# Symbolic Data Analysis: Dissimilarity/Similarity/Distance Measures (for Clustering)

#### Lynne Billard

Department of Statistics University of Georgia lynne@stat.uga.edu

COMPSTAT - August 2010

## Distances → Clustering

Consider Veterinary Data (Table 7.5)

| $\omega_{\scriptscriptstyle \sf II}$ | Animal   | Y <sub>1</sub> Height | Y <sub>2</sub> Weight |
|--------------------------------------|----------|-----------------------|-----------------------|
| $\omega_1$                           | Horse M  | [120.0, 180.0]        | [222.2, 354.0]        |
| $\omega_2$                           | Horse F  | [158.0, 160.0]        | [322.0, 355.0]        |
| $\omega_3$                           | Bear M   | [175.0, 185.0]        | [117.2, 152.0]        |
| $\omega_4$                           | Deer M   | [37.9, 62.9]          | [22.2, 35.0]          |
| $\omega_5$                           | Deer F   | [25.8, 39.6]          | [15.0, 36.2]          |
| $\omega_6$                           | Dog F    | [22.8, 58.6]          | [15.0, 51.8]          |
| $\omega_7$                           | Rabbit M | [22.0, 45.0]          | [0.8, 11.0]           |
| $\omega_8$                           | Rabbit F | [18.0, 53.0]          | [0.4, 2.5]            |
| $\omega_9$                           | Cat M    | [40.3, 55.8]          | [2.1, 4.5]            |
| $\omega_{10}$                        | Cat F    | [38.4, 72.4]          | [2.5, 6.1]            |



All animals  $\omega_u, u=1,\ldots,10$ 



Animals  $\omega_u, u = 4, \dots, 10$ 

#### Distance Measures, Similarity/Dissimilarity Matrices:

Goal is to subdivide the complete set of observations E into subsets  $P_r = (C_1, \dots, C_r) \equiv E$  with  $\cup C_k = E$ , and  $C'_k \cap C_k = \phi, k' \neq k$ 

#### Mathematically,

use distance measures to produce what we see visually in veterinary data:



Let the dissimilarity measure between objects a and b be d(a, b), and the corresponding similarity measure be s(a, b).

[Typically, d(a, b) and s(a, b) have reciprocal /inverse relationship, e.g., d(a, b) = 1s(a, b). So, consider d(a, b).]

Definition 7.1: Let a and b be any two objects in E. Then, a dissimilarity measure d(a,b) is a measure that satisfies

- (i) d(a,b) = d(b,a);
- (ii) d(a, a) = d(b, b) < d(a, b) for all  $a \neq b$ ;
- (iii) d(a, a) = 0 for all  $a \in E$ .

Definition 7.2: A distance measure (or metric) is a dissimilarity measure as defined in Definition 7.1 which further satisfies

- (iv) d(a, b) = 0 implies a = b;
- (v)  $d(a,b) \leq d(a,c) + d(c,b)$  for all  $a,b,c \in E$ .

Then from property (i), dissimilarity d(a, b) is symmetric, and (v) is the triangle property

Definition 7.3: An ultrametric measure is a distance measure as defined in Definition 7.2 which also satisfies

(vi)  $d(a,b) \leq Max\{d(a,c),d(c,b)\}$  for all  $a,b,c \in E$ .

Definition 7.3: An ultrametric measure is a distance measure as defined in Definition 7.2 which also satisfies

(vi) 
$$d(a,b) \leq Max\{d(a,c),d(c,b)\}\$$
 for all  $a,b,c\in E.$ 

Ultrametrics and hierarchies are in 1-1 correspondence; so need ultrametrics to compare hierarchies.

E.g.,

$$d(a,b) \leq \max\{d(a,c),d(b,c)\}$$



$$d(a, b) \ge \max\{d(a, c), d(b, c)\}$$
- NOT ultrametric

Definition 7.4: For the collection of objects  $a_1, \ldots, a_m \in E$ , the dissimilarity matrix (or, distance matrix) is the  $m \times m$  matrix D with elements  $d(a_i, a_j), i, j = 1, \ldots, m$ .





$$d(a, b) \le \max\{d(a, c), d(b, c)\}$$
- ultrametric

$$\mathbf{D} = \left[ \begin{array}{ccc} 0 & 2 & 3 \\ 2 & 0 & 3 \\ 3 & 3 & 0 \end{array} \right]$$

$$d(a, b) \ge \max\{d(a, c), d(b, c)\}\$$
- NOT ultrametric

$$\mathbf{D} = \left[ \begin{array}{ccc} 0 & 2 & 1.5 \\ . & 0 & 1.2 \\ . & . & 0 \end{array} \right]$$

Notice property (v)  $d(a, b) \le d(a, c) + d(c, b)$  for all a, b, c, holds.



Definition 7.5: A dissimilarity (or distance) matrix whose elements d(a,b) monotonically increase as they move away from the diagonal (by column and by row) is called a Robinson matrix. (Some use monotonically non-decreasing)

Robinson matrices are in 1-1 correspondence with indexed pyramids.







- ultrametric

$$\mathbf{D} = \begin{bmatrix} 0 & 2 & 3 \\ 2 & 0 & 3 \\ 3 & 3 & 0 \end{bmatrix}$$
(Not ?) Robinson

- NOT ultrametric

$$\mathbf{D} = \left[ \begin{array}{ccc} 0 & 2 & 1.5 \\ . & 0 & 1.2 \\ . & . & 0 \end{array} \right]$$

Not Robinson

- ultrametric

$$\mathbf{D} = \left[ \begin{array}{ccc} 0 & 2 & 3 \\ . & 0 & 2.5 \\ . & . & 0 \end{array} \right]$$

Robinson

Definition 7.6: The Cartesian join  $A \oplus B = (A_1 \oplus B_1, \ldots, A_p \oplus B_p)$  between two sets A and B is their componentwise union where  $A_j \oplus B_j = "A_j \cup B_j"$ . When A and B are multi-valued objects with  $A_j = \{a_{j1}, \ldots, a_{js_j}\}$  and  $B_j = \{b_{j1}, \ldots, b_{jt_j}\}$ , then

$$A_j \bigoplus B_j = \{a_{j1}, \dots, b_{jt_j}\}, \ j = 1, \dots, p,$$
 (7.1)

is the set of values in  $A_j$ ,  $B_j$  or both. When A and B are interval-valued objects with  $A_j = [a_i^A, b_i^A]$  and  $B_j = [a_i^B, b_i^B]$ , then

$$A_j \bigoplus B_j = [Min(a_j^A, a_j^B), Max(b_j^A, b_j^B)]$$
 (7.2)

