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Abstract

This paper surveys some well-established approaches on the approximation
of Bayes factors used in Bayesian model choice, mostly as covered in Chen
et al. (2000). Our focus here is on methods that are based on importance sam-
pling strategies—rather than variable dimension techniques like reversible jump
MCMC—, including: crude Monte Carlo, maximum likelihood based importance
sampling, bridge and harmonic mean sampling, as well as Chib’s method based
on the exploitation of a functional equality. We demonstrate in this survey how
these different methods can be efficiently implemented for testing the significance
of a predictive variable in a probit model. Finally, we compare their performances
on a real dataset.
Keywords: Bayesian inference; model choice; Bayes factor; Monte Carlo; Impor-
tance Sampling; bridge sampling; Chib’s functional identity; supervised learning;
probit model

1 Introduction

The contribution of Jim Berger to the better understanding of Bayesian testing is
fundamental and wide-ranging, from establishing the fundamental difficulties with p-
values in Berger and Sellke (1987) to formalising the intrinsic Bayes factors in Berger
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and Pericchi (1996), to solving the difficulty with improper priors in Berger et al. (1998),
and beyond! While our contribution in this area is obviously much more limited, we
aim at presenting here the most standard approaches to the approximation of Bayes
factors.

The Bayes factor indeed is a fundamental procedure that stands at the core of the
Bayesian theory of testing hypotheses, at least in the approach advocated by both Jef-
freys (1939) and by Jaynes (2003). (Note that Robert et al. 2009, provides a reassess-
ment of the crucial role of Jeffreys 1939 in setting a formal framework for Bayesian
testing as well as for regular inference.) Given an hypothesis H0 : θ ∈ Θ0 on the pa-
rameter θ ∈ Θ of a statistical model, with observation y and density f(y|θ), under a
compatible prior of the form

π(Θ0)π0(θ) + π(Θc
0)π1(θ) ,

the Bayes factor is defined as the posterior odds to prior odds ratio, namely

B01(y) =
π(Θ0|y)

π(Θc
0|y)

/
π(Θ0)

π(Θc
0)

=

∫
Θ0

f(y|θ)π0(θ)dθ

/∫
Θc

0

f(y|θ)π1(θ)dθ .

Model choice can be considered from a similar perspective, since, under the Bayesian
paradigm (see, e.g., Robert 2001), the comparison of models

Mi : y ∼ fi(y|θi), θi ∼ πi(θi), θi ∈ Θi, i ∈ I ,

where the family I can be finite or infinite, leads to posterior probabilities of the models
under comparison such that

P (M = Mi|y) ∝ pi

∫
Θi

fi(y|θi)πi(θi)dθi ,

where pi = P(M = Mi) is the prior probability of model Mi.
In this short survey, we consider some of the most common Monte Carlo solutions

used to approximate a generic Bayes factor or its fundamental component, the evidence

mi =

∫
Θi

πi(θi)fi(y|θi) dθi ,

aka the marginal likelihood. Longer entries can be found in Carlin and Chib (1995),
Chen et al. (2000), Robert and Casella (2004), or Friel and Pettitt (2008). Note that
we only briefly mention here trans-dimensional methods issued from the revolutionary
paper of Green (1995), since our goal is to demonstrate that within-model simulation
methods allow for the computation of Bayes factors and thus avoids the additional
complexity involved in trans-dimensional methods. While ameanable to an importance
sampling technique of sorts, the alternative approach of nested sampling (Skilling 2006)
is discussed in Chopin and Robert (2007) and Robert and Wraith (2009).
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2 The Pima Indian benchmark model

In order to compare the performances of all methods presented in this survey, we chose
to evaluate the corresponding estimates of the Bayes factor in the setting of a single
variable selection for a probit model and to repeat the estimation in a Monte Carlo
experiment to empirically assess the variability of those estimates.

