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Abstract. The tutorial will start by reviewing the similarities and differences be-
tween statistics, machine learning and data mining. Then we will take a closer look
at the knowledge discovery process as described by the CRISP-DM methodology.
Here we will focus on various types of machine learning algorithms used for the
modeling step and on the statistical approaches and methods used in these algo-
rithms. Attention will primarily be centered on different types of association rules.
We will introduce the basic principles of the GUHA method which combines logical
and statistical approaches to association rules mining and we will discuss the obser-
vational calculi used, the logic of association rules and their applications. We will
also show how these principles have been implemented in the LISp-Miner system
and how this system can be used to solve real machine learning and data mining
tasks.
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1 Statistics, machine learning and data mining

1.1 Basic characterization

Statistics, machine learning and data mining are three disciplines that all deal
with data analysis, i.e. with the process of inspecting, cleaning, transforming,
and modeling data with the goal of highlighting useful information, suggesting
conclusions, and supporting decision making.

Statistics can be defined as the science of making effective use of numerical
data relating to groups of individuals or experiments. It deals with all aspects
of this, including not only the collection, analysis and interpretation of such
data, but also the planning of the collection of data, in terms of the designing
of surveys and experiments (Dodge, (2003)).

Statistical data analysis can have three forms. Descriptive statistics tries
to find basic quantitative characteristics of a data set such as central ten-
dency (average, median, mode) or dispersion (standard deviation or range),
confirmatory data analysis tries to confirm or reject a statistical hypothesis
and ezploratory data analysis uses data to propose new hypotheses (models)
to be tested.
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Machine learning, a subfield of artificial intelligence ”is concerned with
the question of how to construct computer programs that automatically im-
prove with experience” (Mitchell, (1997)). In a very broad sense ”things learn
when they change their behavior in a way that makes them perform better
in a future” (Frank, Witten, (2003)). Machine learning is thus not only re-
lated to learning from data. We can distinguish two basic learning activities:
knowledge acquisition and skill refinement. Knowledge acquisition consists
of inferring and assimilating new material, composed of concepts, general
laws, procedures, etc. The knowledge acquired should allow problem solv-
ing, performing new tasks, or improving the performance of existing tasks,
explaining situations, predicting behavior, etc. Refinement of skills through
practice consists of gradually correcting deviations between observed and de-
sired behavior through repeated practice. This activity of human learning
covers mental, motor, and sensory processes. It should be noted that current
research in machine learning mainly focuses on knowledge acquisition.

Data mining or knowledge discovery in databases is aimed at acquiring
implicit knowledge from data and using it to build classification, prediction,
description etc. models for decision support. As more data is gathered, with
the amount of data doubling every three years, data mining becomes an
increasingly important tool to transform this data into knowledge. While it
can be used to uncover hidden patterns, it cannot uncover patterns which
are not already present in the data set.

The terms data mining and knowledge discovery in databases are often
used interchangeably. We will support the view that knowledge discovery is
a broader concept covering the whole process in which data mining (also
called modeling or analysis) is just one step in which machine learning or
statistical algorithms are applied to preprocessed data to build (classification
or prediction) models or to find interesting patterns. Thus we will understand
knowledge discovery in databases (KDD) as the

Non-trivial process of identifying valid, novel, potentially useful and
ultimately understandable patterns from data (Fayyad et al., (1996)),

or as an

Analysis of observational data sets to find unsuspected relationships
and summarize data in novel ways that are both understandable and
useful to the data owner (Hand et al.,(2001)),

The KDD process consists (according to the CRISP-DM methodology, Chap-
man et al., (2000)) of business understanding, data understanding, data pre-
processing, modeling, evaluation and deployment steps (Fig. 1).

Having these definitions in mind, we can see certain differences in data
analysis performed in statistics, machine learning and data mining,.
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Fig. 1. CRISP-DM methodology (Chapman et al., (2000)).

1.2 Differences and similarities

The conceptual difference between statistics on one side and machine learning
and data mining on the other side is the fact that statistical analysis is
hypothesis driven and model oriented while machine learning and data mining
are data driven and algorithm oriented (Hand, (1998)).

When doing statistical data analysis we have to start by formulating one
or more hypotheses about a model, then collect the data (in a controlled
way that preserves the expected theoretical characteristics of the data), then
perform the analysis, and then interpret the results.

Statisticians also usually analyze small volumes of numerical data with
known statistical properties (they usually expect data to be drawn from a
known distribution and to be stationary).

When doing data mining, we are faced with huge heterogeneous amounts
of data with a lot of missings and inconsistencies that may contain some
interesting novel knowledge. This data is usually collected for completely dif-
ferent reasons than to provide representative training set for machine learning
algorithms. We thus know nothing about the underlying distribution, about
its properties (such as stationarity) and we very often do not know what
models (dependencies) can be hidden in the data or what are the relevant
characteristics (attributes) that will help us to uncover these models.

We usually start by formulating a possible task (rather than a hypothesis),
where some tasks (such as classification or prediction) are more related to
statistical data analysis, while others (such as pattern discovery) are not.
Then we try to find a relevant subset of available data to solve the task, then
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"play” with various algorithms (machine learning or statistical) and then
interpret the results.

Another difference is in the terminology used. Table 1 shows some ex-
amples of different terms for the same concepts. Some people also argue that
there is a difference in marketing; machine learning methods are much better
promoted than statistical ones (Chakrabrati et al. (2008)).

Table 1. Terminological differences

Machine learning Statistics
attribute variable
target attribute, class dependent variable, response
input attribute independent variable, predictor
learning fitting, parameter estimation
weights (in neural nets)|parameters (e.g. in regression models)
error residuum

Nevertheless, there is a lot of common ground in both areas and machine
learning and statistics do converge in ideas and procedures. For example,
algorithms for building decision trees from data were concurrently proposed
in both the statistical community (CART by Breiman et al.) and machine
learning community (ID3 by Quinlan), neural networks are very close to
regression methods, nearest neighbor methods are used for classification in
both areas, and purely statistical methods such as cross-validation or y? test
have been incorporated into many machine learning algorithms.

