMS). First, a client contacts the Customer Relationship Management (CRM) System
to obtain relevant customer details. This details are used by the OMS to assess if the client is
eligible, i.e. if the customer is known and authorized to creating order. Then, individual items
can be added to the order created. First an item is selected, the needed quantity is specified
and the the addition to the order is confirmed. Once all the items have been submitted, the
order can be closed. The interface signature for Moon is given below, where we provide only
the ontology concepts associated with the syntactic terms embedded in the interface:

 - login({clientID},{client})
 - startOrder({client},{orderID})
 - selectItem({orderId,itemID},Ø)
 - setItemQuantity({orderId,quantity},Ø)
 - confirmItem({orderId,itemID,quantity}, {acknowledgment})
 - closeOrder({orderId},{itemID})

A client developed for the Blue Service cannot communicate with the Moon Service due to the
following mismatches:

 - Data mismatches: While Blue specifies its interface using the RosettaNet standard, Moon
uses a propriety legacy system in which data model and message exchange patterns differ from
those of RosettaNet.
 - Behavioral mismatches: In the Blue implementation, the client provides its identifier while
placing the order whereas in the Moon implementation it has to login before performing any
operation. In addition, in the Blue implementation, an item is directly added and only once the
order is placed then confirmations are sent while in Moon, first the item is selected, the quantity
is specified and then confirmed. Hence, there is no need to send confirmations once the order
has been closed.

The SWS-Challenge provides relevant information about the systems involved in two forms:
using current Web Service description (WSDL) and natural language text annotations. We
interpreted the information, defines the ontology and annotated the description. Indeed, the
SWS-Challenge participants are asked to extend the syntactic descriptions in a way that their
algorithm/systems can perform the necessary translation tasks in a fully automatic manner. The
Moon and the customer Web Services (Blue) are provided by the SWS-Challenge organizers
and can not be altered (although their description may be semantically enriched).

 Ressources

gmes_preliminary.zip

 4 / 9

documents/software/mics/gmes_preliminary.zip

MICS: Mediator synthesIs to CONNECT componentS

 Travel Agency

 Description

This scenario illustrates the role of ontologies in handling heterogeneity both at application and
middleware layers. For this purpose, we consider two travel agency systems that have
heterogeneous application interfaces and are implemented using heterogeneous middleware
protocols (one is implemented using SOAP and the other with HTTP REST). We use
application-specific and middleware ontologies to reason about the matching of both application
and middleware behaviour.

The first networked system, called EUTravelAgency, is developed as an RPC-SOAP web
service. Thus, data is transmitted using SOAP request and response envelopes transported
using HTTP Post messages. The service allows users to perform the following operations
concurrently:

 - Selecting a flight. The client must specify a destination, a departure and a return date. The
service returns a list of eligible flights.
 - Selecting a hotel. The client indicates the check-in and check-out dates. The service
returns a list of rooms.
 - Selecting a car to rent. The user indicates the period of rental and their preferred model of
car. The service then proposes a list of cars.
 - Making a reservation. Once the user has chosen a flight and/or a hotel room and/or a car,
they confirm their reservation. The service returns an acknowledgment.

The interface signature for EUTravelAgency (abstracted from WSDL 2.0) is given below, where
we provide only the ontology concepts associated with the syntactic terms embedded in the
interface:

 - SelectFlight({destination,departureDate, returnDate},flightList)
 - SelectHotel({checkIndate,checkOutdate,pref}, roomList)
 - SelectCar({dateFrom,dateTo,model},carList)
 - MakeReservation({flightID,roomID,carID}, Ack)

The second system is called USTravelAgency and allows users to perform the following two
operations:

 5 / 9

MICS: Mediator synthesIs to CONNECT componentS

 - Finding a trip. The client specifies a destination, departure and return date. The service
finds a list of “packages” including a flight and hotel room and car.
 - Making a reservation. The user selects a trip package and confirms it. The service
acknowledges the reception of the selection.

The interface signature, although giving only embedded ontology concepts, is abstracted as
follows:

 - FindTrip({destination,departureDate,returnDate,needCar},flightList)
 - ConfirmTrip(tripID,Ack)

The USTravelAgency service is implemented as a REST web service over the HTTP protocol.

