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Abstract. Approximate Bayesian Computation encompasses a family of likelihood-
free algorithms for performing Bayesian inference in models defined in terms of a
generating mechanism. The different algorithms rely on simulations of some sum-
mary statistics under the generative model and a rejection criterion that determines
if a simulation is rejected or not. In this paper, I incorporate Approximate Bayesian
Computation into a local Bayesian regression framework. Using an empirical Bayes
approach, we provide a simple criterion for 1) choosing the threshold above which
a simulation should be rejected, 2) choosing the subset of informative summary
statistics, and 3) choosing if a summary statistic should be log-transformed or not.
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1 Introduction

Approximate Bayesian Computation (ABC) encompasses a family of likelihood-
free algorithms for performing Bayesian inference (Beaumont et al. (2002)).
It originated in population genetics for making inference in coalescent models
(Pritchard et al. (1999)). Compared to MCMC algorithms that aim at pro-
viding a sample from the full posterior distribution p(¢|D), where ¢ denotes a
possibly multi-dimensional parameter and D denotes the data, ABC targets
a partial posterior distribution p(¢4|S) where S denotes a p-dimensional sum-
mary statistic S = (S*,...,SP) typically of lower dimension than the data
D. Despite of this approximation inherent to ABC, its ease of implementa-
tion have fostered ABC applications in population genetics and evolutionary
biology.

1.1 Rejection algorithm

To generate a sample from p(¢|S), the original ABC rejection algorithm is
indeed remarkably simple (Pritchard et al. (1999)):
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1. Generate a parameter ¢ according to the prior distribution 7;

Simulate data D’ according to the model p(D’'|¢);

3. Compute the summary statistic S’ from D’ and accept the simulation if
d(S,S’) < § where d is a distance between the two summary statistics
and § > 0 is a threshold parameter.

N

It is the user’s task to choose a threshold §. Rather than choosing explicitly
a threshold value 0, Beaumont et al. (2002) rather set the percentage of
accepted simulations, the acceptance rate ps, to a given value. For a total
of n simulations, it amounts to setting d to the ps-percent quantile of the
distances d(S;, S), ¢ = 1...n. In the following, we choose d(S5,S") = ||S—5'||
where || - — - || denotes the Euclidean distance, and we consider that each
summary statistic has been rescaled by a robust estimate of its dispersion
(the median absolute deviation).

1.2 Regression adjustment

To weaken the effect of the discrepancy between the observed summary statis-
tic and the accepted ones, Beaumont et al. (2002) proposed two innovations:
weighting and regression adjustment. The weighting is a generalization of the
acceptance-rejection algorithm in which each simulation is assigned a weight
W; = Ks(||S — Sil]) o< K(||S — S;||/0) where K is a smoothing kernel. Beau-
mont et al. (2002) considered an Epanechnikov kernel so that simulations
with [|S — S'|| > ¢ are discarded as in the rejection algorithm.

The regression adjustment step involves a local-linear regression in which
the least-squares criterion

> {6i— (Bo+ (Si = S)TB)Wi, o €R, By €RP, (1)
=1

is minimized. The least-squares estimate is given by
bus = (Bls, Bis) = (XTWsX) "' XT Wy, (2)
where Wj is a diagonal matrix in which the i*" element is W;, and
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To form an approximate sample from p(¢|S), Beaumont et al. (2002)
computed ¢} = BES + €;, where the ¢;’s denote the empirical residuals of
the regression. This translates into the following equation for the regression
adjustment

oF = ¢ — (Si — )" Bls. (4)
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To give an intuition about the benefit arising from the regression adjust-
ment, look at the first and second weighted moments of the ¢;. The first
moment of the ¢! is equal to the local linear estimate Bg and therefore pro-
vides an estimate of the posterior mean. Compared to the weighted mean of
the ¢;’s obtained with the rejection algorithm (the Nadaraya-Watson esti-
mate in the statistics literature), BO is design adaptive, i.e. its bias does not
depend on the design p(S) (Fan 1992). The second moment of the ¢} is equal
to the second moment of the empirical residuals €¢; which is inferior to the
total variance of the ¢;’s. A shrinkage towards Bo is therefore involved by
regression adjustment.