2 Machine Learning Methods and Algorithms

Human learning is one of the most important characteristics of human in-
telligence. In a similar way, machine learning is one of the most significant
fields of artificial intelligence. Machine learning is quite an old discipline; it
was a founding branch of artificial intelligence in the late 1950’s. However, it
has become very attractive, especially recently, thanks to knowledge discov-
ery from databases, data mining, and their developments and applications.
Machine learning is one of the feasible means for automatic knowledge acqui-
sition and machine learning algorithms play a key role in the modeling (or
analytic) phase of the KDD process described above.

A vast number of machine learning algorithms exist at present. One can
categorize machine learning systems along many different dimensions. How-
ever, the following dimensions seem to be widely accepted (Berka, Bruha
(2000)):
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e categorization based on the amount of effort or inference required by the
learner,

e categorization based on available feedback during learning,

e categorization based on underlying paradigms, and

e categorization based on the representation of input data and that of ac-
quired concepts.

The taxonomy of learning systems based on the amount of effort (infer-
ence) required by the learner to perform its learning task is as follows:

e Rote learning consists of simply recording data or pieces of knowledge
supplied by the teacher. No inference or transformation is applied to this
input by the learner.

e Learning from instruction (learning by being told) consists of acquiring
knowledge from an external source and integrating it with the knowledge
previously acquired. The learner transforms the acquired knowledge from
the input language into an internally usable representation.

e Learning by analogy consists of acquiring new facts or pieces of knowledge
by transforming and augmenting existing knowledge from a similar source
idea to an analogous target concept.

e FExplanation-based learning consists of forming a general characterization
of a concept from a very small number of examples and large background
knowledge.

e Learning from examples consists of acquiring a general concept descrip-
tion (characterization) from a given training set of examples and coun-
terexamples of the concept. The teacher supplies the training set and
provides the desired concept for each example. The learner applies in-
duction and can eventually use the background knowledge specific for
the given domain. This form of learning seems to be the most investi-
gated in artificial intelligence.

e Learning from observation and discovery is a very general form of induc-
tive learning that consists of clustering input examples or observations
into different conceptual classes, discovering new concepts and their hier-
archical structure. The learner is not supervised by an external teacher,
and does not have any information about desired classes (concepts) of
input examples; therefore, this form is also called unsupervised learning
or learning without a teacher. It corresponds to typical human learning,
where the learner elaborates a conceptual structure that will enable him
to organize his observations and classify future experience.

Based on the feedback available during learning we can distinguish:

e supervised learning, where pre-classified examples are available for learn-
ing and the task is to build a (classification or prediction) model that will
work on unseen examples,
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reinforcement learning, where the teacher observes the learning system
(typically a robot) and gives his feedback in the form of rewards (when
learning correctly) or punishments (when learning incorrectly),
apprenticeship learning, where the system uses indirect hints derived from
the teachers$ bahavior,

unsupervised learning, where there is no feedback at all (this is typical
for clustering and segmentation tasks).

Two contrasting groups of learning can be distinguished in the above

forms of learning:

2.1

e Empirical (similarity-based) learning involves examining multiple train-

ing examples of one or more concepts (classes) in order to determine the
characteristics they have in common. Such systems usually have limited
background (domain-specific) knowledge. The learner acquires a concept
by generalizing these examples through a search process based on induc-
tive inference. Empirical learning comprises both learning from examples
and learning from observation and discovery.

Analytic learning formulates a generalization by observing only a sin-
gle example (or no examples at all) and by exploiting extensive back-
ground knowledge about the given domain. Explanation-based learning
and learning by analogy belong in this group.

General overview of empirical concept learning

The most important type of learning for KDD is empirical concept learning.
This type of learning can be formally defined as follows:

Let the analyzed (so called training) data have the form

1 xTo ITm Yy
1 (211 212 . Tim 0
2 | Tay1 T2 ... Tom Y2
n Inl Tn2 Tnm yn

where each row corresponds to a single example, also called object (market

basket, patient, bank client etc.) and each column corresponds to an attribute
(categorial or numerical) describing a property of these objects (so x;; is the
value of the j-th attribute for the i-th object).Let us further assume that
there is a special attribute y (called target, goal, or class) that divides the
examples into classes (for classification tasks) or contains a numerical value
we are interested in (for prediction tasks). So, the description of an object o;
consists of values of "input” attributes x; and the value of target attribute

Yi

0; =[x, yil.
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Such types of data allow us to define a classification or prediction task.
We search for knowledge or a model (represented by the decision function
f) f:x — y, that for input values x of an object infers the value of target
attribute § = f(x). During the classification or prediction of an example we
can make a wrong decision. We can express the possible error Q¢(0;,9;) as

Qr(0i,9:) = (yi — i) (1)
if the target attribute is numerical (i.e. if we are doing prediction), or as
oy J U g #F
Qo ={ gt 470 @

if the target attribute is categorial (i.e. if we are doing classification).

We can compute the total error Err(f, Drg) for the whole training data
Drg ,eg. as

Err(f,Drg) = %ZQf(OhZ?i)- (3)
=1

The goal of learning is to find such a knowledge f*, that will minimize this
error.

Induction is the most appropriate form of inference in artificial intelli-
gence, therefore - when we talk about learning - we usually only mean the
inductive learning (i.e. learning from examples and from observation and dis-
covery). One assumption of this type of learning has already been mentioned:
examples belonging to the same class have similar characteristics. When we
display each example as a point in a multidimensional attribute (feature)
space, examples belonging to the same class thus form clusters in this space
and during learning, we try to find some general description of each cluster.
The other assumption is that we infer general knowledge from a finite set of
examples; to obtain usable knowledge we thus need sufficiently representative
training data. Both these assumptions have a significant impact on practical
KDD tasks:

e in the data preprocessing step we need to find such characteristics (at-
tributes) that fulfill the similarity assumption,

e in the modeling and evaluation steps we need to thoroughly test the
acquired knowledge on data that has not been used in the learning process
(so called testing data).