The findTrip operation is performed as an HTTP GET and the confirmTrip operation is
performed using an HTTP POST as shown below (the outputs of both service operations are
formatted using JSON):

 - GET http://ustravelagency.com/rest/tripervice/findTrip/{destination}/
{departureDate}/{returnDate}/{needCar}
 - POST http://ustravelagency.com/rest/tripervice/confirmTrip/{tripID}

A client of the EUTravelAgency cannot interact with the USTravelAgency, and similarly a client
developed for the USTravelAgency cannot communicate with the EUTravelAgency due to the
aforementioned heterogeneity dimensions:

 - Application data. The EUTravelAgency refers to the Flight, Hotel and Car concepts,
whereas the USTravelAgency makes use only of the Trip concept. Additionally, the
EUTravelAgency specifies the departure and the return dates using Greenwich Mean Time
(GMT), while the USTravelAgency uses Pacific Standard Time (PST) to describe them.

 - Application behaviour. In the EUTravelAgency implementation, users can independently
select a flight, a room and a car, whereas in the USTravelAgency implementation all of them are
selected through a package.
 - Middleware data format. The data exchanged in the EUTravelAgency implementation are

 6 / 9

MICS: Mediator synthesIs to CONNECT componentS

encapsulated in a SOAP message, while the input data of the USTravelAgency are passed
through a URL and the output data are formatted using JSON.
 - Middleware behaviour. REST and RPC-SOAP are different architectural styles and induce
heterogeneous control and communication models.

 Ressources

travelAgency.zip

 Photo Sharing
 Description

We study the scenario of photo sharing within a public space such as a stadium. Considering
the ever-growing base of content-sharing applications for handhelds, numerous versions of the
photo sharing application may be available on the spectators’ handhelds, thus calling for
appropriate interoperability solutions that mediate interaction protocols from the application
down to the middleware layer.The target environment allows for both infrastructure-based and
ad hoc peer-to-peer photo sharing.

In the former implementation, a photo sharing service is provided by the stadium, where only
authenticated photographers are able to produce pictures while any spectator may download
and even annotate pictures. Three types of networked are identified, which are respectively
associated with the producer, consumer and server systems. The definition of the systems’
actions specify the associated SOAP functions, i.e., the client-side application actions are
invoked though SOAP middleware using the SOAP-RPCInvoke function, while they are
processed on the server side using the two functions SOAP-RPCReceive and
SOAP-RPCReply. The specific applications actions are rather straightforward. For instance, the
producer invokes the server operations Authenticate and UploadPhoto for authentication and
photo upload, respectively. The consumer may possibly search for, download or comment
photos, or download comments. Finally, the actions of the photo sharing server are
complementary to the. The producer interface is abstracted as follows:

 - Authenticate(login,authenticationToken)
 - UploadPhoto(photo,acknowledgment)

The consumer interface is abstracted as follows:

 - SearchPhotos(photoMetadata,photoMetadataList)

 7 / 9

documents/software/mics/travelAgency.zip

MICS: Mediator synthesIs to CONNECT componentS

 - DownloadPhoto(photoID,photoFile)
 - DownloadComment(photoID,photoComment)
 - CommentPhoto(photoComment,acknowledgment)

The peer-to-peer implementation allows for photo download, upload and annotation by any
spectator, who are then able to directly share pictures using their handhelds. The
peer-to-peer-based implementation defines a single interface signature, as all the peers feature
the same capability. It further illustrates the naming of actions after domain data types of the
application data instead of operations since the actions are data-centric and are performed
through functions of the Lime tuple-space middleware:

 - <Out,PhotoMetadata,Ø,photoMetadata>
 - <Out,PhotoFile,Ø,photoFile>
 - <Rdg,PhotoMetadata,photoMetadata,photoMetadataList>
 - <Rd,PhotoFile,photoID,photoFile>
 - <Rd,PhotoComment,photoID,photoComment>
 - <Out,PhotoComment,Ø,photoComment>
 - <In,PhotoComment,photoID,photoComment>
 - <Rd,PhotoComment,photoID,photoComment>

In both cases, the spectator’s handheld would need to embed the appropriate software
application, which may not be available due to the handheld’s specific platform. Further, the
spectator may not be willing to download yet another photo sharing application, i.e., the
proprietary implementation offered by the stadium, while one is already available on the
handheld.While the photo sharing functionality is present in both implementations, it is unlikely
that they feature the very same interface and behavior.In particular, the RPC interaction
paradigm suits quite well the infrastructure-based service, while a distributed shared data space
is more appropriate for the peer-to-peer version.

 Ressources

photoSharing.zip

 Instant Messaging

See Instant Messaging Interoperability

 8 / 9

documents/software/mics/photoSharing.zip
index.php?option=com_content&view=article&id=206:instant-messaging-interoperability&catid=47:software

MICS: Mediator synthesIs to CONNECT componentS

 -

 9 / 9

