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Introduction

Model choice

Several models available for the same observation

Mi : y ∼ fi(y|θi), i ∈ I

where I can be finite or infinite.
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Bayesian resolution

Probabilise the entire model/parameter space

• allocate probabilities pi to all models Mi,

• define priors πi(θi) for each parameter space Θi,

• compute

P(Mi|y) ∝ pi
∫

Θi

fi(y|θi)πi(θi)dθi ,

• take largest P(Mi|y) to determine “best” model,
or use averaged predictive of y′∑

j

P(Mj |y)
∫

Θj

pj(y′|θj ,y)πj(θj |y)dθj .
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Why Bayesian inference embodies Occam’s razor?
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This graph gives the basic intuition for why complex models can turn out
to be less probable.
The horizontal axis represents the space of possible data sets. Bayes’ the-
orem rewards models in proportion to how much they predicted the data
that occurred. These predictions are quantied by a normalized probability
distribution.
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A simple model, like Model 0, makes only a limited range of predictions;
a more powerful model, like Model 1, that has, for example, more free
parameters, is able to predict a greater variety of data sets.

Suppose that equal prior probabilities have been assigned to the two mod-
els. Then, if the data set falls in region R, the less powerful model will be
the more probable model.

The marginal likelihood, which is called the evidence, corrresponds to a
penalized likelihood!

The BIC information criterium comes from an asymptotic
Laplace approximation of the evidence.
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Bayes factor

For models M1 and M0,

B10 =

∫
Θ1

f1(y|θ1)π1(θ1)dθ1∫
Θ0

f0(y|θ0)π0(θ0)dθ0

.
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Outside decision-theoretic environment:

• Jeffreys’ scale of evidence:

– if log10(B10) between 0 and 0.5, evidence against M0 weak,

– if log10(B10) 0.5 and 1, evidence substantial,

– if log10(B10) 1 and 2, evidence strong and,

– if log10(B10) above 2, evidence decisive;

(log10(3) ≈ 0.5 and log10(10) = 1 and log10(100) = 2).

• Requires the computation of the marginal/evidence under both hy-
potheses/models.
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Evidence

All these problems end up with a similar quantity, the evidence, that is
the marginal likelihood

mk(y) =
∫

Θk

πk(θk)fk(y|θk) dθk .
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Difficulties with the Bayesian model choice paradigm

Prior difficulties:

• When we have prior informations, how to choose the prior distribu-
tions on the parameters of each model in a compatible way? What
about the prior distribution in the models’s space?

• When we do not have any prior information, we can not use im-
proper prior distribution. Indeed, in that case, the models’s pos-
terior probabilities are only defined up to some arbitrary constants.
How to choose the various prior distributions?
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Computational difficulties:

• How to approximate the evidences?

• When the number of models in consideration is huge, how to explore
the models’s space?

We will consider here the case of a limited number of models, typically
two embedded models. We will not consider trans-dimensional sampling
solutions, like the reversible jump algorithm.

We will concentrate on the crucial question: how to approximate the
evidences, and then the Bayes factor?
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Importance sampling solutions

Regular importance sampling

Let gi(·) (i ∈ {0, 1}) be importance functions which are strictly positive
when fi(·|y)πi(·) are stricly positive.

B01 =

∫
Θ0

f0(y|θ0)π0(θ0)dθ0∫
Θ1

f1(y|θ1)π1(θ1)dθ1

=
Eπ0 [f0(y|θ0)]
Eπ1 [f1(y|θ1)]

=

∫
Θ0

f0(y|θ0)π0(θ0)
g0(θ1)

g0(θ0)dθ0∫
Θ1

f1(y|θ1)π1(θ1)
g1(θ1)

g1(θ1)dθ1

=
Eg0

[
f0(y|θ0)π0(θ0)

g0(θ0)

]
Eg1

[
f1(y|θ1)π1(θ1)

g1(θ1)

] .
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The regular importance approximation of B01 is given by

B̂01 =
n−1

0

∑n0
i=1 f0(y|θi0)π0(θi0)/g0(θi0)

n−1
1

∑n1
i=1 f1(y|θi1)π1(θi1)/g1(θi1)

where θ1
0, . . . ,θ

n0
0 is an n0-sample from g0(·) and θ1

1, . . . ,θ
n1
1 is an n1-

sample from g1(·).
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Diabetes in Pima Indian women benchmark example

“A population of women who were at least 21 years old, of Pima Indian

heritage and living near Phoenix (AZ), was tested for diabetes according

to WHO criteria. The data were collected by the US National Institute of

Diabetes and Digestive and Kidney Diseases.”