There are two general approaches to inductive learning. Inductive learning
can be viewed as:

e search in the space of concept descriptions - in this case we learn both
the structure and parameters of the model,
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e approximation within a class of models - in this case we ”only” learn the
parameters of the model.

If we understand machine learning as the task of finding appropriate clus-
tering of training data in the attribute space, we can search trough the pos-
sible clusterings (i.e. models) of the data to find the best one. To perform
learning as a search, we must define the ordering of these models accord-
ing to their generality. The most general model (MGM) would correspond
to a situation where all examples belong to the same cluster. Using such a
model for classification will result in the assignment of every example to the
same (usually the majority) class. The most specific model (MSM) would
correspond to a situation where each example creates its own cluster. Such
a model would only classify examples from the training data and cannot be
applied to any new, previously unseen example. We can say that model M;
is more general than model My (and Model My is more specific than model
M;) if we can transform M; into Ms by splitting some of its clusters using
a specialization operator, and transform My into M; by merging some of its
clusters using a generalization operator. The exact form of these operators is
naturally dependent on the machine learning algorithm used; e.g. in learning
decision trees we obtain a more specific tree by substituting a leaf with a
subtree and obtain a more general tree by substituting a subtree with a leaf.

Ordering between models allows us to use various search methods that
can differ in direction (they can be top down - i.e. from a general to specific
model, or bottom up - i.e. from a specific to general model), in strategy (they
can be blind, heuristic or random), or in width (they can consider a single
model or more models in parallel).

Learning as approximation assumes that we "know” a general class of
suitable decision functions (e.g. linear) and that we are looking for the best
parameters. A typical approach used here is the least squares method. The
general learning scheme for finding a model that will minimize the total error

n

Err(f,Drr) =Y (yi — f(x:)) (4)

i=1

is transformed to solve the equation

> S = (5)

i=1

If the class of functions is known (e.g. if f is linear as in the linear regression
method), we can find the analytical solution by solving the set of equations
for parameters of the function f. If the class of functions cannot be expressed
analytically (e.g. in neural networks), we must use gradient methods to find a
numerical solution. In this case we have to compute the gradient of the error
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as
0Err 6Err 0Err
VErr = , sy , 6
(q) dqo oq1 0qx ()

where qqg, q1, ..., qx are parameters of the model f, and then modify the para-
maters of the model as

qj < q; + Ag; (7)
where SE
T
== 8

There are a number of methods that follow one of the paradigms men-
tioned above. We will review some of these in the next subsection. However,
we must stress here that there is no ”best” algorithm that will outperform
(in terms of classification or prediction accuracy) the other algorithms on any

problem (this fact is known as the no free lunch theorem; see e.g. Wolpert,
(1996)).

2.2 Selected methods of empirical concept learning

Decision trees Decision trees belong to the most popular models for solving
classification tasks. When building a decision tree, we recursively partition
the attribute space in a top-down manner. This method, also known as ”di-
vide and conquer” has been implemented in various algorithms. Fig. 2 shows
a simplified sketch of the ID3 algorithm by Ross Quinlan (Quinlan, 1986).
This algorithm can only process categorial data, numerical attributes must
be discretized in advance (the reason for this is in step 2 of the algorithm)
and will stop after all examples are correctly classified (step 3). The C4.5 al-
gorithm (a successor to ID3, see Quinlan, (1993)) can process numerical data
as well, and has a relaxed stopping condition; so this algorithm can process
noisy data containing a mixture of catergorial and numerical attributes.

algorithm ID3

1. select an input attribute as the root of a particular (sub)tree

2. divide the data in this root into subsets according to each value of the
selected attribute and add a new node for each resulting subset

3. if there is a node containing examples of different classes, go to step 1

Fig. 2. The ID3 algorithm

The key point of the algorithm is the way a splitting attribute is chosen.
A criterion that reflects the ability to correctly separate examples of different
classes is computed for every available input attribute at the splitting node.
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The attribute with the "best” value is then selected for the splitting node.
The ID3 algorithm (Quinlan, (1986)) uses entropy

S
T Q4 Qy; 4
H(A) = E LA - E —rj logy, —2 |, 9)
j=1 '

,
i—1 1

the C4.5 algorithm (Quinlan, (1993)) uses information gain
5. s, 84
InfoGain(A) = — Llogy =L — H(A), 10
nfoGain(A) Z og2— (4) (10)

the CART algorithm (Breiman et al. (1984)) uses the Gini index

Gini(A) :XR::L 1—282 (?)2 , (11)

i=1 j=1
the CHAID (Biggs et al. (1991)) algorithm uses x? statistics

TiSj )2

RO p) g (12

i=1 j=1 n

In all these formulae a;; is the number of examples that have the i-th value
of the attribute A and the j-th value of the target attribute, r; is the number
of examples that have the i-th value of the attribute A, s; is the number of
examples that have the j-th value of the target attribute and n is the number
of all examples.

Algorithms for building decision trees perform a top down greedy search
in the space of possible trees. A decision tree divides the attribute space into
regions (clusters) of rectangular shape that are perpendicular to the axes.

Association rules An association rule is commonly understood to be an
expression of the form
X =Y,

where X and Y are sets of items such that X NY = @. The association rule
X = Y means that transactions containing items from set X tend to contain
items from set Y . The term association rule was coined by R. Agrawal in
the early 90s in relation to a so called market basket analysis (Agrawal et al.,
1993). In this analysis, transaction data recorded by point-of-sale systems in
supermarkets are analyzed in order to understand the purchase behavior of
groups of customers, and used to increase sales, and for cross-selling, store
design, discount plans and promotions. So an example of an association rule
can be
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{eggs, bacon} = {cheese}
expressing, that customers who buy eggs and bacon also often buy cheese (to
make ham-and-eggs).