1.3 Potential pitfalls of ABC

As shown by various authors (Joyce and Marjoram (2008), Blum (2010)),
the performances of ABC might be hampered by the curse of dimensionality
when too many summary statistics are included in the analysis. To illustrate
the dramatic effect of the curse of dimensionality, we introduce a simple
Gaussian example. Assume that we observe a sample of size N = 50 in which
each individual is a Gaussian random variable of mean p and variance o2.
We are interested here in the estimation of the variance parameter o2. We

assume the following hierarchical prior for u and o2 (Gelman et al. (2004))

o? ~ Invy?(d.f. = 1) (5)
o~ N(0,0%), (6)
where Invx?(d.f. = v) denotes the inverse chi-square distribution with v

degrees of freedom, and N denotes the Gaussian distribution. We consider
the following summary statistics

(Sh,...,8%) = (&N, 8%, u1, Uz, uz), (7)

where Z y and s3; denotes the empirical mean and variance of the sample, and
the uj, j = 1,2,3, are three Gaussian summary statistics with mean 0 and
variance 1. Of course, the last three summary statistics do not convey any
information for estimating p and o2 and are added here for enhancing the
curse of dimensionality. As displayed in Figure 1, for an observed empirical
variance s3, = 1.144 (obtained from the petal lengths of the virginica species
in Fisher’s iris data), the rejection algorithm (n = 300, ps = 10%) retains
values of 0% as aberrant as 100 and regression adjustment will fail since the
accepted points are to widespread for the local linear approximation to hold.
As suggested by this example, a methods for selecting the relevant summary
statistics is needed.

1.4 Outline of the paper

In this paper, I will provide a criterion for 1) choosing a set of informative
summary statistics among the p summary statistics (S?,...,SP), 2) choos-



4 Blum, M.G.B.

1 summary statistic 5 summary statistics

o B - o3 -

-  Accepted -

< i ©

2 Rejected BRI

§ S § S

© ©

O o | O o |

‘o w el ol

=3 = .

S S s

w e T T T T < T T - T T
01 10 100 1000 01 10 100 100.0

o? o?

Fig. 1. Rejection algorithm for estimating o2 in a Gaussian model. In the left panel,
the empirical variance is the single summary statistic in the rejection algorithm
whereas in the right panel, we considered the five summary statistics given in equa-
tion (7). The horizontal line represents the observed empirical variance % = 1.144.

ing an acceptance rate ps, and 3) choosing if a summary statistic should be
transformed or not. Here I will consider only log transformation but square
root or inverse transformations could also be considered. The first section
presents how to compute the (p + 1)-dimensional parameter § of the local
linear regression in a Bayesian fashion. In the context of Bayesian local regres-
sion, we define the evidence function that will provide us a rationale criterion
for addressing questions 1-3. The second section presents two examples in
which we show that the evidence function provides reasonable choices for ps,
for the selection of the summary statistics, and for the choice of the scale
(logarithmic or not) of the summary statistics.

2 Regression adjustment in a Bayesian fashion

2.1 Local Bayesian regression

Carrying out locally-linear regression in a Bayesian fashion has been studied
by Hjort (2003). The linear regression model can be written as ¢; = 3°+(.S; —
S)T Bt +e. The points (S;, ¢;) are weighted by the W; = K5(||S; —S||)/Ks(0).
By contrast to the least-squares estimate, Bayesian local regression is not
invariant to rescaling of the W;’s. Here, a weight of 1 is given to a simulation
for which S; matches exactly S and the weights decrease from 1 to 0 as the
[|S; — S||’s move from 0 to 4.

Here we assume a zero-mean isotropic Gaussian prior such that § =
(B°,8Y) ~ N(0,a7'I,41), where « is the precision parameter, and I, is
the identity matrix of dimension d. The distribution of the residuals is as-

sumed to be a zero mean Gaussian distribution with variance parameter 72.
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With standard algebra, we find the posterior distribution of the regression
coefficients 5 (Bishop (2006))

B ~ N (Bmar, V), (8)

where
Briap =T VX W;s¢ 9)
V= (alpp + 72 XTWsX). (10)

Bayesian regression adjustment in ABC can be performed with the linear
adjustment of equation (4) by replacing Biy with Bi;,p. By definition of the
posterior distribution, we find that Syap minimizes the regularized least-
squares problem considered in ridge regression (Hoerl and Kennard (1970))

= QLZ (S; — 982w, + ﬂTB. (11)

As seen from equation (11), Bayesian linear regression shrinks the regression
coefficients towards 0 by imposing a penalty on their sizes. The appropri-
ate value for 72, a, and p;s, required for the computation of Byap, will be
determined through the evidence approximation discussed below.