Definition 7.7: The Cartesian meet  $A \otimes B = (A_1 \otimes B_1, \ldots, A_p \otimes B_p)$  between two sets A and B is their componentwise intersection where  $A_j \otimes B_j = "A_j \cap B_j"$ . When A and B are multi-valued objects, then  $A_j \otimes B_j$  is the list of possible values from  $Y_j$  common to both. When A and B are interval-valued objects forming overlapping interval on  $Y_j$ ,

$$A_j \bigotimes B_j = [Max(a_j^A, a_j^B), Min(b_j^A, b_j^B)]$$

$$(7.3)$$

and when  $A_j \cap B_j = \phi$  , then  $A_j \bigotimes B_j = 0$ .



```
E.g.1, multi-valued variables . . .
A = (\{blue, gray, pink, green\}, \{shirt, dress\}, \{small, large\})
 B = (\{ blue, white \}, \{ shirt, slacks, dress \}, \{ small, medium \} \}
Then, the join is
A \bigoplus B = \{\{b \mid b \in B\}, \{s \in B
large \}).
and the meet is
A \otimes B = (\{blue\}, \{shirt, dress\}, \{small\}).
E.g.2, interval-valued variables . . .
A = ([6, 12], [16, 22]), B = ([8, 10], [18, 24])
Then the join is
A \oplus B = ([6, 12], [16, 24]),
and the meet is
A \otimes B = ([8, 10], [18, 22]).
E.g.3, mixed variables (multi- and interval-valued) ...
Let A = ([6, 12], \{\text{shirt, dress}\}), B = ([8, 10], \{\text{shirt, slacks, dress}\}).
Then, A \bigoplus B = ([6, 12], \{\text{shirt, slacks, dress}\}), A \bigotimes B = ([8, 10], \{\text{shirt, dress}\})
                                                                                                                                                                                                                                                                                                         ◆□ > ◆□ > ◆ き > ◆き > き の < ○</p>
```

#### Multi-valued Variables:

Write observations  $\xi(\omega_u)$  as

$$\xi(\omega_u) = (\{Y_{u1k_1}, k_1 = 1, \dots, k_1^u\}; \dots; \{Y_{u1k_p}, k_p = 1, \dots, k_p^u\}).$$
 (7.14)

Definition 7.15: The Gowda-Diday dissimilarity measure between two multi-valued observations  $\xi(\omega_1)$  and  $\xi(\omega_2)$  of the form (7.14) is

$$D(\omega_1,\omega_2) = \sum_{j=1}^p [D_{1j}(\omega_1,\omega_2) + D_{2j}(\omega_1,\omega_2)]$$

where

$$D_{1j}(\omega_1, \omega_2) = (|k_j^1 - k_j^2|)/k_j, \quad j = 1, \dots, p,$$
(7.15)

$$D_{2j}(\omega_1, \omega_2) = (k_j^1 + k_j^2 - 2k_j^*)/k_j, \quad j = 1, \dots, p,$$
(7.16)

where  $k_j$  is the number of values from  $\mathcal{Y}_j$  in the join and  $k_i^*$  is the number in the meet of  $\xi(\omega_1)$  and  $\xi(\omega_2)$ , respectively.

 $D_{1i}(\omega_1, \omega_2)$  is a span distance (relative sizes) component, and  $D_{2i}(\omega_1,\omega_2)$  is a relative content component, of the distance

Write, 
$$D(\omega_1, \omega_2) = \sum_i \phi_i(\omega_1, \omega_2)$$



E.g., Color and Habitat of Birds (Table 7.2)  $Y_1 = \text{Color}, Y_2 = \text{Habitat}$ 

| $\omega_{u}$ | Species  | $Y_1 = Color$      | $Y_2 = Habitat$ |
|--------------|----------|--------------------|-----------------|
| $\omega_1$   | species1 | {red, black}       | {urban, rural}  |
| $\omega_2$   | species2 | {red}              | {urban}         |
| $\omega_3$   | species3 | {red, black, blue} | {rural}         |
| $\omega_4$   | species4 | {red, black,blue}  | {urban, rural}  |

$$D(\omega_1, \omega_2) = \sum_{j=1}^{p} [D_{1j}(\omega_1, \omega_2) + D_{2j}(\omega_1, \omega_2)] = \sum_j \phi_j(\omega_1, \omega_2)$$

$$D_{1j}(\omega_1,\omega_2) = (|k_j^1 - k_j^2|)/k_j, \quad D_{2j}(\omega_1,\omega_2) = (k_j^1 + k_j^2 - 2k_j^*)/k_j, \ j = 1,\ldots,p, \ (7.14 - 7.15)$$

where  $k_j$  is the number of values from  $\mathcal{Y}_j$  in the join and  $k_j^*$  is the number in the meet of  $\xi(\omega_1)$  and  $\xi(\omega_2)$ , respectively, and  $k_j^u$  is the number of values from  $\mathcal{Y}_j$  in  $\omega_u$ .

For 
$$Y_1: D_{11}(\omega_1, \omega_3) = (|2-3|)/3 = 1/3$$
;  $D_{21}(\omega_1, \omega_3) = (2+3-2\times 2)/3 = 1/3$ .