This idea of association rules was later generalized to any data in the tab-
ular, attribute-value form. So data describing properties (values of attributes)
of some examples can be analyzed in order to find associations between con-
junctions of attribute-value pairs (categories) called antecedent (Ant) and
succedent (or consequent) (Suc):

Ant = Suc

The two basic characteristics of an association rule are support and con-
fidence. Let a (for the analyzed data) be the number of examples (rows in
the data table) that fulfill both Ant and Suc, b the number of examples that
fulfill Ant but do not fulfill Suc, ¢ the number of examples that fulfill Suc
but do not fulfill Ant, and d the number of examples that fulfill neither Ant
nor Suc. Support is then defined as

a

= P(Ant A Suc) = ————
sup (An uc) PR —T

(13)
(the value a can be understood as absolute support), and confidence is defined

as
a

a+b

In association rule discovery, the task is to find all syntactically correct
rules Ant = Suc (i.e. rules, in which two different values of an attribute can-
not occur) so that the support and confidence of these rules is above the user-
defined thresholds minconf and minsup. There are a number of algorithms
that perform this task. The main idea of these algorithms is to repeatedly
generate a rule in a "top-down” manner by rule specialization (i.e. by adding
categories to an existing combination) and test if this rule meets the thresh-
olds minconf and minsup. The probably best-known algorithm called apriori
proceeds in two steps. All frequent itemsets are found in the first step (see
Fig. 3). A frequent itemset is a set of items that is included in at least minsup
transactions. Then, association rules with a confidence of at least minconf are
generated in the second step by splitting a frequent itemset Comb into Ant
and Suc (Agrawal et al. (1993)).

conf = P(Suc|Ant) = (14)

Decision rules "If-then” rules belong to the most popular formalism used
to represent knowledge either obtained from human experts (as in the case
of expert systems) or learned from data. Unlike association rules, where the
"then” part of a rule (the succedent) can contain a conjunction of arbitrary
attribute-value pairs, decision rules have the form

Ant = C
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algorithm apriori

1. assign all items that reached the support of minsup into L
let k=2
3. while Ly—1 # ©
3.1 using the function apriori-gen create a set of candidates C from
L1
3.2 assign all itemsets from C} that reached the support of minsup
into Ly
3.3 increase k by 1

o

Function apriori-gen(Lx_1)
1. for all itemsets Comb, , Combg from Ly_;
if Comb, and Comb, share k — 2 items, then add Comb, A Comb, to
o
2. for all itemsets Comb from C},
if any subset with a length k — 1 of Comb is not included in Li_; then
remove Comb from C}

Fig. 3. Finding frequent itemsets using the apriori algorithm

where C' is the value of the categorial target attribute.

Again, there are a number of algorithms for building decision rules from
data. Fig. 4 shows a sketch of the set covering algorithm. One group of algo-
rithms (so called set covering algorithms) proceeds in a way called ”separate
and conquer”; during each pass of the main cycle of the algorithm some ex-
amples of the target concept are described by a single rule and then removed
from the training data (Fig. 4). A new candidate rule can be created either
by rule specialization (adding a new attribute-value pair to the condition of
the rule; this method is used, for example, in the CN2 algorithm by Clark
and Niblett (Clark, Niblett, (1989)) or by rule generalization (removing an
attribute-value pair from the condition of a rule; this method is used, for
example, in the AQ algorithm by Michalski (Michalski, (1969)).

The set covering algorithm thus performs a top-down or bottom-up search
in the space of all possible rules. Each rule defines a rectangular region in the
attribute space.

set covering algorithm

1. create a rule that covers some examples of one class and does not cover
any examples of other classes

2. remove covered examples from training data

3. if there are some examples not covered by any rule, go to step 1

Fig. 4. The set covering algorithm



Machine Learning and Association Rules 13

Another type of rule learning algorithm learns rules in the form
Ant = C(w)

where w (called weight) expresses the uncertainty of the rule. An example
of such an algorithm is the KEX algorithm (Berka, Ivédnek (1994)), which
performs a heuristic top-down search in the space of candidate rules. In this
algorithm the covered examples are not removed during learning, so an ex-
ample can be covered by more rules. Thus more rules can be used during
classification each contributing to the final assignment of an example. KEX
uses a pseudo-bayesian combination function borrowed from the expert sys-
tem PROSPECTOR (Duda, Gashing (1979)) to combine contributions of
more rules:
w1 X Wa

wy X wy + (1 —wy) X (1 —wy)

w1 D wy = (15)

KEX works in an iterative way, testing and expanding an implication
Ant = C in each iteration. This process starts with a default rule weighted
with the relative frequency of class C' and stops after testing all implications
created according to user defined criteria. The induction algorithm inserts
only such rules into the knowledge base, for which the confidence (defined
in the same way as the confidence of association rules) cannot be inferred
(using formula 15) from weights of applicable rules found so far. A sketch of
the algorithm is shown in Fig. 5.