332 Pima Indian women with observed variables

• plasma glucose concentration (x1),

• diastolic blood pressure (x2),

• diabetes pedigree function (x3),

• presence/absence of diabetes (y).
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Probit modelling on Pima Indian women

We suppose that

P(y = 1|x) = Φ(x1θ1 + x2θ2 + x3θ3) .

The goal is to test the hypothesis H0 : θ3 = 0.

We denote by X0 the 332 × 2 matrix containing the values of x1 and x2

for the 332 individuals and by X1 the 332×3 matrix containing the values
of the covariates x1, x2 and x3.
Under H0 (for model M0), we use the following prior modelling

θ0 = (θ1,0, θ2,0)|X0 ∼ N2

(
02, n(XT

0 X0)−1
)
.

Under H1 (for model M1), we use

θ1 = (θ1,1, θ2,1, θ3,1)|X1 ∼ N3

(
03, n(XT

1 X1)−1
)
.
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The Bayes factor B01 is equal to

EN2(02,n(XT
0 X0)−1)

"
nY
i=1

{1− Φ ((X0)i,·θ)}1−yiΦ ((X0)i,·θ)yi

#

EN3(03,n(XT
1 X1)−1)

"
nY
i=1

{1− Φ ((X1)i,·θ)}1−yiΦ ((X1)i,·θ)yi

#

using the notation that Ai,· is the i-th line of the matrix A.
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MCMC for probit models

Use of either a random walk proposal

θ′ = θ + ε

in a Metropolis-Hastings algorithm (since the likelihood is available);

or of a Gibbs sampler that takes advantage of a missing variable repre-
sentation: a probit model can be represented as a natural latent variable
model: z|θ ∼ N1

(
xTθ, 1

)
and y = Iz>0.
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Importance sampling for the Pima Indian dataset

Use of the importance function inspired from the MLE estimate distribu-
tions:

gaussian distributions with means equal to the Maximum Likelihood (ML)
estimates θ̂0 and θ̂1 and covariance matrices equal to the estimated co-
variance matrices of the ML estimates Σ̂0 and Σ̂1:

g0(·) ∼ N2(θ̂0, Σ̂0) ,

and
g1(·) ∼ N3(θ̂1, Σ̂1) .
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Diabetes in Pima Indian women

Comparison of the variation of the Bayes factor approximations based on
100 replicas for 20, 000 simulations from the prior and the above MLE
importance sampler

●●
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Bridge sampling

If
π0(θ0|y) ∝ π̃0(θ0|y)

π1(θ1|y) ∝ π̃1(θ1|y)

live on the same space (Θ0 = Θ1 = Θ), then

B01 =
∫

Θ

f0(y|θ)π0(θ)dθ

/∫
Θ

f1(y|θ)π1(θ)dθ

= Eπ1

[
f0(y|θ)π0(θ)
f1(y|θ)π1(θ)

∣∣∣∣y] .
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In that case, the bridge sampling approximation of B01 is given by

B̂01 = N−1
N∑
j=1

f0(y|θj)π0(θj)
f1(y|θj)π1(θj)

= N−1
N∑
j=1

π̃0(θj |y)
π̃1(θj |y)

where θ1, . . . ,θN is an N -sample from π1(·|y).
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For all α(·), if Θ0 = Θ1 = Θ, we have

B01 =

∫
Θ

π̃0(θ|y)α(θ)π1(θ|y)dθ∫
Θ

π̃1(θ|y)α(θ)π0(θ|y)dθ

.

Using this equality, the bridge sampling estimator of B01 is given by

B̂01 =

1
n0

n0∑
i=1

π̃0(θi1|y)α(θi1)

1
n1

n1∑
i=1

π̃1(θi0|y)α(θi0)

where θ1
0, . . . ,θ

n0
0 is an n0-sample from π0(·|y) and θ1

1, . . . ,θ
n1
1 is an n1-

sample from π1(·|y).
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Optimal bridge sampling

The optimal choice of auxiliary function is

α?(θ) =
n0 + n1

n0π0(θ|y) + n1π1(θ|y)
.