For 
$$Y_2$$
:  $D_{12}(\omega_1, \omega_3) = (|2-1|)/2 = 1/2$ ;  $D_{22}(\omega_1, \omega_3) = (2+1-2\times 1)/2 = 1/2$ .

$$\phi_1(\omega_1, \omega_3) = D_{11}(\omega_1, \omega_3) + D_{21}(\omega_1, \omega_3) = 1/3 + 1/3 = \frac{2}{3};$$
  
$$\phi_2(\omega_1, \omega_3) = D_{12}(\omega_1, \omega_3) + D_{22}(\omega_1, \omega_3) = 1/2 + 1/2 = \frac{1}{3};$$

$$D(\omega_1, \omega_3) = \sum_{i} \phi_i(\omega_1, \omega_3) = 2/3 + 1 = 5/3.$$



The complete table of Gowda-Diday distances,  $D(\omega_u, \omega_{u'}) \equiv \phi(\omega_u, \omega_{u'})$ :

|                            |            | $Y_1 = Co$ | lor                            |            | $(Y_1, Y_2)$ |                                                                                                              |                               |
|----------------------------|------------|------------|--------------------------------|------------|--------------|--------------------------------------------------------------------------------------------------------------|-------------------------------|
| $(\omega_{u},\omega_{u'})$ | $D_1(.,.)$ | $D_2(.,.)$ | $\phi_1(\omega_u,\omega_{u'})$ | $D_1(.,.)$ | $D_2(.,.)$   | $\phi_2(\omega_{\scriptscriptstyle I\hspace{1em}I},\omega_{\scriptscriptstyle I\hspace{1em}I\hspace{1em}I})$ | $\phi(\omega_u, \omega_{u'})$ |
| $(\omega_1,\omega_2)$      | 1/2        | 1/2        | 1                              | 1/2        | 1/2          | 1                                                                                                            | 2                             |
| $(\omega_1,\omega_3)$      | 1/3        | 1/3        | 2/3                            | 1/2        | 1/2          | 1                                                                                                            | 5/3                           |
| $(\omega_1,\omega_4)$      | 1/3        | 1/3        | 2/3                            | 0          | 0            | 0                                                                                                            | 2/3                           |
| $(\omega_2,\omega_3)$      | 2/3        | 2/3        | 4/3                            | 0          | 1            | 1                                                                                                            | 7/3                           |
| $(\omega_2,\omega_4)$      | Ö          | 2/3        | 2/3                            | 1/2        | 1/2          | 1                                                                                                            | 5/3                           |
| $(\omega_3,\omega_4)$      | 0          | 0          | 0                              | 1/2        | 1/2          | 1                                                                                                            | 1                             |

Distance matrix is: 
$$\mathbf{D} = \begin{bmatrix} 0 & 2 & 5/3 & 2/3 \\ & 0 & 7/3 & 5/3 \\ & & 0 & 1 \\ & & & 0 \end{bmatrix}$$

This is not normalized for scale differences.

To account for scale differences, use  $\phi'(\omega_u, \omega_{u'}) = \phi(\omega_u, \omega_{u'})/|\mathcal{Y}|$  where  $|\mathcal{Y}|$  is number of possible values from  $|\mathcal{Y}|$  covered by E

The complete table of Gowda-Diday distances,  $D(\omega_u, \omega_{u'}) \equiv \phi(\omega_u, \omega_{u'})$ :

|                          | $Y_1 = \text{Color}$ |                | $Y_2 = 1$     | Habitat        | $(Y_1, Y_2)$                   |                                 |
|--------------------------|----------------------|----------------|---------------|----------------|--------------------------------|---------------------------------|
| $(\omega_u,\omega_{u'})$ | $\phi_1(.,.)$        | $\phi_1'(.,.)$ | $\phi_2(.,.)$ | $\phi_2'(.,.)$ | $\phi(\omega_{u},\omega_{u'})$ | $\phi'(\omega_{u},\omega_{u'})$ |
| $(\omega_1,\omega_2)$    | 1                    | 1/3            | 1             | 1/2            | 2                              | 5/6                             |
| $(\omega_1,\omega_3)$    | 2/3                  | 2/9            | 1             | 1/2            | 5/3                            | 13/18                           |
| $(\omega_1,\omega_4)$    | 2/3                  | 2/9            | 0             | 0              | 2/3                            | 2/9                             |
| $(\omega_2,\omega_3)$    | 4/3                  | 4/9            | 1             | 1/2            | 7/3                            | 17/18                           |
| $(\omega_2,\omega_4)$    | 2/3                  | 2/9            | 1             | 1/2            | 5/3                            | 13/18                           |
| $(\omega_3,\omega_4)$    | 0                    | 0              | 1             | 1/2            | 1                              | 1/2                             |

$$|\mathcal{Y}_1|=3$$
 and  $|\mathcal{Y}_2|=2$ 

#### Gowda-Diday distance matrix:

#### Normalized:

$$\mathbf{D}' = \left[ \begin{array}{cccc} 0 & 5/6 & \mathbf{13/18} & 2/9 \\ \cdot & 0 & 17/18 & 13/18 \\ \cdot & \cdot & 0 & 1/2 \\ \cdot & \cdot & \cdot & 0 \end{array} \right]$$

#### Non-Normalized:

$$\mathbf{D} = \left[ \begin{array}{cccc} 0 & 2 & \frac{5/3}{3} & \frac{2}{3} \\ \cdot & 0 & \frac{7}{3} & \frac{5}{3} \\ \cdot & \cdot & 0 & 1 \\ \cdot & \cdot & \cdot & 0 \end{array} \right]$$

Recall observations  $\xi(\omega_u)$  written as

$$\xi(\omega_u) = (\{Y_{u1k_1}, k_1 = 1, \dots, k_1^u\}; \dots; \{Y_{u1k_p}, k_p = 1, \dots, k_p^u\}). \tag{7.14}$$

Definition 7.16: The Ichino-Yaguchi dissimilarity measure between two multi-valued observations  $\xi(\omega_1)$  and  $\xi(\omega_2)$  of the form of Equation (7.14) for the variable  $Y_j$ ,  $j=1,\ldots,p$ , is

$$\phi_j(\omega_1, \omega_2) = k_j - k_j^* + \gamma(2k_j^* - k_j^1 - k_j^2), \ j = 1, \dots, p,$$
 (7.17)

where  $k_j$  is the number of values from  $\mathcal{Y}_j$  in the join and  $k_j^*$  is the number in the meet of  $\xi(\omega_1)$  and  $\xi(\omega_2)$ , respectively, with  $k_j^u$  the number of values from  $\mathcal{Y}_j$  in observation  $\omega_u$ ; and where  $0 \leq \gamma \leq 0.5$  is a prespecified constant.