KEX algorithm

Initialization
1. forall category (attribute-value pair) A add A = C to OPEN
2. add empty rule to the rule set KB

Main loop
while OPEN is not empty
1. select the first implication Ant = C from OPEN
2. test if this implication significantly improves the set of rules K B built
so far (using the x? test, we test the difference between the rule validity
and the result of classification of an example covered by Ant) then add
it as a new rule to KB
3. for all possible categories A
(a) expand the implication Ant = C by adding A to Ant
(b) add Ant A A = C to OPEN so that OPEN remains ordered
according to decreasing frequency of the condition of rules
4. remove Ant = C from OPEN

Fig. 5. Simplified sketch of the KEX rule learning algorithm
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Neural networks (artificial) Neural networks are mathematical or com-
putational models of the structure and/or functional aspects of biological
neural networks. A neural network is composed of a number of elementary
units (neurons) that are interconnected in different ways. A single (artificial)
neuron can be understod as a threshold unit that sums up m weighted signals
on its input.

sum = Zwimi (16)
i=1

The output out of the neuron depends on this sum. A common method is to
transform the sum using some sigmoidal-shaped function, so

1
out = ——— (17)

1 . esum

or
out = tanh(sum). (18)

This behaviour can easily be used for classification. If inputs into a neuron
correspond to the values of input attributes, then the single neuron divides
the attribute space using a hyperplane into two sub-spaces each containing
examples of one class. Due to the sigmoidal transformation of sum, the border
between the classes is ”soft”.

There is a number of different types and topologies of neural networks
(Hecht-Nielsen, (1991)). In data mining, the most popular types are multi-
layer perceptron and RBF network used for classification or prediction, and
Kohonen network (also called SOM, i.e. self-organizing map) used for seg-
mentation and clustering. Let’s take a closer look at multi-layer perceptrons.
In this type of network, the neurons are organised into layers in such a way,
that neurons within one layer are not connected, but every neuron in one
layer is connected to all neurons in neighbouring layers. Multi-layer percep-
trons have one input layer, several hidden layers and one output layer. As
it is known that multi-layer perceptron with one hidden layer is a universal
function approximator, the most frequently used topology consists of three
layers.

When using multi-layer perceptron for data mining, we bring the values of
input attributes to the input layer and obtain the value of the target attribute
from the output layer. The knowledge (i.e. the model) is composed of the
topology of the network and weights of the connections between neurons.
As the topology is given in advance (the topology implicitly encodes the
function that transforms the inputs of the networks to it’-s outputs), the
learning neural network fits into learning as approximation paradigm. As
we cannot express the function between inputs and outputs analytically, we
must proceed numerically as shown in formula 6. A simplified version of the
algorithm that learns weighs from training data is shown in Fig. 6.
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Error backpropagation algorithm

1. inicialize the weights in the network with small random numbers (e.g.
from the interval [—0.05,0.05])

2. while the stopping condition is not satisfied for every training example
b, ] do
2.1 compute the output out, for every neuron u
2.2 for every neuron o from the output layer compute the error

error, = outo(1 — outo)(yo — outo)

2.3 for every neuron h from the hidden layer compute the error

errory, = outp (1 — out) Z (whoerrors)
o€output

2.4 for every connection from neuron j to neuron k modify the weight
of the connection
Wik = Wik + Awj,
where
Awji, = n errory Tk

Fig. 6. Error backpropagation algorithm for training multilayer perceptron

Genetic algorithms Another biologically inspired methods are genetic al-
gorithms. Genetic algorithms are used to find the (approximate) solution for
optimalization or search problems. As such, they perform (from a data mining
perspective) a parallel random search in the space of models. The basic idea
of genetic algorithms is to repeatedly apply evolutionary operators (selection,
crossover, mutation) to a set of individuals, each representing a possible so-
lution (model). In this process the population of individuals evolves toward
better solutions. The basic form of a genetic algorithm is shown in Fig. 7
(deJong et al. (1993)).

For the implementation of the evolutionary principle, the crucial aspect
is how to encode the individuals and how to evaluate their quality (called
fitness). In the simplest case, the individuals are encoded using bit-strings,
and - when doing classification - the fitness reflects the classification accuracy
of the individuals.

Genetic algorithms can be used for data mining directly (in this case, each
individual encodes a possible model, e.g. decision rule or decision tree), within
a ”standard” machine learning algorithm (e.g. for generating a single rule in
a set covering rule learning algorithm, for an example of this approach see
Kralik, Bruha (1998)), or in relation to another machine learning algorithm
(e.g. to find the optimal topology of a neural network - in this case each
individual encodes a single neural network that is separately trained on data).
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Genetic algorithm (fit,N,K,M)

Initialization
1. assign t:=0
2. randomly create the initial population Q(¢) which contains N individ-
uals
3. compute fit(h) for every individual h € Q(t)

Main loop
1. while the stopping condition is not satisfied do

1.1 selection: select individuals & from the population Q(t) that will
be directly inserted into the population P(t + 1)

1.2 crossover: choose pairs of individuals (with probability K) from
the population Q(t), perform crossover on each pair and insert the
offsprings into the population Q(¢ + 1)

1.3 mutation: choose individuals h (with probability M) from the
population Q(t + 1) and mutate them

14 assignt =t + 1

1.5 compute fit(h) for every individual h € Q(t)

2. return the individual A with the highest value of fit(h)

Fig. 7. Genetic algorithm

Bayesian methods Bayesian methods are based on the Bayesian theorem
on conditional probabilities. Although originating in the area of statistics,
these methods are studied in relation to machine learning and knowledge
discovery in databases.

Naive Bayesian classifier is based on the assumption that the evidences
(input attributes) FEj,..., Ex are conditionally independent for a given hy-
pothesis (class) H,;. This simplified assumption allows us to compute the
posterior probability of hypothesis H; based on all evidences E1, ..., Fx as

P(H,)P(Ey,.... Ex|H;) _ P(H) LS, POE|H;)

P(H;|Ey,...,Fx) = =
( j| b ’ K) P(EhaEK) P(E177EK)

(19)

The numerator in formula 19 corresponds to the joint probability distri-
bution of the naive model. Because this type of model is fixed (by the inde-
pendence assumption), the learning naive Bayesian classifier fits into learning
as an approximation paradigm. The probabilities P(H;) and P(E;|H;) are
estimated as relative frequencies from the training data in a similar way to
the evaluation of association rules. So

P(H,) = ¢ (20)

and

(21)
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where a is the number of examples that fulfill both E; and Hj, c is the number
of examples that fulfill H; but do not fulfill F;, and n is the number of all
examples in the training set. The probability P(Fj, ..., Ex) is ignored as we
are not interested in the exact value of P(H;|E1, ..., Ex) but want to know
for which hypothesis (class) H; is the posterior probability maximal.