2.2 The evidence approximation

A complete Bayesian treatment of the regression would require to integrate
the hyperparameters over some hyperpriors. Here we adopt a different ap-
proach in which we determine the value of the hyperparameters, by maximiz-
ing the marginal likelihood. The marginal likelihood p(¢|72, o, ps), called the
evidence function in the machine learning literature (MacKay (1992), Bishop
(2006)), is obtained by integrating the likelihood over the the regression pa-
rameters

p(6l7, 0, ps) = / (I p(116, 7)™ p(Bl) dB. (12)

Finding the value of the hyperparameters by maximizing the evidence is
known as empirical Bayes in the statistics literature (Gelman et al. (2004)).
Here, we do not give the details of the computation of the evidence and refer
the reader to Bishop (2006). The log of the evidence is given by

p+1 N 1 1, N
log p(¢|72, o, ps) = S loga—TW IOgTZ—E(BMAP)—§ log |V 1\—TW log 2,
(13)
where Ny = > W;. By maximizing the log of the evidence with respect to

«, we find that

a= (14)

61\7/1 APﬁMAP
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where v is the effective number of parameters (of summary statistics here)
vy=(p+1) —aTr(V). (15)
Similarly, setting § log p(¢|72, o, ps) /072 = 0 gives

n (S — S\T 321
7_2 _ Zi:1(¢z Nf/’vgz_ ’YS) ﬁ) Wz’ (16)

Equations (14) and (16) are implicit solutions for the hyperparameters since
Buap, V, and v depend on o and 72. For maximizing the log-evidence, we first
update Syvap and V' with equations (9) and (10), then we update v using
equation (15), and finally update o and 72 with equations (14) and (16).
This updating scheme is applied in an iterative manner and stopped when
the difference between two successive iterations is small enough. Plugging
the values of these estimates for v and 72 into equation (13), we obtain the
log-evidence for the acceptance rate log p(¢|ps).
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Fig. 2. Log of the evidence as a function of the acceptance rate for the generative
model of equation (17). A total of 1,000 simulation is performed and the optimal
acceptance rate is found for ps = 37%.

3 The evidence function as an omnibus criterion

3.1 Choosing the acceptance rate

To show that the evidence function provide a good choice for the tolerance
rate, we introduce the following toy example. We denote ¢, the parameter of
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Fig. 3. Plot of the accepted points in the rejection algorithm for four different values
of the parameter c. In the four plots, the acceptance rate is chosen by maximizing
the evidence function p(d|ps).

interest and S the data which is equal here to the summary statistic. The
generative model can be described as

Qb ~ u—c,c ce R:

S ~/\/< € g2 (.05)2) , (17)

1+e¢’0

where U, ; denotes the uniform distribution between a and b. We assume
that the observed data is S = 0.5. For ¢ = 5, Figure 2 displays that the
evidence function has a maximum around ps = 37%. As seen in Figure 3,
this value of ps corresponds to a large enough neighborhood around S = 0.5
in which the relationship between S and ¢ is linear. For increasing values of
¢ in equation (17), the width of the neighborhood-around S = 0.5-in which
the linear approximation holds, decreases. Figure 3 shows that the evidence
function does a good job at selecting neighborhoods of decreasing widths in
which the relationship between S and ¢ is linear.

3.2 Choosing the summary statistics

The evidence function can be used to choose a subset of predictor variables in
a regression setting. For example, Bishop (2006) used the evidence to select
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the order of the polynomial in a polynomial regression. Here we show that
the evidence function provides a criterion for choosing the set of informative
summary statistics in ABC.

Plugging the optimal value for ps in equation (13), we obtain the evi-
dence as a function of the set of summary statistics p(¢|(S?,...,S?)). To
find an optimal subset of summary statistics, we use a standard stepwise
approach. We first include the summary statistic S/t (j; € {1,...,p}) that
gives the largest value of the evidence p(4]S7t). We then evaluate the evi-
dence p(¢|(S7,872)) (j2 € {1,...,p}) and include a second summary statis-
tics if maxj, p(¢](S71,592)) > p(¢|S7). If a second summary statistics is
not included in the optimal subset, the algorithm is stopped. Otherwise, the
process is repeated until an optimal subset has been found.