For the Bird Data (Table 7.4)

|                          | $\phi_j(\omega)$ | $(u, \omega_{u'})$ | Non-No | rmalized | Normalized <sup>†</sup> |       |
|--------------------------|------------------|--------------------|--------|----------|-------------------------|-------|
| $(\omega_u,\omega_{u'})$ | $Y_1 = Color$    | $Y_2 = Habitat$    | q = 1  | q=2      | q = 1                   | q=2   |
| $(\omega_1,\omega_2)$    | $1 + \gamma(-1)$ | $1 + \gamma(-1)$   | 0.500  | 0.707    | 0.208                   | 0.300 |
| $(\omega_1,\omega_3)$    | $1 + \gamma(-1)$ | $1 + \gamma(-1)$   | 0.500  | 0.707    | 0.208                   | 0.300 |
| $(\omega_1,\omega_4)$    | $1 + \gamma(-1)$ | 0                  | 0.250  | 0.500    | 0.083                   | 0.167 |
| $(\omega_2,\omega_3)$    | $2 + \gamma(-2)$ | $2 + \gamma(-2)$   | 1.000  | 1.414    | 0.417                   | 0.601 |
| $(\omega_2,\omega_4)$    | $2 + \gamma(-2)$ | $1 + \gamma(-1)$   | 0.750  | 1.118    | 0.181                   | 0.417 |
| $(\omega_3,\omega_4)$    | 0                | $1 + \gamma(-1)$   | 0.250  | 0.500    | 0.125                   | 0.250 |

 $<sup>^{\</sup>dagger}$  Normalized by  $\mathcal{Y}_{j}$ 

Interval-valued data -

$$\xi_u \equiv \xi(\omega_u) = ([a_{uj},b_{uj}], \ j=1,\ldots,p), u=1,\ldots,m$$

Definition 7.18: The Ichino-Yaguchi dissimilarity measure between two interval-valued observations  $\xi(\omega_{u_1})$  and  $\xi(\omega_{u_2})$   $\xi(\omega_u) = [a_{uj}, b_{uj}], \ u = 1, ..., m$  for the variable  $Y_j$ , j = 1, ..., p, is

$$\phi_{j}(\omega_{u_{1}}, \omega_{u_{2}}) = |\omega_{u_{1}j} \oplus \omega_{u_{2}j}| - |\omega_{u_{1}j} \otimes \omega_{u_{2}j}| + \gamma(2|\omega_{u_{1}j} \otimes \omega_{u_{2}j}| - |\omega_{u_{1}j}| - |\omega_{u_{2}j}|$$
 (7.27)

where |A| is the length of the interval A=[a,b], i.e., |A|=b-a, and  $0\leq\gamma\leq0.5$  is a prespecified constant.

Definition 7.19: The generalized Minkowski distance of order  $q\geq 1$  between two interval-valued objects  $\omega_{u_1}$  and  $\omega_{u_2}$  is

$$d_q(\omega_{u_1}, \omega_{u_2}) = \left(\sum_{j=1}^p w_j^* [\phi_j(\omega_{u_1}, \omega_{u_2})]^q\right)^{1/q}$$
(7.28)

where  $\phi_j(\omega_{u_1},\omega_{u_2})$  is the Ichino-Yaguchi distance (of Definition 7.18, eqn(7.27)) and  $w_j^*$  is an appropriate weight function associated with  $Y_j, j=1,\ldots,p$ .

When  $q = 1 \rightarrow \text{City Block distance}$ When  $q = 2 \rightarrow \text{Euclidean distance}$ 



Take the first 3 observations only of veterinary data:

| $\omega_{\it u}$ | Animal  | $Y_1$ Height   | Y <sub>2</sub> Weight |
|------------------|---------|----------------|-----------------------|
| $\omega_1$       | Horse M | [120.0, 180.0] | [222.2, 354.0]        |
| $\omega_2$       | Horse F | [158.0, 160.0] | [322.0, 355.0]        |
| $\omega_3$       | Bear M  | [175.0, 185.0] | [117.2, 152.0]        |

$$\phi_{j}(\omega_{u_{1}}, \omega_{u_{2}}) = |\omega_{u_{1}j} \oplus \omega_{u_{2}j}| - |\omega_{u_{1}j} \otimes \omega_{u_{2}j}| + \gamma(2|\omega_{u_{1}j} \otimes \omega_{u_{2}j}| - |\omega_{u_{1}j}| - |\omega_{u_{2}j}|$$
(7.27)

$$A_j \oplus B_j = [Min(a_j^A, a_j^B), Max(b_j^A, b_j^B)]$$

$$(7.2)$$

$$A_j \otimes B_j = [Max(a_j^A, a_j^B), Min(b_j^A, b_j^B)]$$

$$(7.3)$$

For (HorseF, BearM) and  $Y_1$ ,

$$\begin{split} \phi_1(\omega_{u_1},\omega_{u_2}) &= |\textit{Min}(158,175), \textit{Max}(160,185)| - |\textit{Max}(158,175), \textit{Min}(160,185)| \\ &+ \gamma(2|\textit{Max}(158,175), \textit{Min}(160,185)| - |160 - 158| - |185 - 175|) \\ &= |158,185| - |175,160| + \gamma(2 \times 0 - 2 - 12) \\ &= 27 - 0 + \gamma(2 \times 0 - 12) = 27 + \gamma(-12) \end{split}$$

Note, the meet |175, 160| is empty.



For the first 3 observations only of veterinary data:

The complete set of Ichino-Yaguchi Dissimilarity measures is:

|                               | $\phi_j$ (         | $\gamma =$               | : 1/2 |       |
|-------------------------------|--------------------|--------------------------|-------|-------|
| $(\omega_{u_1},\omega_{u_2})$ | j = 1              | j = 2                    | j=1   | j = 2 |
| (HorseM, HorseF)              | $58 + \gamma(-58)$ | $100.8 + \gamma(-100.8)$ | 29    | 50.4  |
| (HorseM, BearM)               | $60 + \gamma(-60)$ | $236.8 + \gamma(-166.6)$ | 30    | 153.5 |
| (HorseF, BearM)               | $27 + \gamma(-12)$ | $237.8 + \gamma(-67.8)$  | 21    | 203.9 |

Definition 7.19: The generalized Minkowski distance of order  $q \geq 1$  between two interval-valued objects  $\omega_{u_1}$  and  $\omega_{u_2}$  is

$$d_q(\omega_{u_1}, \omega_{u_2}) = \left(\sum_{j=1}^p w_j^* [\phi_j(\omega_{u_1}, \omega_{u_2})]^q\right)^{1/q}$$
(7.28)

where  $\phi_j(\omega_{u_1},\omega_{u_2})$  is the Ichino-Yaguchi distance (of Definition 7.18, eqn(7.27)) and  $w_j^*$  is an appropriate weight function associated with  $Y_j, j=1,\ldots,p$ . q=1 — City Block distance q=2 — Euclidean distance