We recall that a probit model can be represented as a natural latent variable model
in that, if we consider a sample z1, . . . , zn of n independent latent variables associated
with a standard regression model, i.e. such that zi|θ ∼ N

(
xT
i θ, 1

)
, where the xi’s are

p-dimensional covariates and θ is the vector of regression coefficients, then y1, . . . , yn
such that

yi = Izi>0

is a probit sample. Indeed, given θ, the yi’s are independent Bernoulli rv’s with P(yi =
1|θ) = Φ

(
xT
i θ
)

where Φ is the standard normal cdf.
The choice of a reference prior distribution for the probit model is open to debate,

but the connection with the latent regression model induced Marin and Robert (2007)
to suggest a g-prior model, θ ∼ N

(
0p, n(XTX)−1

)
, with n as the g factor and X as

the regressor matrix. The corresponding posterior distribution is then associated with
the density

π(θ|y,X) ∝
n∏
i=1

{
1− Φ

(
xT
i θ
)}1−yi

Φ
(
xT
i θ
)yi × exp

{
−θT(XTX)θ/2n

}
, (1)

where y = (y1, . . . , yn). In the completed model, i.e. when including the latent variables
z = (z1, . . . , zn) into the model, the yi’s are deterministic functions of the zi’s and the
so-called completed likelihood is

f(y, z|θ) = (2π)−n/2 exp

(
−

n∑
i=1

(
zi − xT

i θ
)2
/2

)
n∏
i=1

(Iyi=0Izi≤0 + Iyi=1Izi>0) .

The derived conditional distributions

zi|yi, θ ∼
{
N+

(
xT
i θ, 1, 0

)
if yi = 1 ,

N−
(
xT
i θ, 1, 0

)
if yi = 0 ,

(2)

are of interest for constructing a Gibbs sampler on the completed model, whereN+

(
xT
i θ, 1, 0

)
denotes the Gaussian distribution with mean xT

i θ and variance 1 that is left-truncated
at 0, while N−

(
xT
i θ, 1, 0

)
denotes the symmetrical normal distribution that is right-

truncated at 0. The corresponding full conditional on the parameters is given by

θ|y, z ∼ N
(

n

n+ 1
(XTX)−1XTz,

n

n+ 1
(XTX)−1

)
. (3)

Indeed, since direct simulation from the posterior distribution of θ is intractable, Albert
and Chib (1993) suggest implementing a Gibbs sampler based on the above set of full
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conditionals. More precisely, given the current value of θ, one cycle of the Gibbs
algorithm produces a new value for z as simulated from the conditional distribution
(2), which, when substituted into (3), produces a new value for θ. Although it does not
impact the long-term properties of the sampler, the starting value of θ may be taken
as the maximum likelihood estimate to avoid burning steps in the Gibbs sampler.

Given this probit model, the dataset we consider covers a population of women who
were at least 21 years old, of Pima Indian heritage and living near Phoenix, Arizona.
These women were tested for diabetes according to World Health Organization (WHO)
criteria. The data were collected by the US National Institute of Diabetes and Digestive
and Kidney Diseases, and is available with the basic R package (R Development Core
Team 2008). This dataset, used as a benchmark for supervised learning methods,
contains information about 332 women with the following variables:

– glu: plasma glucose concentration in an oral glucose tolerance test;

– bp: diastolic blood pressure (mm Hg);

– ped: diabetes pedigree function;

– type: Yes or No, for diabetic according to WHO criteria.

For this dataset, the goal is to explain the diabetes variable type by using the ex-
planatory variables glu, bp and ped. The following table is an illustration of a classical
(maximum likelihood) analysis of this dataset, obtained using the R glm() function with
the probit link:

Deviance Residuals:

Min 1Q Median 3Q Max

-2.1347 -0.9217 -0.6963 0.9959 2.3235

Coefficients:

Estimate Std. Error z value Pr(>|z|)

glu 0.012616 0.002406 5.244 1.57e-07 ***

bp -0.029050 0.004094 -7.096 1.28e-12 ***

ped 0.350301 0.208806 1.678 0.0934 .