The dependence on the unknown normalizing constants can be solved
iteratively.
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Extension to varying dimensions

When dim(Θ0) 6= dim(Θ1), typically θ1 = (θ, ψ) and f0(y|θ) =
f1(y|θ, ψ0) introduction of a pseudo-posterior density, ω(ψ|θ,y), aug-
menting π0(θ|y) into joint distribution

π0(θ|y)ω(ψ|θ,y)

on Θ1 so that

B01 =

Z
Θ1

f1(y|θ, ψ0)π0(θ)α(θ, ψ)π1(θ, ψ|y)ω(ψ|θ,y)dθdψZ
Θ1

f1(y|θ, ψ)π1(θ, ψ)α(θ, ψ)π0(θ|y)ω(ψ|θ,y)dθ dψ

,

for any conditional density ω(ψ|θ).
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Illustration for the Pima Indian dataset

Use of the MLE induced conditional of θ3 given (θ1, θ2) as a pseudo-
posterior and mixture of both MLE approximations on θ3 in bridge sam-
pling estimate

COMSTAT 2010 Tutorial Page 25



Diabetes in Pima Indian women (cont’d)

Comparison of the variation of the Bayes factor approximations based on
100 replicas for 20, 000 simulations
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The original harmonic mean estimator

Eπk
[

ϕk(θ)
πk(θ)fk(y|θ)

∣∣∣∣y] =
∫

ϕk(θ)
πk(θ)fk(y|θ)

πk(θ)fk(y|θ)
mk(y)

dθ =
1

mk(y)

holds, no matter what the density ϕk(θ) is, provided ϕk(θ) = 0 when
πk(θ)fk(y|θ) = 0.
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As opposed to usual importance sampling constraints, the density ϕk(θ)
must have lighter—rather than fatter—tails than πk(θ)fk(y|θ) for the
approximation of the Bayes factor

1

/
N−1

N∑
i=1

ϕk(θik)
πk(θik)fk(y|θik)

to enjoy finite variance.

Using ϕk(θ) = πk(θ) as in the original harmonic mean approximation will
most usually result in an infinite variance estimator.
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“The Worst Monte Carlo Method Ever”
Radford Neal’s blog, Aug. 23, 2008

“The good news is that the Law of Large Numbers guarantees that this
estimator is consistent ie, it will very likely be very close to the correct
answer if you use a sufficiently large number of points from the posterior
distribution.

The bad news is that the number of points required for this estimator
to get close to the right answer will often be greater than the number of
atoms in the observable universe. The even worse news is that it’s easy
for people to not realize this, and to näıvely accept estimates that are
nowhere close to the correct value of the marginal likelihood.”
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For the Pima Indian benchmark, we propose to use instead as our dis-
tributions ϕk(θ) the very same distributions as those used in the above
importance sampling approximations, that is Gaussian distributions with
means equal to the ML estimates and covariance matrices equal to the
estimated covariance matrices of the ML estimates.
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Diabetes in Pima Indian women (cont’d)
Comparison of the variation of the Bayes factor approximations based on
100 replicas for 20, 000 simulations
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Chib’s solution

mk(y) =
fk(y|θ)πk(θ)
πk(θ|y)

,

for all θ.

Therefore, if an arbitrary value of θ, θ∗, is selected, the Chib’s approxi-
mation to the evidence is

m̂k(y) =
fk(y|θ∗)πk(θ∗)

π̂k(θ∗|y)
.

π̂k(θ|y) may be the Gaussian approximation based on the MLE.
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A second solution is to use a nonparametric approximation based on a
preliminary MCMC sample, even though the accuracy may also suffer in
large dimensions.

In the special setting of latent variables models, Chib’s approximation is
particularly attractive as there exists a natural approximation to πk(θ∗|y),
based on the Rao-Blackwell estimate

π̂k(θ∗|y) =
1
T

T∑
t=1

πk(θ∗|y, z(t)) ,

where the z(t)’s are the latent variables simulated by the MCMC sampler.
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Diabetes in Pima Indian women (cont’d)

Comparison of the variation of the Bayes factor approximations based on
100 replicas for 20, 000 simulations
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The Savage–Dickey ratio

Considering a testing problem with an embedded model, H0 : θ = θ0,
and a nuisance parameter ψ, for a sampling distribution f(y|θ, ψ), the
representation

B01 =
π1(θ0|y)
π1(θ0)