The normalized Euclidean distance of order q between two objects  $\omega_{u_1}$  and  $\omega_{u_2}$  is

$$d_2(\omega_{u_1}, \omega_{u_2}) = ([1/\rho] \sum_{j=1}^{\rho} w_j^* [\phi_j(\omega_{u_1}, \omega_{u_2})]^q)^{1/q}$$
 (7.30)

where  $\phi_j(\omega_{u_1},\omega_{u_2})$  is the Ichino-Yaguchi distance (of Definition 7.18, eqn(7.27)) and  $w_j^*$  is an appropriate weight function associated with  $Y_j, j=1,\ldots,p$ .

|                               | $\phi_j$ (         | $\gamma =$               | : 1/2 |       |
|-------------------------------|--------------------|--------------------------|-------|-------|
| $(\omega_{u_1},\omega_{u_2})$ | j = 1              | j = 2                    | j=1   | j = 2 |
| (HorseM, HorseF)              | $58 + \gamma(-58)$ | $100.8 + \gamma(-100.8)$ | 29    | 50.4  |
| (HorseM, BearM)               | $60 + \gamma(-60)$ | $236.8 + \gamma(-166.6)$ | 30    | 153.5 |
| (HorseF, BearM)               | $27 + \gamma(-12)$ | $237.8 + \gamma(-67.8)$  | 21    | 203.9 |

$$\begin{split} \phi_j(\omega_{u_1}, \omega_{u_2}) &= |\omega_{u_1 j} \oplus \omega_{u_2 j}| - |\omega_{u_1 j} \otimes \omega_{u_2 j}| + \gamma (2|\omega_{u_1 j} \otimes \omega_{u_2 j}| - |\omega_{u_1 j}| - |\omega_{u_2 j}| \\ d_2(\omega_{u_1}, \omega_{u_2}) &= ([1/\rho] \sum_{j=1}^{\rho} w_j^* [\phi_j(\omega_{u_1}, \omega_{u_2})]^2)^{1/2}, \quad w_j^* &= |\mathcal{Y}_j| \end{split}$$

Unweighted (i.e.,  $w_j^* = 1$ ), the normalized Euclidean distance for (HorseF, BearM) is,

$$\begin{aligned} d_2(\omega_{u_1}, \omega_{u_2}) &= ([1/\rho] \sum_{j=1}^{\rho} \omega_j^* [\phi_j(\textit{HorseF}, \textit{BearM})]^2)^{1/2} \\ &= ((1/2)[(21)^2 + (203.9)^2])^{1/2} = 144.94 \end{aligned}$$

Weighted (i.e.,  $w_j^* = \mathcal{Y}_j$ ), the normalized Euclidean distance for (HorseF, BearM) is,

$$d_2(\omega_{u_1},\omega_{u_2}) = ([1/p]\sum_{j=1}^p w_j^*\omega_j^*[\phi_j(\textit{HorseF},\textit{BearM})]^2)^{1/2}$$



#### Normalized Euclidean distances

using Ichino-Yaguchi Dissimilarity measures is  $(\gamma = 1/2)$ :

|                               | $\phi_j(\omega_u)$ | $_{1},\omega_{u_{2}})$ | $d_2(\omega_{u_1},\omega_{u_2})$ |          |  |
|-------------------------------|--------------------|------------------------|----------------------------------|----------|--|
| $(\omega_{u_1},\omega_{u_2})$ | j=1                | j = 2                  | Unweighted                       | Weighted |  |
| (HorseM, HorseF)              | 29                 | 50.4                   | 41.117                           | 3.437    |  |
| (HorseM, BearM)               | 30                 | 153.5                  | 110.594                          | 7.514    |  |
| (HorseF, BearM)               | 21                 | 203.9                  | 144.942                          | 9.529    |  |

#### Normalized Euclidean Distance matrix:

$$\mathbf{D} = \left[ \begin{array}{ccc} 0 & 3.437 & 7.514 \\ . & 0 & 9.529 \\ . & . & 0 \end{array} \right]$$

Unweighted 
$$(w_j^* = 1)$$

Weighted 
$$(w_j^* = 1/|\mathcal{Y}_j|)$$

Normalized Weighted Euclidean Distance Matrix using Ichino-Yaguchi Dissimilarity measures is  $(\gamma = 1/2)$ :

For the first 3 animals (HorseM, HorseF, BearM) we had:

$$\mathbf{D} = \left[ \begin{array}{ccc} 0 & 3.437 & 7.514 \\ . & 0 & 9.529 \\ . & . & 0 \end{array} \right]$$

- difference is due to differing weights



## Normalized Weighted Euclidean Distance Matrix using Ichino-Yaguchi Dissimilarity measures is $(\gamma = 1/2)$ :

| I | ) = |      |      |       |       |       |       |       |       |       |
|---|-----|------|------|-------|-------|-------|-------|-------|-------|-------|
|   | Г 0 | 2.47 | 5.99 | 11.16 | 11.76 | 11.28 | 12.37 | 12.45 | 12.06 | 11.85 |
|   |     | 0    | 7.74 | 13.07 | 13.62 | 13.16 | 14.25 | 14.35 | 13.97 | 13.77 |
|   |     |      | 0    | 8.13  | 9.04  | 8.52  | 9.36  | 9.35  | 8.74  | 8.39  |
|   |     |      |      | 0     | 0.98  | 0.70  | 1.26  | 1.31  | 0.98  | 0.95  |
|   |     |      |      |       | 0     | 0.67  | 0.78  | 1.08  | 1.19  | 1.48  |
|   |     |      |      |       |       | 0     | 1.11  | 1.23  | 1.26  | 1.36  |
|   |     |      |      |       |       |       | 0     | 0.37  | 0.81  | 1.21  |
|   |     |      |      |       |       |       |       | 0     | 0.69  | 1.09  |
|   |     |      |      |       |       |       |       |       | 0     | 0.51  |
|   |     |      |      |       |       |       |       |       |       | 0     |