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 460.25 on 332 degrees of freedom

Residual deviance: 386.73 on 329 degrees of freedom

AIC: 392.73

Number of Fisher Scoring iterations: 4

This analysis sheds some doubt on the relevance of the covariate ped in the model
and we can reproduce the study from a Bayesian perspective, computing the Bayes
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factor B01 opposing the probit model only based on the covariates glu and bp (model
0) to the probit model based on the covariates glu, bp, and ped (model 1). This is
equivalent to testing the hypothesis H0 : θ3 = 0 since the models are nested, where θ3

is the parameter of the probit model associated with covariate ped. (Note that there
is no intercept in either model.) If we denote by X0 the 332× 2 matrix containing the
values of glu and bp for the 332 individuals and by X1 the 332× 3 matrix containing
the values of the covariates glu, bp, and ped, the Bayes factor B01 is given by

(2π)1/2n1/2 |(XT
0 X0)|−1/2

|(XT
1 X1)|−1/2

(4)∫
R2

n∏
i=1

{1− Φ ((X0)i,·θ)}1−yiΦ ((X0)i,·θ)yi exp
{
−θT(XT

0 X0)θ/2n
}

dθ∫
R3

n∏
i=1

{1− Φ (X1)i,·θ)}1−yiΦ (X1)i,·θ)yi exp
{
−θT(XT

1 X1)θ/2n
}

dθ

=

EN2(02,n(XT
0 X0)−1)

[
n∏
i=1

{1− Φ ((X0)i,·θ)}1−yiΦ ((X0)i,·θ)yi

]

EN3(03,n(XT
1 X1)−1)

[
n∏
i=1

{1− Φ ((X1)i,·θ)}1−yiΦ ((X1)i,·θ)yi

]

using the shortcut notation that Ai,· is the i-th line of the matrix A.

3 The basic Monte Carlo solution

As already shown above, when testing for a null hypothesis (or a model) H0 : θ ∈ Θ0

against the alternative hypothesis (or the alternative model) H1 : θ ∈ Θ1, the Bayes
factor is defined by

B01(y) =

∫
Θ0

f(y|θ0)π0(θ0)dθ0

/∫
Θ1

f(y|θ1)π1(θ1)dθ1 .

We assume in this survey that the prior distributions under both the null and the
alternative hypotheses are proper, as, typically, they should be. (In the case of com-
mon nuisance parameters, a common improper prior measure can be used on those,
see Berger et al. (1998), Marin and Robert (2007). This obviously complicates the
computational aspect, as some methods like crude Monte Carlo cannot be used at all,
while others are more prone to suffer from infinite variance.) In that setting, the most
elementary approximation to B01(y) consists in using a ratio of two standard Monte
Carlo approximations based on simulations from the corresponding priors. Indeed, for
i = 0, 1: ∫

Θi

f(y|θ)πi(θ)dθ = Eπi
[f(y|θ)] .
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Figure 1: Pima Indian dataset: boxplot of 100 Monte Carlo estimates of B01(y) based
on simulations from the prior distributions, for 2× 104 simulations.

If θ0,1, . . . , θ0,n0 and θ1,1, . . . , θ1,n1 are two independent samples generated from the prior
distributions π0 and π1, respectively, then

n−1
0

∑n0

j=1 f(y|θ0,j)

n−1
1

∑n1

j=1 f(y|θ1,j)
(5)

is a strongly consistent estimator of B01(y).
In most cases, sampling from the prior distribution corresponding to either hypoth-

esis is straightforward and fast. Therefore, the above estimator is extremely easy to
derive as a brute-force evaluation of the Bayes factor. However, if any of the poste-
rior distributions is quite different from the corresponding prior distribution—and it
should be for vague priors—, the Monte Carlo evaluation of the corresponding evidence
is highly inefficient since the sample will be overwhelmingly producing negligible val-
ues of f(y|θi,j). In addition, if f 2(y|θ) is not integrable against π0 or π1, the resulting
estimation has an infinite variance. Since importance sampling usually requires an
equivalent computation effort, with a potentially highy efficiency reward, crude Monte
Carlo approaches of this type are usually disregarded.

Figure 1 and Table 1 summarize the results based on 100 replications of Monte Carlo
approximations of B01(y), using equation (5) with n0 = n1 = 20, 000 simulations. As
predicted, the variability of the estimator is very high, when compared with the other
estimates studied in this survey. (Obviously, the method is asymptotically unbiased
and, the functions being square integrable in (4), with a finite variance. A massive
simulation effort would obviously lead to a precise estimate of the Bayes factor.)
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4 Usual importance sampling approximations

Defining two importance distributions with densities $0 and $1, with the same supports
as π0 and π1, respectively, we have:

B01(y) = E$0

[
f(y|θ)π0(θ)

/
$0(θ)

]/
E$1

[
f(y|θ)π1(θ)

/
$1(θ)

]
.