,

with the obvious notations

π1(θ) =
∫
π1(θ, ψ)dψ and π1(θ|y) =

∫
π1(θ, ψ|y)dψ ,

holds under Dickey’s assumption

π1(ψ|θ0) = π0(ψ) .
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Measure-theoretic difficulty

B01 =

R
π0(ψ)f(y|θ0, ψ) dψR

π1(θ, ψ)f(y|θ, ψ) dψdθ
[by definition]

=

R
π1(ψ|θ0)f(y|θ0, ψ) dψ π1(θ0)R
π1(θ, ψ)f(y|θ, ψ) dψdθ π1(θ0)

[using a specific version of π1(ψ|θ0)]

=

R
π1(θ0, ψ)f(y|θ0, ψ) dψ

m1(y)π1(θ0)
[using a specific version of π1(θ0, ψ)]

=
π1(θ0|y)

π1(θ0)
, [using a specific version of π1(θ0|y)]

The last equality leading to the Savage–Dickey representation relies on
the choice of a specific version of π1(θ0|x) as well, namely

π1(θ0|y)
π1(θ0)

=
∫
π0(ψ)f(y|θ0, ψ) dψ

m1(y)
.
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Similar measure-theoretic difficulty

Verdinelli-Wasserman have proposed a generalisation of the Savage-Dickey
density ratio when the constraint on the prior densities is not verified.

B01 =
π1(θ0|y)
π1(θ0)

Eπ1(ψ|y,θ0)

[
π0(ψ)

π1(ψ|θ0)

]
.

This representation remains valid for any choice of versions for π1(θ0|y),
π1(θ0), π1(ψ|θ0), provided the conditional density π1(ψ|θ0,y) is defined
by

π1(ψ|θ0,y) =
f(y|θ0, ψ)π1(ψ|θ0)π1(θ0)

m1(y)π1(θ0|y)
.
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Given a sample (θ(1), ψ(1), z(1)), . . . , (θ(T ), ψ(T ), z(T )) simulated from (or
converging to) π1(θ, ψ, z|x), the sequence

1
T

T∑
t=1

π1(θ0|y, z(t), ψ(t))

converges to π1(θ0|y) under the constraint

π1(θ0|y, z, ψ)
π1(θ0)

=
f(y, z|θ0, ψ)∫

f(y, z|θ, ψ)π1(θ) dθ
.
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Moreover, if
(
ψ̃(1), z̃(1)

)
, . . . ,

(
ψ̃(T ), z̃(T )

)
is a sample generated from (or

converging to) π1(ψ, z|y,θ0), the sequence

1
T

T∑
t=1

π0(ψ̃(t))
π1(ψ̃(t)|θ0)

is converging to

Eπ1(ψ|y,θ0)

[
π0(ψ)

π1(ψ|θ0)

]
under the constraint

π1(ψ, z|θ0,y) ∝ f(y, z|θ0, ψ)π1(ψ|θ0) .
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An alternative representation

B01 =
∫
π0(ψ)f(y|θ0, ψ) dψ∫

π1(θ, ψ)f(y|θ, ψ) dψdθ

π1(θ0)
π1(θ0)

,

the numerator can be seen as involving a specific version in θ = θ0 of the
marginal posterior density

π̃1(θ|y) ∝
∫
π0(ψ)f(y|θ, ψ) dψ π1(θ) ,

which is associated with the alternative prior π̃1(θ, ψ) = π1(θ)π0(ψ).

This density π̃1(θ|y) appears as the marginal posterior density of the
posterior distribution defined by the density

π̃1(θ, ψ|y) =
π0(ψ)π1(θ)f(y|θ, ψ)

m̃1(y)
.
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The version of the marginal posterior density in θ = θ0 is obtained by
imposing

π̃1(θ0|y)
π0(θ0)

=
∫
π0(ψ)f(y|θ0, ψ) dψ

m̃1(y)
,

where the right hand side of the equation is uniquely defined.

This constraint amounts to imposing that Bayes’ theorem holds in θ = θ0

instead of almost everywhere (and thus not necessarily in θ = θ0).