#### Animal Horse M

Horse M HorseF BearM DeerM DeerF DogF RabbitM RabbitF CatM

CatF



|                               | $\phi_j(\omega_{u_1},\omega_{u_2})$ |       | Euclidean: d <sub>2</sub> | $(\omega_{u_1},\omega_{u_2})$ | City Block: $d_1(\omega_{u_1}, \omega_{u_2})$ |          |
|-------------------------------|-------------------------------------|-------|---------------------------|-------------------------------|-----------------------------------------------|----------|
| $(\omega_{u_1},\omega_{u_2})$ | j=1 $j=2$                           |       | Unweighted                | Weighted                      | Unweighted                                    | Weighted |
| (HorseM, HorseF)              | 29                                  | 50.4  | 41.117                    | 3.437                         | 39.70                                         | 0.329    |
| (HorseM, BearM)               | 30                                  | 153.5 | 110.594                   | 7.514                         | 91.75                                         | 0.554    |
| (HorseF, BearM)               | 21                                  | 203.9 | 144.942                   | 9.529                         | 112.45                                        | 0.590    |

Ichino-Yaguchi measures:

$$\phi_j(\omega_{u_1},\omega_{u_2}) = |\omega_{u_1j} \oplus \omega_{u_2j}| - |\omega_{u_1j} \otimes \omega_{u_2j}| + \gamma(2|\omega_{u_1j} \otimes \omega_{u_2j}| - |\omega_{u_1j}| - |\omega_{u_2j}|$$

Normalized weighted Minkowski distance:

$$d_q(\omega_{u_1}, \omega_{u_2}) = ([1/p] \sum_{j=1}^p w_j^* [\phi_j(\omega_{u_1}, \omega_{u_2})]^q)^{1/q}$$

Unweighted:  $w_j^* = 1$ ; Weighted  $w_j^* = 1/|\mathcal{Y}_j|$ :  $w_1^* = 1/65$ ,  $w_2^* = 1/237.8$ 

City Block:
$$d_1(\omega_{u_1}, \omega_{u_2}) = ([1/p] \sum_{j=1}^p c_j w_j^* [\phi_j(\omega_{u_1}, \omega_{u_2})])$$
  
City Block factor/weight:  $c_j = 1/p = 1/2$ 

Normalized Euclidean: 
$$d_2(\omega_{u_1}, \omega_{u_2}) = ([1/p] \sum_{i=1}^p w_i^* [\phi_i(\omega_{u_1}, \omega_{u_2})]^2)^{1/2}$$

These are important for Divisive Clustering methodology



|                               | $\phi_j(\omega_{u_1}, \omega_{u_2})$ |       | Euclidean: d <sub>2</sub> | $(\omega_{u_1}, \omega_{u_2})$ | City Block: $d_1(\omega_{u_1}, \omega_{u_2})$ |          |  |
|-------------------------------|--------------------------------------|-------|---------------------------|--------------------------------|-----------------------------------------------|----------|--|
| $(\omega_{u_1},\omega_{u_2})$ | j=1 $j=2$                            |       | Unweighted                | Weighted                       | Unweighted                                    | Weighted |  |
| (HorseM, HorseF)              | 29                                   | 50.4  | 41.117                    | 3.437                          | 39.70                                         | 0.329    |  |
| (HorseM, BearM)               | 30                                   | 153.5 | 110.594                   | 7.514                          | 91.75                                         | 0.554    |  |
| (HorseF, BearM)               | 21                                   | 203.9 | 144.942                   | 9.529                          | 112.45                                        | 0.590    |  |

#### City Block Distance Matrix

#### Euclidean Distance Matrix

$$\begin{bmatrix} \mathbf{D} = \\ 0 & 39.70 & 91.75 \\ . & 0 & 112.45 \\ . & . & 0 \end{bmatrix} \quad \begin{bmatrix} \mathbf{D} = \\ 0 & 0.33 & 0.55 \\ . & 0 & 0.59 \\ . & . & 0 \end{bmatrix} \quad \begin{bmatrix} \mathbf{D} = \\ 0 & 41.12 & 110.59 \\ . & 0 & 144.94 \\ . & . & 0 \end{bmatrix} \quad \begin{bmatrix} \mathbf{D} = \\ 0 & 0.35 & 0.56 \\ . & 0 & 0.65 \\ . & . & 0 \end{bmatrix}$$
 Unweighted Weighted

#### None appear to be Robinson matrices

However,

$$\begin{bmatrix} \mathbf{D} = \\ 0 & 39.70 & 112.45 \\ . & 0 & 91.75 \\ . & . & 0 \end{bmatrix} \begin{bmatrix} \mathbf{D} = \\ 0 & 0.33 & 0.59 \\ . & 0 & 0.55 \\ . & . & 0 \end{bmatrix} \begin{bmatrix} \mathbf{D} = \\ 0 & 41.12 & 144.94 \\ . & 0 & 110.59 \\ . & . & 0 \end{bmatrix} \begin{bmatrix} \mathbf{D} = \\ 0 & 0.35 & 0.65 \\ . & 0 & 0.56 \\ . & . & 0 \end{bmatrix}$$

ALL are Robinson matrices



#### Hausdorff Distances for interval-valued data:

- Hausdorff
- Euclidean Hausdorff
- Normalized Euclidean Hausdorff
- Span Normalized Euclidean Hausdorff

#### (Important for Divisive Clustering methodology)

Definition 7.20: The Hausdorff distance between two interval-valued objects  $\omega_{u_1}$  and  $\omega_{u_2}$ , with  $\xi_{uj} = [a_{uj}, b_{uj}], j = 1, \dots, p, u = 1, \dots, m$ , for  $Y_j$ , is

$$\phi_j(\omega_{u_1}, \omega_{u_2}) = Max[|a_{u_1j} - a_{u_2j}|, |b_{u_1j} - b_{u_2j}|$$
(7.31)

Definition 7.21: The Euclidean Hausdorff distance between two interval-valued objects  $\omega_{u_1}$  and  $\omega_{u_2}$ , with  $\xi_{uj}=[a_{uj},b_{uj}]$ , is

$$d(\omega_{u_1}, \omega_{u_2}) = \left(\sum_{j=1}^{p} [\phi_j(\omega_{u_1}, \omega_{u_2})]^2\right)^{1/2}$$
(7.32)

Definition 7.22: The Normalized Euclidean Hausdorff distance between two interval-valued objects  $\omega_{u_1}$  and  $\omega_{u_2}$ , with  $\xi_{uj} = [a_{uj}, b_{uj}]$ , is

$$d(\omega_{u_1}, \omega_{u_2}) = \left(\sum_{j=1}^{p} \left[ \left\{ \phi_j(\omega_{u_1}, \omega_{u_2}) \right\} / H_j \right]^2 \right)^{1/2}$$
 (7.33)

$$H_j^2 = (1/[2m^2]) \sum_{u_1=1}^m \sum_{u_2=1}^m [\phi_j(\omega_{u_1}, \omega_{u_2})]^2$$
 (7.34)

The Normalized Euclidean Hausdorff distance is also called a Dispersion Normalization

If the data are classical, then this Normalized Euclidean distance is equivalent to a Euclidean distance on  $\mathcal{R}^2$ , with  $H_j$  corresponding to the standard deviation of  $Y_j$ .