Therefore, given two independent samples generated from distributions $0 and $1,
θ0,1, . . . , θ0,n0 and θ1,1, . . . , θ1,n1 , respectively, the corresponding importance sampling
estimate of B01(y) is

n−1
0

∑n0

j=1 f0(x|θ0,j)π0(θ0,j)/$0(θ0,j)

n−1
1

∑n1

j=1 f1(x|θ1,jπ1(θ1,j)/$1(θ1,j)
. (6)

Compared with the standard Monte Carlo approximation above, this approach offers
the advantage of opening the choice of the representation (6) in that it is possible
to pick importance distributions $0 and $1 that lead to a significant reduction in
the variance of the importance sampling estimate. This implies choosing importance
functions that provide as good as possible approximations to the corresponing posterior
distributions. Maximum likelihood asymptotic distributions or kernel approximations
based on a sample generated from the posterior are natural candidates in this setting,
even though the approximation grows harder as the dimension increases.

For the Pima Indian benchmark, we propose for instance to use as importance
distributions, Gaussian distributions with means equal to the maximum likelihood (ML)
estimates and covariance matrices equal to the estimated covariance matrices of the ML
estimates, both of which are provided by the R glm() function. While, in general, those
Gaussian distributions provide crude approximations to the posterior distributions, the
specific case of the probit model will show this is an exceptionally good approximation
to the posterior, since this leads to the best solution among all those compared here.
The results, obtained over 100 replications of the methodology with n0 = n1 = 20, 000
are summarized in Figure 2 and Table 1. They are clearly excellent, while requiring the
same computing time as the original simulation from the prior.

5 Bridge sampling methodology

The original version of the bridge sampling approximation to the Bayes factor (Gelman
and Meng 1998, Chen et al. 2000) relies on the assumption that the parameters of
both models under comparison belong to the same space: Θ0 = Θ1. In that case,
for likelihood functions f0 and f1 under respectively models M0 and M1, the bridge
representation of the Bayes factor is

B01(y) =

∫
Θ0

f0(y|θ)π0(θ)dθ

/∫
Θ1

f1(y|θ)π1(θ)dθ = Eπ1

[
f0(y|θ)π0(θ)

f1(y|θ)π1(θ)

∣∣∣∣ y] . (7)
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Figure 2: Pima Indian dataset: boxplots of 100 Monte Carlo and importance sampling
estimates of B01(y), based on simulations from the prior distributions, for 2 × 104

simulations.

Given a sample from the posterior distribution of θ under model M1, θ1,1, . . . , θ1,N ∼
π1(θ|y), a first bridge sampling approximation to B01(y) is

N−1

N∑
j=1

f0(y|θ1,j)π0(θ1,j)

f1(y|θ1,j)π1(θ1,j)
.

From a practical perspective, for the above bridge sampling approximation to be of any
use, the constraint on the common parameter space for both models goes further in
that, not only must both models have the same complexity, but they must also be pa-
rameterised on a common ground, i.e. in terms of some specific moments of the sampling
model, so that parameters under both models have a common meaning. Otherwise, the
resulting bridge sampling estimator will have very poor convergence properties, possibly
with infinite variance.

Equation (7) is nothing but a very special case of the general representation (Torrie
and Valleau 1977)

B01(y) = Eϕ [f0(y|θ)π0(θ)/ϕ(θ)]

/
Eϕ [f1(y|θ)π1(θ)/ϕ(θ)] ,

which holds for any density ϕ with a sufficiently large support and which only requires a
single sample θ1, . . . , θN generated from ϕ to produce an importance sampling estimate
of the ratio of the marginal likelihoods. Apart from using the same importance function
ϕ for both integrals, this method is therefore a special case of importance sampling.