Bayesian networks offer a more correct solution, that does not assume
any independence in advance (see e.g. Jensen, (1996)). This type of mod-
els is again based on the Bayesian theorem but we now compute the joint
probability distribution as

K
Puy,...,ux) = H P(u;|parents(u;)) (22)

=1

where u; are variables (nodes in the Bayesian network) and parents(u;) are all
nodes that directly influence (condition) the node u; and are thus connected
to node u; in a graph representing the network. When learning Bayesian
networks from data, we must infer both the structure of the model (the
graph) and the parameters (conditional probabilities) and thus search the
space of possible network topologies.

Instance-based learning Instance-based learning or memory-based learn-
ing is a family of learning algorithms that, instead of performing explicit
generalization, compare instances of new problems with instances seen in
training, which have been stored in memory. The crucial concept in instance-
based learning is the distance (resp. the similarity) between examples. If all
input attributes are numerical, we can easily use some of the metrics known
from cluster analysis such as Eucleidian distance

or Hamming distance (also called city-block resp. Manhattan distance)
dn(x1,%X2) = 3 On(1j,025), Oe(w1), w25) = |w1j — wo5]? (24)
j=1

If the attributes are categorial, the distance measure must be defined in a
different way; the simplest solution, the overlap metrics

- 1 iff 2 # a9,
do(X1,%2) = Y 0o(w1j,227), Go(1,22;) = {O o xijixzj (25)
J=1

is too strict and cannot express subtle differences between examples.
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During learning, ”suitable” examples are stored to build the model. There
are a number of strategies for choosing these examples. In simplest case, every
training example is stored; this method is used in the IB1 algorithm (Aha
et al. (1991)). A more sophisticated way is to only store examples that are
wrongly classified by the current model; this method which corresponds to a
heuristic top-down search (wrongly classified example creates a new cluster)
can be found in IB2 and IB3 algorithms (also Aha et al. (1991)).

We can also generalize the examples to find some representatives of the
respective clusters. Cluster analysis, which can be used in such a case offers
two basic approaches: hierarchical clustering (where the number of resulting
clusters is not known in advance) can be understood as search, while the
k-mean method (where the number of clusters is an input parameter) can be
understood as approximation.

3 GUHA Method and LISp-Miner System

A we saw in Sect. 2.2, the term association rule was coined by R. Agrawal
in the early 90s and the idea of association rules was later generalized to any
data in the tabular, attribute-value form. An association rule is understood as
the relation between conjunctions of attribute-value pairs (categories) called
antecedent and succedent. There are two basic characteristics of an associa-
tion rule — support and confidence.

We must emphasize that the concept of association rules was introduced
and studied much earlier than the early 90s. An association rule in the form of
a relation between two conjunctions of predicates was introduced and studied
in 1968 (Héjek (1968)). The relation was based on Fisher’s test. It was done
within the framework of the development of the GUHA method of mechanized
hypothesis formation (Héjek et al. (1966)).

A milestone in the GUHA method development was the monograph (Héjek
and Havranek (1978)), which introduces the general theory of mechanized
hypothesis formation based on mathematical logic and statistics. Associa-
tion rules defined and studied in this book are relations between two general
Boolean attributes derived from the columns of an analyzed data matrix.
Various types of relations of Boolean attributes are used including relations
corresponding to statistical hypothesis tests. However, these relations be-
tween Boolean attributes are not called association rules even if the GUHA
procedure for mining them is called ASSOC (H4jek (1984)). The concept of
association rules has been used for patterns mined by the GUHA ASSOC
procedure since the term association rule was introduced in the 90s.

The GUHA ASSOC procedure was implemented several times and applied
many times, see e.g. (Héjek (1978)), (Héjek (1981)), (Rauch and Tomeckova
(2007)). Tts last and most frequently used implementation is the 4ft-Miner
procedure (Rauch and Simtinek (2005)). The boom in association rules in the
1990s was the start of a new era in the study of the theoretical properties of



Machine Learning and Association Rules 19

association rules. The result could be understood as the logic of association
rules (Rauch (2005)) which has various practical applications.

The implementation of the ASSOC procedure does not use the apriori
algorithm. It is based on a representation of analyzed data by bit-strings
(Rauch and Siminek (2005)). This makes it possible to deal with general
Boolean attributes, not only attribute-value pairs. A system of software tools
for dealing with suitable bit-strings was developed when implementing the
4ft-Miner procedure. It made it possible to suggest and implement six ad-
ditional GUHA mining procedures for various types of patterns not only
concerning Boolean attributes but also general multivalued attributes. Both
the 4ft-Miner procedure and six additional GUHA procedures are involved in
the LISp-Miner system (Simtinek (2003)), (Rauch and Simtinek (2005 A)).

The goal of this chapter is to give an overview of the important features
of the GUHA method, to introduce the 4ft-Miner procedure and the logic of
association rules and to outline the main features of the six additional GUHA
procedures in the LISp-Miner system. This is done in sections 3.1 — 3.5.

3.1 GUHA Method
The monograph (H4jek and Havranek (1978)) opens with two questions:

Q1: Can computers formulate and justify scientific hypotheses?

Q2: Can they comprehend empirical data and process it rationally, using the
apparatus of modern mathematical logic and statistics to try to produce
a rational image of the observed empirical world?

A theory developed in the monograph to answer these questions is based on
a scheme of inductive inference:

theoretical assumptions, observational statement

theoretical statement

This means that if we accept theoretical assumptions and verify a particu-
lar statement about observed data, we accept the conclusion - a theoretical
statement. It is crucial that an intelligent statement about observed data
leads to theoretical conclusions, not the data itself.