It then leads to the alternative representation

B01 =
π̃1(θ0|y)
π1(θ0)

m̃1(y)
m1(y)

.
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Given a sample (θ̄(1)
, ψ̄(1), z̄(1)), . . . , (θ̄(T )

, ψ̄(T ), z̄(T )) simulated from (or
converging to) π̃1(θ, ψ, z|y), the sequence

1
T

T∑
t=1

π̃1(θ0|y, z̄(t), ψ̄(t))

converges to π̃1(θ0|y) in T under the constraint

π̃1(θ0|y, z, ψ)
π1(θ0)

=
f(y, z|θ0, ψ)∫

f(y, z|θ, ψ)π1(θ) dθ
.
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Moreover, if (θ(1), ψ(1)), . . . , (θ(T ), ψ(T )) is a sample independently simu-
lated from (or converging to) π1(θ, ψ|y), then

1
T

T∑
t=1

π0(ψ(t))

π1(ψ(t)|θ(t))

is a convergent and unbiased estimator of m̃1(y)/m1(y).
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Diabetes in Pima Indian women (cont’d)

Comparison of the variation of the Bayes factor approximations based on
100 replicas for 20, 000 simulations
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ABC method for model choice

We consider here the Bayesian paradigm.

When the likelihood function f(y|θ) is expensive or impossible to cal-
culate, it is almost impossible to sample from the posterior distribution
π(θ|y).

ABC is a recent technique that only requires being able to sample from
the likelihood f(·|θ).
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Likelihood free rejection sampling (Beaumont et al. (2002))

1) Set i = 1,

2) Generate θ′ from the prior distribution π(·),

3) Generate z from the likelihood f(·|θ′),

4) If ρ(η(z), η(y)) ≤ ε, set θi = θ′ and i = i+ 1,

5) If i ≤ N , return to 2).

The likelihood free algorithm sample from the marginal in z of:

πε(θ, z|y) =
π(θ)f(z|θ)IAε,y (z)R

Aε,y×θ
π(θ)f(z|θ)dzdθ

,

• ε > 0 a tolarance level,

• IB(·) the indicator function of a given set B,

• Aε,y = {z ∈ D|ρ(η(z), η(y)) < ε}.
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The idea behind ABC is that the summary statistics coupled with a small
tolerance should provide a good approximation of the posterior distribu-
tion:

πε(θ|y) =
∫
πε(θ, z|y)dz ≈ π(θ|y) .
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Indian Pima dataset: comparison between densities estimates of the
marginal posterior distributions θ1 (left), θ2 (center) and θ3 (right) from
ABC rejection samples (in red) and MCMC samples (in black).
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The tuning of the ABC algorithm is to use 106 simulations, with ε set as
the 1% quantile of the distances ρ(η(z), η(y), ρ chosen as the Euclidean
distance, and η(z) as the predictive distribution based on the current
parameter, while η(y) is the predictive distribution based on the MLE.

In this special case we are therefore avoiding the simulation of the obser-
vations themselves as predictive functions are available.

This choice reduces the variability in the divergence between η(z) and
η(y), and explains for the very good results.
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ABC-MCMC method

Likelihood free MCMC sampler (Majoram et al. (2003))

1) Use the likelihood free rejection sampling to get a realization θ(0) from the

ABC target distribution πε(θ|y),

2) Set t = 1,

3) Generate θ′ from the Markov kernel q
“
·|θ(t−1)

”
,

4) Generate z from the likelihood f(·|θ′),

5) Generate u from U[0,1],

6) If u ≤ π(θ′)q(θ(t−1)|θ′)
π(θ(t−1)q(θ′|θ(t−1))

IAε,y (z),

set θ(t) = θ′ else θ(t) = θ(t−1),

7) Set t = t+ 1,

8) If t ≤ N return to 3).
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Rejection sampling and MCMC methods can perform poorly if the toler-
ance level ε is small.

Consequently various sequential Monte Carlo algorithms have been con-
structed as an alternative to these two methods (Beaumont et al. (2009)).

The key idea is to decompose the difficult problem of sampling from
πε(θ, z|y) into a series of simpler subproblems.

The algorithm begins at time 0 sampling from πε0(θ, z|y) with large ε0,
then simulating from an increasing difficult sequence of target distribution
πεt(θ, z|y), that is εt < εt−1.
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ABC methods for model choice in Gibbs random fields

We consider a finite set of sites S = {1, · · · , n}.

At each site i ∈ S, we observe xi ∈ Xi where Xi is a finite set of states.

We also consider an undirected graph G: the sites i and i
′

are said neigh-
bours, if there is a vertex between i and i

′
.

A clique c is a subset of S where all elements are mutual neighbours
(Daroch, 1980).