Another extension of this bridge sampling approach is based on the general repre-
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sentation

B01(y) =

∫
f0(y|θ)π0(θ)α(θ)π1(θ|y)dθ

/∫
f1(y|θ)π1(θ)α(θ)π0(θ|y)dθ

≈

n1
−1

n1∑
j=1

f0(y|θ1,j)π0(θ1,j)α(θ1,j)

n0
−1

n0∑
j=1

f1(y|θ0,j)π1(θ0,j)α(θ0,j)

where θ0,1, . . . , θ0,n0 and θ1,1, . . . , θ1,n1 are two independent samples coming from the
posterior distributions π0(θ|y) and π1(θ|y), respectively. That applies for any positive
function α as long as the upper integral exists. Some choices of α lead to very poor per-
formances of the method in connection with the harmonic mean approach (see Section
6), but there exists a quasi-optimal solution, as provided by Gelman and Meng (1998):

α?(y) ∝ 1

n0π0(θ|y) + n1π1(θ|y)
.

This optimum cannot be used per se, since it requires the normalising constants of
both π0(θ|y) and π1(θ|y). As suggested by Gelman and Meng (1998), an approximate
version uses iterative versions of α?, based on iterated approximations to the Bayes
factor. Note that this solution recycles simulations from both posteriors, which is
quite appropriate since one model is selected via the Bayes factor, instead of using an
importance weighted sample common to both approximations. We will see below an
alternative representation of the bridge factor that bypasses this difficulty (if difficulty
there is!).

Those derivations are, however, restricted to the case where both models have the
same complexity and thus they do not apply to embedded models, when Θ0 ⊂ Θ1 in
such a way that θ1 = (θ, ψ), i.e., when the submodel corresponds to a specific value ψ0

of ψ: f0(y|θ) = f(y|θ, ψ0).
The extension of the most advanced bridge sampling strategies to such cases requires

the introduction of a pseudo-posterior density, ω(ψ|θ, y), on the parameter that does
not appear in the embedded model, in order to reconstitute the equivalence between
both parameter spaces. Indeed, if we augment π0(θ|y) with ω(ψ|θ, y), we obtain a joint
distribution with density π0(θ|y) × ω(ψ|θ, y) on Θ1. The Bayes factor can then be
expressed as

B01(y) =

∫
Θ1

f(y|θ, ψ0)π0(θ)α(θ, ψ)π1(θ, ψ|y)dθω(ψ|θ, y) dψ∫
Θ1

f(y|θ, ψ)π1(θ, ψ)α(θ, ψ)π0(θ|y)× ω(ψ|θ, y)dθ dψ
, (8)

for all functions α(θ, ψ), because it is clearly independent from the choice of both α(θ, ψ)
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and ω(ψ|θ, y). Obviously, the performances of the approximation

(n1)−1

n1∑
j=1

f(y|θ1,j, ψ0)π0(θ1,j)ω(ψ1,j|θ1,j, y)α(θ1,j, ψ1,j)

(n0)−1

n0∑
j=1

f(y|θ0,j, ψ0,j)π1(θ0,j, ψ0,j)α(θ0,j, ψ0,j)

,

where (θ0,1, ψ0,1), . . . , (θ0,n0 , ψ0,n0) and (θ1,1, ψ1,1), . . . , (θ1,n1 , ψ1,n1) are two independent
samples generated from distributions π0(θ|y)×ω(ψ|θ, y) and π1(θ, ψ|y), respectively, do
depend on this completion by the pseudo-posterior as well as on the function α(θ, ψ).
Chen et al. (2000) establish that the asymptotically optimal choice for ω(ψ|θ, y) is the
obvious one, namely

ω(ψ|θ, y) = π1(ψ|θ, y) ,

which most often is unavailable in closed form (especially when considering that the
normalising constant of ω(ψ|θ, y) is required in (8)). However, in latent variable models,
approximations of the conditional posteriors often are available, as detailed in Section
7.

While this extension of the basic bridge sampling approximation is paramount for
handling embedded models, its implementation suffers from the dependence on this
pseudo-posterior. In addition, this technical device brings the extended bridge method-
ology close to the cross-model alternatives of Carlin and Chib (1995) and Green (1995),
in that both those approaches rely on completing distributions, either locally (Green
1995) or globally (Carlin and Chib 1995), to link both models under comparison in
a bijective relation. The density ω(ψ|θ0, y) is then a pseudo-posterior distribution in
Chib and Carlin’s (1995) sense, and it can be used as Green’s (1995) proposal in the
reversible jump MCMC step to move (or not) from model M0 to model M1. While
using cross-model solutions to compare only two models does seem superfluous, given
that the randomness in picking the model at each step of the simulation is not as useful
as in the setting of comparing a large number or an infinity of models, the average
acceptance probability for moving from model M0 to model M1 is related to the Bayes
factor since