The rational inductive inference rules bridging the gap between obser-
vational and theoretical statements are based on statistical approaches, i.e.
estimates of various parameters or statistical hypothesis tests are used. A
theoretical statement is justified if a condition concerning estimates of pa-
rameters used or a statement given by a statistical hypothesis test is satisfied
in the analyzed data. This leads to special logical calculi formulas which
correspond to statements about the observed data based on statistical ap-
proaches. Such calculi are called observational calculi. Concise information
on this approach can also be found in (Rauch (2005).

Using induction rules based on statistical approaches usually means that
there is 1:1 correspondence between observational and theoretical statements.
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Thus the task to find interesting theoretical statements can be solved by find-
ing interesting observational statements. GUHA is a method for suggesting
interesting observational statements (Héjek and Havranek (1978)). It is real-
ized by using GUHA procedures.

The input of the GUHA procedure consists of analyzed data and a simple
definition of a usually very large set of relevant (i.e. potentially interesting)
patterns. The GUHA procedure automatically generates each particular pat-
tern and tests if it is true in the analyzed data. The output of the procedure
consists of all prime patterns. The pattern is prime if it is true in the an-
alyzed data and if it does not immediately follow from other more simple
output patterns. The most commonly used GUHA procedure is the ASSOC
procedure which mines for association rules — relations between two general
Boolean attributes derived from the columns of an analyzed data matrix.

3.2 Association rules

We understand the association rule as the expression ¢ ~ 1 where ¢ and 1
are Boolean attributes derived from the columns of an analyzed data matrix.
An example of such a data matrix is the data matrix M in Fig. 8.

object attributes examples of Boolean attributes
i.e. |i.e. columns of M basic derived
row | Ay As ... Ax |A: (3) A2(5, 7) —-A; (3) Aq (3) A As (5, 7)
01 3 5 6 1 1 0 1
02 3 6 7 1 0 0 0
Oon—1| 4 7 4 0 1 1 0
On 1 2 1 0 0 1 0

Fig. 8. Data matrix M and examples of Boolean attributes

Rows of M correspond to observed objects, there are objects o1, ..., o,
Columns of the data matrix correspond to properties of observed objects,
they are called attributes. There are attributes Ay, ..., Ax — columns of M.
Possible values of attributes are called categories. There are a finite number
of categories for each attribute.

Basic Boolean attributes are created first. The basic Boolean attribute is
an expression A(a) where oo C {aq,...ax} and {a1,...ax} is the set of all
possible values of column A. The basic Boolean attribute A(«) is true in row
o of M if a € a where a is the value of the attribute A in row o. There are two
examples of basic Boolean attribute in Fig. 8 — A;(3) and A5(5, 7). The basic
Boolean attribute A;(3) is true in row o; (we write 1 in the corresponding
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row and column) and it is false in row o, (we write 0), analogously for the
basic Boolean attribute A2(5,7) and additional rows.

Boolean attributes ¢ and 1/ used in the association rule ¢ ~ 1/ are either
basic or derived Boolean attributes. Derived Boolean attributes are created
from basic Boolean attributes using connectives V, A and — in the usual way.
There are derived Boolean attributes in Fig. 8, =A1(3) and A1(3) A A3(5,7).

The symbol ~ used in the association rule ¢ ~ 1 is called the jft-
quantifier. It defines the relation between the Boolean attributes ¢ and ¥
derived from the columns of the analyzed data matrix M. A condition con-
cerning all possible contingency tables of ¢ and 1 is associated with each
4ft-quantifier ~. Fach contingency table of ¢ and 1 is related to a given
data matrix. The contingency table of ¢ and % in data matrix M is denoted
as 4ft(p,00, M). It is a quadruple (a, b, c,d) of natural numbers, where a is

M| |
Pl a b
—p| e d

Table 2. 4ft table 4ft(y,1, M) of ¢ and ¢ in M

the number of rows of M satisfying both ¢ and v, b is the number of rows
satisfying ¢ and not satisfying v, etc., see Tab. 2.

The rule ¢ ~ 9 is true in the data matriz M if the condition associated
with = is satisfied in the contingency table 4ft(p,, M), otherwise ¢ & 1 is
false in the data matriz M. If the condition corresponding to 4ft-quantifier
~ is satisfied in the contingency table (a,b,c,d) we write ~ (a,b,c,d) = 1,
otherwise we write & (a, b, c,d) = 0. There are lot of 4ft-quantifiers defined
and studied in relation to the GUHA method. Several examples are shown
in Tab. 3, we sometimes use r =a+b, k=a+candn=a+b+c+d.

We assume 0 < p < 1,0 < a < 0.5, 0 < g and B > 0, x2 is the
(1—a) quantile of the x* distribution function. The quantifiers =, 5, =, , 5
~s.8, ~2. p are defined in (Héjek and Havrének (1978)), the quantifiers <, 5,
‘:);o,a,B’ =, p and E;’mB are defined in (Héjek et al. (1983)) and the quantifier
%;B is defined in (Rauch (2005)).

Note that the 4ft-quantifier =, g says that at least 100p per cent of rows
of the analyzed data matrix M satisfying ¢ also satisfy ¢ and that there
are at least B rows of M satisfying both ¢ and . Fisher’s quantifier ~, g
corresponds to the statistical test (on level ) of the null hypothesis of inde-
pendence of ¢ and 1 against the alternative one of positive dependence. The
4Aft-quantifier ~ " .5 means that there is at least 100p per-cent more objects
satisfying 1 in the rows of the analyzed data matrix M satisfying ¢ than
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4ft quantifier =

Name ‘Symbol ~ (a b,c,d) =1 iff
Founded implication =p.B a5 >pha>B
Lower critical implication = 0B > (:)Z(l p) " "<aAha>B
Founded double implication Sp.B i =>PNa>B
Lower critical double implication| <, , 5|3 727 ("2 9)p'(1 — p)" “"<ana>B
Founded equivalence =,.B - ;{if s >pPANa>B
Lower critical equivalence =poB| 2orra (b ) ‘1-p)"*<aAa>B
Simple deviation ~5. B > e Aa > B
EY(n—Fk
Fisher Ra,B me(r k) % <aANa>B
2
x? quantifier Ni,B Mn >x2Aa>B
+
Above average dependence ~.B a5 2 (1 + )m ANa> B

Table 3. Examples of 4ft-quantifiers

among all rows of M and that there are at least B objects satisfying both ¢
and 1, similarly for additional 4ft-quantifiers.