We denote by C the set of all cliques of the undirected graph G.
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Gibbs Random Fields (GRFs) are probabilistic models associated with
densities

f(x) =
1
Z

exp{−U(x)} =
1
Z

exp

{
−
∑
c∈C

Uc(x)

}
,

where U(x) =
∑
c∈C Uc(x) is the potential and Z is the corresponding

normalising constant

Z =
∑
x∈X

exp

{
−
∑
c∈C

Uc(x)

}
.

If the density f of a Markov Random Field (MRF) is everywhere positive,
then the Hammersley-Clifford theorem establishes that there exists a GRF
representation of this MRF (Besag, 1974).
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We consider here GRF with potential U(x) = −θTS(x) where θ ∈ Rp is
a scale parameter, S(·) is a function taking values in Rp.

S(x) is defined on the cliques of the neighbourhood system in that S(x) =∑
c∈C Sc(x).

In that case, we have

f(x|θ) =
1
Zθ

exp{θTS(x)} ,

the normalising constant Zθ now depends on the scale parameter θ.
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GRF are used to model the dependency within spatially correlated data,
with applications in epidemiology and image analysis, among others (Rue
and Held, 2005).

They often use a Potts model defined by a sufficient statistic S taking
values in R in that

S(x) =
∑
i′∼i

I{xi=xi′} ,

where
∑
i′∼i indicates that the summation is taken over all the neighbour

pairs.

Xi = {1, · · · ,K}, K = 2 corresponding to the Ising model, and θ is a
scalar.

S(·) monitors the number of identical neighbours over X .
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In most realistic settings, the summation

Zθ =
∑
x∈X

exp{θTS(x)}

involves too many terms to be manageable.

Selecting a model with sufficient statistic S0 versus a model with sufficient
statistics S1 relies on the Bayes factor

BFm0/m1(x) =
∫

exp{θT
0 S0(x)}/Zθ0,0π0(dθ0)

/
∫

exp{θT
1 S1(x)}/Zθ1,1π1(dθ1)

This quantity is not easily computable.
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For a fixed neighbourhood or model, the unavailability of Zθ complicates
inference on the scale parameter θ.

The difficulty is increased manifold when several neighbourhood struc-
tures are under comparison.

We propose a procedure based on an ABC algorithm aimed at selecting
a model.

We consider the toy example of an iid sequence [with trivial neighbour-
hood structure] tested against a Markov chain model [with nearest neigh-
bour structure].

COMSTAT 2010 Tutorial Page 57



In a model choice perspective, we face M Gibbs random fields in compe-
tition.

Each model m is associated with sufficient statistic Sm (0 ≤ m ≤M − 1),
i.e. with corresponding likelihood

fm(x|θm) = exp
{

θT
mSm(x)

}/
Zθm,m ,

where θm ∈ θm and Zθm,m is the unknown normalising constant.

The choice between those models is driven by the posterior probabilities
of the models.
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We consider an extended parameter space θ = ∪M−1
m=0 {m} × θm that in-

cludes the model index M,

We define a prior distribution on the model index π(M = m) as well as
a prior distribution on the parameter conditional on the value m of the
model index, πm(θm), defined on the parameter space θm.

The computational target is thus the model posterior probability

P(M = m|x) ∝
∫

θm

fm(x|θm)πm(θm) dθm π(M = m) ,

the marginal of the posterior distribution on (M,θ0, . . . ,θM−1) given x.
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If S(x) is a sufficient statistic for the joint parameters (M,θ0, . . . ,θM−1),

P(M = m|x) = P(M = m|S(x)) .

Each model has its own sufficient statistic Sm(·).

Then, for each model, the vector of statistics S(·) = (S0(·), . . . , SM−1(·))
is obviously sufficient.
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We have shown that the statistic S(x) is also sufficient for the joint pa-
rameters (M,θ0, . . . ,θM−1).

That the concatenation of the sufficient statistics of each model is also a
sufficient statistic for the joint parameters is a property that is specific to
Gibbs random field models.

When we consider M models from generic exponential families, this prop-
erty of the concatenated sufficient statistic rarely holds.
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ABC algorithm for model choice (Grelaud et al. (2009))

1) Set i = 1,

2) Generate m′ from the prior π(M = m),

3) Generate θ′m′ from the prior πm′(·),

4) Generate z from the model fm′(·|θ′m′),

5) If ρ(S(z), S(x)) ≤ ε, set mi = m′, θimi = θ′m′ and i = i+ 1,

6) If i ≤ N , return to 2).
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Simulating a data set z from fm′(·|θ′m′) at step 3 is non-trivial for GRFs
(Møller and Waagepetersen, 2003).