Eπ0×ω

[
f(y|θ, ψ)π1(θ, ψ)

f(y|θ, ψ0)π0(θ)ω(ψ|θ, y)

]
= B01(y)

even though the average

Eπ0×ω

[
min

{
1,

f(y|θ, ψ)π1(θ, ψ)

f(y|θ, ψ0)π0(θ)ω(ψ|θ, y)

}]
does not provide a closed form solution.

For the Pima Indian benchmark, we use as pseudo-posterior density ω(θ3|θ1, θ2, y),
the conditional Gaussian density deduced from the asymptotic Gaussian distribution
on (θ1, θ2, θ3) already used in the importance sampling solution, with mean equal to the
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Figure 3: Pima Indian dataset: (left) boxplots of 100 importance sampling, bridge
sampling and Monte Carlo estimates of B01(y), based on simulations from the prior
distributions, for 2× 104 simulations; (right) same comparison for the importance sam-
pling versus bridge sampling estimates only.

ML estimate of (θ1, θ2, θ3) and with covariance matrix equal to the estimated covariance
matrix of the ML estimate. The quasi-optimal solution α? in the bridge sampling
estimate is replaced with the inverse of an average between the asymptotic Gaussian
distribution in model M1 and the product of the asymptotic Gaussian distribution in
model M0 times the above ω(θ3|θ1, θ2, y). This obviously is a suboptimal choice, but
it offers the advantage of providing a non-iterative solution. The results, obtained over
100 replications of the methodology with n0 = n1 = 20, 000 are summarized in Figure 3
and Table 1. The left-hand graph shows that this choice of bridge sampling estimator
produces a solution whose variation is quite close to the (excellent) importance sampling
solution, a considerable improvement upon the initial Monte Carlo estimator. However,
the right-hand-side graph shows that the importance sampling solution remains far
superior, especially when accounting for the computing time. (In this example, running
20,000 iterations of the Gibbs sampler for the models with both two and three variables
takes approximately 32 seconds.)

6 Harmonic mean approximations

While using the generic harmonic mean approximation to the marginal likelihood is
often fraught with danger (Neal 1994), the representation (Gelfand and Dey 1994)
(k = 0, 1)

Eπk

[
ϕk(θ)

πk(θ)fk(y|θ)

∣∣∣∣ y] =

∫
ϕk(θ)

πk(θ)fk(y|θ)
πk(θ)fk(y|θ)

mk(y)
dθ =

1

mk(y)
(9)

holds, no matter what the density ϕk(θ) is—provided ϕk(θ) = 0 when πk(θ)fk(y|θ) =
0—. This representation is remarkable in that it allows for a direct processing of Monte
Carlo or MCMC output from the posterior distribution πk(θ|y). As with importance
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sampling approximations, the variability of the corresponding estimator of B01(y) will
be small if the distributions ϕk(θ) (k = 0, 1) are close to the corresponding poste-
rior distributions. However, as opposed to usual importance sampling constraints, the
density ϕk(θ) must have lighter—rather than fatter—tails than πk(θ)fk(y|θ) for the
approximation of the marginal mk(y)

1

/
N−1

N∑
j=1

ϕk(θk,j)

πk(θk,j)fk(y|θk,j)

to enjoy finite variance. For instance, using ϕk(θ) = πk(θ) as in the original harmonic
mean approximation (Newton and Raftery 1994) will most usually result in an infi-
nite variance estimator, as discussed by Neal (1994). On the opposite, using ϕk’s with
constrained supports derived from a Monte Carlo sample, like the convex hull of the
simulations corresponding to the 10% or to the 25% HPD regions—that again is eas-
ily derived from the simulations—is both completely appropriate and implementable
(Robert and Wraith 2009).