Definition 7.23: The Span Normalized Euclidean Hausdorff distance between two interval-valued objects  $\omega_{u_1}$  and  $\omega_{u_2}$ , with  $\xi_{uj} = [a_{uj}, b_{uj}]$ , is

$$d(\omega_{u_1}, \omega_{u_2}) = \left(\sum_{j=1}^{p} \left[ \left\{ \phi_j(\omega_{u_1}, \omega_{u_2}) \right\} / |\mathcal{Y}_j| \right]^2 \right)^{1/2}$$
 (7.35)

where from (7.26) the span is  $|\mathcal{Y}_j| = max_u(b_{uj}) - min_u(a_{uj})$ .

This Span Normalization is also called a maximum deviation distance.

| $\omega_{\scriptscriptstyle \it U}$ | Animal  | $Y_1$ Height   | Y <sub>2</sub> Weight |  |  |
|-------------------------------------|---------|----------------|-----------------------|--|--|
| $\omega_1$                          | Horse M | [120.0, 180.0] | [222.2, 354.0]        |  |  |
| $\omega_2$                          | Horse F | [158.0, 160.0] | [322.0, 355.0]        |  |  |
| $\omega_3$                          | Bear M  | [175.0, 185.0] | [117.2, 152.0]        |  |  |

Hausdorff distance: 
$$\phi_j(\omega_{u_1}, \omega_{u_2}) = Max[|a_{u_1j} - a_{u_2j}|, |b_{u_1j} - b_{u_2j}|$$
 (7.31)

For (HorseF, BearM) and 
$$Y_1$$
, we have  $\phi_1(HorseF, BearM) = Max[|158 - 175|, |160 - 185|] = Max[17, 25] = 25$ 

For (HorseF, BearM) and 
$$Y_2$$
, we have  $\phi_2(HorseF, BearM) = Max[|322 - 117.2|, |355 - 152|] = Max[204.8, 203] = 204.8$ 

Complete set of Hausdorff Distances – (First 3 animals) –

|                               | $\phi_j(\omega_{u_1},\omega_{u_2})$ |       |  |
|-------------------------------|-------------------------------------|-------|--|
| $(\omega_{u_1},\omega_{u_2})$ | j = 1                               | j=2   |  |
| (HorseM, HorseF)              | 38                                  | 99.8  |  |
| (HorseM, BearM)               | 55                                  | 202.0 |  |
| (HorseF, BearM)               | 25                                  | 204.8 |  |

Complete set of Hausdorff Distances - (First 3 animals) -

|                               |                                     |       |                                | Normalized                       |
|-------------------------------|-------------------------------------|-------|--------------------------------|----------------------------------|
|                               | $\phi_j(\omega_{u_1},\omega_{u_2})$ |       | Euclidean                      | Euclidean                        |
| $(\omega_{u_1},\omega_{u_2})$ | j=1                                 | j=2   | $d(\omega_{u_1},\omega_{u_2})$ | $d^n(\omega_{u_1},\omega_{u_2})$ |
| (HorseM, HorseF)              | 38                                  | 99.8  | 106.790                        | 2.653                            |
| (HorseM, BearM)               | 55                                  | 202.0 | 209.354                        | 4.314                            |
| (HorseF, BearM)               | 25                                  | 204.8 | 206.320                        | 3.217                            |

 $\phi_i(\omega_{u_1}, \omega_{u_2}) = Max[|a_{u_1i} - a_{u_2i}|, |b_{u_1i} - b_{u_2i}| \quad (7.31)$ Hausdorff distance: Euclidean Hausdorff distance:  $d(\omega_{u_1}, \omega_{u_2}) = (\sum_{i=1}^{p} [\phi_i(\omega_{u_1}, \omega_{u_2})]^2)^{1/2}$  (7.32) Normalized Euclidean Hausdorff distance:

$$d^{n}(\omega_{u_{1}}, \omega_{u_{2}}) = \left(\sum_{j=1}^{p} \left[ \left\{ \phi_{j}(\omega_{u_{1}}, \omega_{u_{2}}) \right\} / H_{j} \right]^{2} \right)^{1/2}, \tag{7.33}$$

$$H_j^2 = (1/[2m^2]) \sum_{u_1=1}^m \sum_{u_2=1}^m [\phi_j(\omega_{u_1}, \omega_{u_2})]^2$$
 (7.34)

$$H_1^2 = (1/[2 \times 3^2])[38^2 + 55^2 + 25^2] = 283$$
  $H_1 = 16.823$ 

$$H_2^2 = (1/[2 \times 3^2])[99.8^2 + 202^2 + 204.8^2] = 5150.39;$$
  $H_2 = 71.766$ 

For (HorseF, BearM), we have  $d^{n}(HorseF, BearM) = [(25/16.823)^{2} + (204.8/71.766)^{2}]^{1/2} = 3.217$ 



Set of Span/Normalized/Euclidean Hausdorff Distances - Veterinary Clinic Data -

|                               |                                     |       |                                | Normalized                       | SpanNormalized                   |  |
|-------------------------------|-------------------------------------|-------|--------------------------------|----------------------------------|----------------------------------|--|
|                               | $\phi_j(\omega_{u_1},\omega_{u_2})$ |       | Euclidean                      | Euclidean                        | Euclidean                        |  |
| $(\omega_{u_1},\omega_{u_2})$ | j=1                                 | j=2   | $d(\omega_{u_1},\omega_{u_2})$ | $d^n(\omega_{u_1},\omega_{u_2})$ | $d^s(\omega_{u_1},\omega_{u_2})$ |  |
| (HorseM, HorseF)              | 38                                  | 99.8  | 106.790                        | 2.653                            | 0.720                            |  |
| (HorseM, BearM)               | 55                                  | 202.0 | 209.354                        | 4.314                            | 1.199                            |  |
| (HorseF, BearM)               | 25                                  | 204.8 | 206.320                        | 3.217                            | 0.943                            |  |