To check the validity of the algorithm, we apply this stepwise procedure to
the Gaussian model of Section 1.3 in which there are five different summary
statistics. To estimate the posterior distribution of o2, we apply the linear
correction adjustment of equation (4) to logo? and then use the exponen-
tial function to return to the original scale. This transformation guarantees
that the corrected values will be positive. For each test replicate, we perform
n = 10,000 simulations of the generative model of Section 1.3 and select an
optimal subset of summary statistics with the stepwise procedure. Perform-
ing a total of one hundred test replicates, we find that the stepwise procedure
always chooses the subset of summary statistics containing the empirical vari-
ance only. Figure 4 displays summaries of the posterior distribution obtained
with ABC using five summary statistics or with the empirical variance only.
As already suggested by Figure 1, the posterior distribution of ¢ obtained
with the five summary statistics is extremely different from the exact poste-
rior distribution (a scaled inverse chi-square distribution, see Gelman et al.
(2004)). By contrast, when considering only the empirical variance, we find
a good agreement between the true and the estimated posterior.

3.3 Choosing the scale of the summary statistics

Here we show that changing the scale of the summary statistics can have a
dramatic effect in ABC. We perform a second experiment in which we re-
place the empirical variance by the log of the empirical variance in the set
of five summary statistics. Performing a total of one hundred test replicates,
we find that the stepwise procedure always chooses the subset containing the
log of the empirical variance only. However, by contrast to the previous ex-
periment, we find that the posterior distribution of o2 obtained with the five
summary statistics is in good agreement with the exact posterior distribution
(see Figure 5). As usual for regression model, this simple experiment shows
that better regression models can be obtained with a good transformation of
the predictor variables.

We test here if the evidence function is able to find a good scale for the
summary statistics. In one hundred test experiment, we compare p(log o%|s%;)
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Fig. 4. Boxplots of the 2.5%, 50%, and 97.5% estimated quantiles of the posterior
distribution for 0. ABC with one summary statistics has been performed with the
empirical variance only. A total of 100 runs of ABC has been performed, each of
which consisting of n = 10,000 simulations.

to p(log 02| log(s%/)). We find that the evidence function always selects log(s%;)
showing that a good scale for the summary statistics can be found with the
evidence function.

3.4 Using the evidence without regression adjustment

If the standard rejection algorithm of Section 1.1 is considered without any
regression adjustment, it is also possible to use the evidence function. The
local Bayesian framework is now ¢; = ¢ + € in which each points (S;, ¢;) is
weighted by W; = Ks(||S; — S||)/Ks(0). Assuming that the prior for 5y is
N(0, ), we find for the evidence function

1 N 1 N
log p(¢|7%, o, ps) = B log a—TW log TZ—E(B()’MAP)—i log |o¢+772NW|—TW log 2,

(18)
where

—2 n

-
= W, bq 19
Bo,MAP ot INy ¢ (19)

E(Bo) = 12 Z Wi(d: — Bo)* + gﬁo? (20)
i=1

52 2
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Fig. 5. Boxplots of the 2.5%, 50%, and 97.5% estimated quantiles of the posterior
distribution for ¢2. In the ABC algorithms the empirical variance has been log-
transformed.

References

BEAUMONT, M. A., ZHANG, W. and BALDING, D. J. (2002): Approximate
Bayesian computation in population genetics. Genetics 162: 2025-2035.

BISHOP, C. M. (2006): Pattern recognition and machine learning. Springer

BLUM, M.G.B. (2010) Approximate Bayesian Computation: a nonparametric per-
spective. Journal of the American Statistical Association, to appear.

FAN, J. (1992): Design-adaptive nonparametric regression. Journal of the American
Statistical Association 87, 998-1004.

GELMAN, A., CARLIN J. B., STERN H. S. and RUBIN D. B. (2004): Bayesian
Data Analysis. Chapman & Hall/CRC.

HJORT, N. L. (2003): Topics in nonparametric Bayesian statistics (with discus-
sion). In: P. J. Green, N. L. Hjort and S. Richardson (Eds.): Highly Structured
Stochastic Systems. Oxford University Press, 455-487.

HOERL, A. E. and KENNARD, R. (1970): Ridge regression: biased estimation for
nonorthogonal problems. Technometrics 12, 55-67.

JOYCE, P. and MARJORAM, P. (2008): Approximately Sufficient Statistics and
Bayesian Computation. Statistical Applications in Genetics and Molecular Bi-
ology 7, 26.

MACKAY, D. J. C. (1992): Bayesian interpolation. Neural Computation 4, 415-447.

PRITCHARD, J. K., SEIELSTAD, M. T., PEREZ-LEZAUN, A. and FELDMAN,
M. W. (1999): Population growth of human Y chromosomes: a study of Y
chromosome microsatellites. Molecular Biology and Evolution 16, 1791-1798.