It is often possible to use a Gibbs sampler updating one clique at a time
conditional on the others.

This algorithm results in an approximate generation from the joint pos-
terior distribution

π {(M,θ0, . . . ,θM−1)|ρ(S(x), S(z)) ≤ ε} .

When it is possible to achieve ε = 0, the algorithm is exact since S is a
sufficient statistic.
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Once a sample of N values of (θimi ,m
i) (1 ≤ i ≤ N) is generated from

this algorithm, a standard Monte Carlo approximation of the posterior
probabilities is provided by the empirical frequencies of visits to the model,
namely

P̂(M = m|x) = ]{mi = m}
/
N ,

where ]{mi = m} denotes the number of simulated mi’s equal to m.
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BFm0/m1(x) =
P(M = m0|x)
P(M = m1|x)

π(M = m1)
π(M = m0)

BFm0/m1(x) =
]{mi = m0}
]{mi = m1}

× π(M = m1)
π(M = m0)

,

This estimate is only defined when ]{mi = m1} 6= 0.

To bypass this difficulty, the substitute

B̂Fm0/m1(x) =
1 + ]{mi = m0}
1 + ]{mi = m1}

× π(M = m1)
π(M = m0)

is particularly interesting because we can evaluate its bias.
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We set N0 = ]{mi = m0} and N1 = ]{mi = m1}.

If π(M = m1) = π(M = m0), then N1 is a binomial B(N, ρ) random
variable with probability ρ = (1 +BFm0/m1(x))−1 and

E
[
N0 + 1
N1 + 1

]
= BFm0/m1(x) +

1
ρ(N + 1)

− N + 2
ρ(N + 1)

(1− ρ)N+1 .

The bias of B̂Fm0/m1(x) is {1− (N +2)(1−ρ)N+1}/(N +1)ρ, which goes
to zero as N goes to infinity.

B̂Fm0/m1(x) can be seen as the ratio of the posterior means on the model
probabilities under a Dir(1, · · · , 1) prior.
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Results on a toy example:

Our example compares an iid Bernoulli model with a two-state first-order
Markov chain.

Both models are special cases of GRF, the first one with a trivial neigh-
bourhood structure and the other one with a nearest neighbourhood struc-
ture.

Furthermore, the normalising constant Zθm,m can be computed in closed
form, as well as the posterior probabilities of both models.
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We consider a sequence x = (x1, .., xn) of binary variables. Under
model M = 0, the GRF representation of the Bernoulli distribution
B(exp(θ0)/{1 + exp(θ0)}) is

f0(x|θ0) = exp

(
θ0

n∑
i=1

I{xi=1}

)/
{1 + exp(θ0)}n .

For θ0 ∼ U(−5, 5), the posterior probability of this model is available
since the marginal when S0(x) = s0 (s0 6= 0) is given by

1
10

s0−1∑
k=0

(
s0 − 1
k

)
(−1)s0−1−k

n− 1− k
[
(1 + e5)k−n+1 − (1 + e−5)k−n+1

]
.
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Model M = 1 is chosen as a Markov chain.

We assume a uniform distribution on x1 and

f1(x|θ1) =
1
2

exp

(
θ1

n∑
i=2

I{xi=xi−1}

)/
{1 + exp(θ1)}n−1 .

For θ1 ∼ U(0, 6), the posterior probability of this model is once again
available, the likelihood being of the same form as when M = 0.
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We simulated 2, 000 datasets x = (x1, · · · , xn) with n = 100 under each
model, using parameters simulated from the priors.

For each of those 2, 000 datasets x, the ABC-MC algorithm was run for
4×106 loops, meaning that 4×106 sets (m,θm, z) were exactly simulated
from the joint distribution.

A random number of those were accepted when S(z) = S(x). (In the
worst case scenario, the number of acceptances was 12!)
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^
Comparison of the true P(M = 0|x) with P̂(M = 0|x) over 2, 000 simu-
lated sequences and 4× 106 proposals from the prior. The red line is the
diagonal. (right) Same comparison when using a tolerance ε correspond-
ing to the 1% quantile on the distances.
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