Hausdorff distance: 
$$\phi_j(\omega_{u_1},\omega_{u_2})=Max[|a_{u_1j}-a_{u_2j}|,|b_{u_1j}-b_{u_2j}|$$
 (7.31)

Euclidean Hausdorff Distance Matrix  $D_1$ :

Normalized Euclidean Hausdorff Distance Matrix  $D_2$ :

Span Normalized Euclidean Hausdorff Distance Matrix  $D_3$ :

$$\begin{array}{c|cccc}
 D_2 &= \\
 & 0 & 2.653 & 4.314 \\
 & 0 & 3.217 \\
 & & 0
 \end{array}$$

$$\begin{array}{c} \textbf{D}_3 = \\ \begin{bmatrix} 0 & 0.720 & 1.199 \\ . & 0 & 0.943 \\ . & . & 0 \\ \end{bmatrix}$$

#### ALL Robinson matrices

Definition 7.17: The Gowda-Diday dissimilarity measure between two interval-valued observations  $\xi(\omega_{u_1})$  and  $\xi(\omega_{u_2})$  of the form  $\xi(\omega_u) = [a_{uj}, b_{uj}]$  is

$$D(\omega_1, \omega_2) = \sum_{j=1}^{p} [D_{j1}(\omega_1, \omega_2) + D_{j2}(\omega_1, \omega_2) + D_{j3}(\omega_1, \omega_2)]$$

where, for  $j = 1, \ldots, p$ ,

$$D_{j1}(\omega_{1},\omega_{2}) = (||b_{u_{1}j} - a_{u_{1}j}| - |b_{u_{2}j} - a_{u_{2}j}|)/k_{j},$$
(7.23)  

$$D_{j2}(\omega_{1},\omega_{2}) = (|b_{u_{1}j} - a_{u_{1}j}| + |b_{u_{2}j} - a_{u_{2}j}| - 2I_{j})/k_{j},$$
(7.24)  

$$D_{j3}(\omega_{1},\omega_{2}) = (|a_{u_{1}j} - a_{u_{2}j}|)/|\mathcal{Y}_{j}|$$
(7.25)

where

$$k_{j} = |Max(b_{u_{1}j}, b_{u_{2}j}), Min(a_{u_{1}j}, a_{u_{2}j})|$$
 $l_{j} = |Max(a_{u_{1}j}, a_{u_{2}j}) - Min(b_{u_{1}j}, b_{u_{2}j})|$ 
 $|\mathcal{Y}_{j}| = max_{u}(b_{u_{j}}) - min_{u}(a_{u_{j}}).$ 

Here,  $k_j$  is the length of the entire distance spanned by  $\omega_{u_1}$  and  $\omega_{u_2}$ ,  $l_j$  is the length of the intersection of the intervals  $[a_{u_1j},b_{u_1j}]$  and  $[a_{u_2j},b_{u_2j}]$ , and  $|\mathcal{Y}_j|$  is the total length in  $\mathcal{Y}$  covered by observed values of  $Y_j$ .

So,  $D_{j1}(\omega_1, \omega_2)$  is the span component,  $D_{j2}(\omega_1, \omega_2)$  is the relative content component, and  $D_{j3}(\omega_1, \omega_2)$  is the relative position component of the distance measure.

#### Gowda-Diday distances:

|                               | $Y_1 = Height$ |          |          |       | $Y_2 = Weight$ |          |          | $(Y_1, Y_2)$ |       |
|-------------------------------|----------------|----------|----------|-------|----------------|----------|----------|--------------|-------|
| $(\omega_{u_1},\omega_{u_2})$ | $D_{11}$       | $D_{12}$ | $D_{13}$ | $D_1$ | $D_{21}$       | $D_{22}$ | $D_{23}$ | $D_2$        | D     |
| (HorseM, HorseF)              | .967           | .967     | .584     | 2.518 | .744           | .759     | .442     | 1.922        | 4.440 |
| (HorseM, BearM)               | .769           | .923     | .846     | 2.538 | .409           | .703     | .021     | 1.554        | 4.093 |
| (HorseF, BearM)               | .296           | .444     | .262     | 1.002 | .008           | .285     | .861     | 1.154        | 2.156 |

$$\mathbf{D} = \left[ \begin{array}{ccc} 0 & 4.440 & 4.093 \\ . & 0 & 2.156 \\ . & . & 0 \end{array} \right]$$

## Clustering

#### Clustering:

Use the Distance matrices, **D**, calculated from symbolic data in the same way as the Distance matrices, **D**, calculated from classical data are used to

#### construct

partitions

hierarchies

pyramids

## Clustering

E.g., Veterinary dataset -





Denote  $r_{th}$  partition by  $P_r = (C_1, \ldots, C_r)$ .

$$\begin{array}{ll} P_1 = C_1: & E \equiv C_1 = \{1, \dots, 10\} = \\ & \{ \text{HorseM}, \text{HorseF}, \text{BearM}, \text{DeerM}, \text{DeerF}, \text{DogF}, \text{RabbitM}, \text{RabbitF}, \text{CatM}, \text{CatF} \} \\ P_4 = (C_1, \dots, C_4): & C_1 = \{1, 2\}, & C_2 = \{3\}, & C_3 = \{4, 5, 6\}, & C_4 = \{7, 8, 9, 10\} \\ P_5 = (C_1, \dots, C_5): & C_1 = \{1, 2\}, & C_2 = \{3\}, & C_3 = \{4, 5, 6\}, & C_4 = \{7, 8\}, & C_5 = \{9, 10\} \\ \text{OR, } P_5' = (C_1, \dots, C_5): & \\ & C_1 = \{1, 2\}, & C_2 = \{3\}, & C_3 = \{4, 5, 6\}, & C_4 = \{7, 8\}, & C_5 = \{8, 9, 10\} \\ P_5 \text{ is a hierarchy; and } P_5' \text{ is a pyramid} & \text{The stable of the property of th$$

Billard

## Clustering

#### Veterinary dataset:

 $\{HorseM, HorseF, BearM, DeerM, DeerF, DogF, RabbitM, RabbitF, CatM, CatF\}$ 