However, for the Pima Indian benchmark, we propose to use instead as our dis-
tributions ϕk(θ) the very same distributions as those used in the above importance
sampling approximations, that is, Gaussian distributions with means equal to the ML
estimates and covariance matrices equal to the estimated covariance matrices of the
ML estimates. The results, obtained over 100 replications of the methodology with
N = 20, 000 simulations for each approximation of mk(y) (k = 0, 1) are summarized
in Figure 4 and Table 1. They show a very clear proximity between both importance
solutions in this special case and a corresponding domination of the bridge sampling
estimator, even though the importance sampling estimate is much faster to compute.
This remark must be toned down by considering that the computing time due to the
Gibbs sampler should not necessarily be taken into account into the comparison, since
samples are generated under both models.

7 Exploiting functional equalities

Chib’s (1995) method for approximating a marginal (likelihood) is a direct application
of Bayes’ theorem: given y ∼ fk(y|θ) and θ ∼ πk(θ), we have that

mk =
fk(y|θ)πk(θ)
πk(θ|y)

,

for all θ’s (since both the lhs and the rhs of this equation are constant in θ). Therefore,
if an arbitrary value of θ, say θ∗k, is selected and if a good approximation to πk(θ|y) can
be constructed, denoted π̂(θ|y), Chib’s (1995) approximation to the evidence is

mk =
fk(y|θ∗k)πk(θ∗k)

π̂k(θ∗k|y)
. (10)
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Figure 4: Pima Indian dataset: (left) boxplots of 100 bridge sampling, harmonic mean
and importance sampling estimates of B01(y), based on simulations from the prior
distributions, for 2× 104 simulations; (right) same comparison for the harmonic mean
versus importance sampling estimates only.

In a general setting, π̂(θ|y) may be the Gaussian approximation based on the MLE,
already used in the importance sampling, bridge sampling and harmonic mean solu-
tions, but this is unlikely to be accurate in a general framework. A second solution
is to use a nonparametric approximation based on a preliminary MCMC sample, even
though the accuracy may also suffer in large dimensions. In the special setting of latent
variables models (like mixtures of distributions but also like probit models), Chib’s
(1995) approximation is particularly attractive as there exists a natural approximation
to πk(θ|y), based on the Rao–Blackwell (Gelfand and Smith 1990) estimate

π̂k(θ
∗
k|y) =

1

T

T∑
t=1

πk(θ
∗
k|y, z

(t)
k ) ,

where the z
(t)
k ’s are the latent variables simulated by the MCMC sampler. The esti-

mate π̂k(θ
∗
k|y) is a parametric unbiased approximation of πk(θ

∗
k|y) that converges with

rate O(
√
T ). This Rao–Blackwell approximation obviously requires the full conditional

density πk(θ
∗
k|y, z) to be available in closed form (constant included) but, as already

explained, this is the case for the probit model.
Figure 5 and Table 1 summarize the results obtained for 100 replications of Chib’s

approximations of B01(y) with T = 20, 000 simulations for each approximation of mk(y)
(k = 0, 1). While Chib’s method is usually very reliable and dominates importance
sampling, the incredibly good approximation provided by the asymptotic Gaussian
distribution implies that, in this particular case, Chib’s method is dominated by both
the importance sampling and the harmonic mean estimates.
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Figure 5: Pima Indian dataset: boxplots of 100 Chib’s, harmonic mean and importance
estimates of B01(y), based on simulations from the prior distributions, for 2 × 104

simulations.

Table 1: Pima Indian dataset: Performances of the various approximation methods
used in this survey.

Monte Importance Bridge Harmonic Chib’s
Carlo sampling sampling mean approximation

Median 3.277 3.108 3.087 3.107 3.104
Standard deviation 0.7987 0.0017 0.1357 0.0025 0.0195
Duration in seconds 7 7 71 70 64

8 Conclusion

In this short evaluation of the most common estimations to the Bayes factor, we have
found that a particular importance sampling and its symmetric harmonic mean coun-
terpart are both very efficient in the case of the probit model. The bridge sampling
estimate is much less efficient in this example, due to the approximation error result-
ing from the pseudo-posterior. In most settings, the bridge sampling is actually doing
better than the equivalent importance sampler (Robert and Wraith 2009), while Chib’s
method is much more generic than the four alternatives. The recommendation result-
ing from the short experiment above is therefore to look for handy approximations to
the posterior distribution, whenever available, but to fall back on Chib’s method as a
backup solution providing a reference or better.
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