3.3 GUHA 4ft-Miner procedure

The GUHA 4ft-Miner procedure (Rauch and Simitinek (2005) mines for as-
sociation rules ¢ & 1 and for conditional association rules ¢ = 1/x. The
intuitive meaning of ¢ = 1 /x is that the Boolean attributes ¢ and ¢ are
in a relation given by the 4ft-quantifier &~ when the condition given by the
Boolean attributes x is satisfied. The Boolean attributes ¢, ¢ and x are
derived from the columns of the analyzed data matrix M.

The conditional association rule ¢ ~ v¥/x is true in the data matriz M
if there is both a row of M satisfying x and if the association rule ¢ ~ ¥ is
true in the data matrix M/x, otherwise ¢ =~ v is false in data matriz M.
The data matrix M /x consists of all rows of the data matrix M satisfying
X-

The 4ft-Miner procedure is part of the LISp-Miner system (Simtnek
(2003)). 4ft-Miner input consists of the analyzed data matrix and several
parameters defining the set of association rules to be automatically gener-
ated and tested.

The analyzed data matrix is created from a database table. Any database
accessible by ODBC can be used. The columns of the database table are trans-
formed into attributes (i.e. columns) of the analyzed data matrix. There is
a special DataSource module in the LISP-Miner system intended for these
transformations. For example, it is possible to use the original values from a
given column of the database table as the categories of the defined attribute.
It is also possible to define new categories as intervals of a given length. More-
over the DataSource module can generate the given number of equifrequency
intervals as new categories.
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There are very fine possibilities for defining the set of association rules to
be automatically generated and verified, which are described below. The 4ft-
Miner procedure generates and verifies all defined association rules. However,
the apriori algorithm introduced in Section 2.2 is not used. Implementation
is based on a representation of analyzed data by bit-strings and several opti-
mization tools.

The output of the 4ft-Miner procedure consists of all prime association
rules. The association rule is prime if it is both true in the analyzed data
matrix and if it does not immediately follow from other simpler output asso-
ciation rules. A precise definition of the prime association rule does not fall
with the scope of this chapter. However, note that it depends on the proper-
ties of the 4ft-quantifier used. Please note that the 4ft-Miner procedure also
deals with missing information (Hajek and Havrdnek (1978)). Again, details
dealing with missing information do not fall within the scope of this chapter.
There are also many possibilities for filtering and sorting the output set of
association rules.

4ft-Miner input The 4ft-Miner procedure mines for association rules of
the form ¢ ~ ¢ and for conditional association rules of the form ¢ ~ /.
The Boolean attribute ¢ is called antecedent, v is called succedent and x is
called condition. A definition of the set of relevant questions consists of

the definition of a set of relevant antecedents
the definition of a set of relevant succedents
the definition of a set of relevant conditions
the definition of the 4ft-quantifier =.

Antecedent ¢ is as a conjunction ¢ = @1 ApaA- - Ay where ©1, o, ..., Pk
are partial antecedents. Each ; is chosen from one set of relevant partial
antecedents. A partial antecedent is a conjunction or disjunction of literals. A
literal is a basic Boolean attribute A(«) or negation —A(«) of a basic Boolean
attribute, see Section 3.2. The set « is a coefficient of the literals A(a) and
—A(«). The length of the partial antecedent is the number of literals in the
partial antecedent. The length of the antecedent is the sum of the lengths of
partial antecedents in the antecedent.

The definition of the set of relevant antecedents is given by a minimal
and a maximal length of antecedent and at least one definition of the set of
relevant partial antecedents. The set of partial antecedents is given in the
following manner:

one of the options of a conjunction of literals or disjunction of literals
the minimum and maximum length of the partial antecedent is defined
a set of attributes from which literals will be generated is given

some attributes can be marked as basic, each partial antecedent must
then contain at least one basic attribute
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e a simple definition of the set of all literals to be generated is given for
each attribute

e classes of equivalence can be defined, each attribute belongs to a maxi-
mum of one class of equivalence; no partial antecedent can contain two
or more attributes from one class of equivalence.

The length of the literal is the number of categories in its coefficient. The
set of all literals to be generated for a particular attribute is given by:

e the type of coefficient; there are seven types of coefficients: subsets, inter-
vals, cyclic intervals, left cuts, right cuts, cuts, one particular category
e the minimum and the maximum length of the literal
e positive/negative literal option:
— generate only positive literals
— generate only negative literals
— generate both positive and negative literals

We use the attribute A with categories {1, 2, 3, 4, 5} to give examples of
particular types of coefficients:

e subsets: definition of subsets of length 2-3 gives literals A(1,2), A(1,3),
A(14), A(1,5), A(2,3), ..., A(4,5), A(1,2,3), A(1,2,4), A(1,2,5), A(2,3.4),
., A(34,5)

e intervals: definition of intervals of length 2-3 gives literals A(1,2), A(2,3),
A(3,4), A(4,5), A(1,2,3), A(2,3,4) and A(3,4,5)

e cyclic intervals: definition of intervals of length 2-3 gives literals A(1,2),
A(2,3), A(3.4), A(4,5), A(5,1) A(1,2,3), A(2,3,4), A(3,4,5), A(4,5,1) and
A(5,1,2)

o left cuts: definition of left cuts with a maximum length of 3 defines literals
A(1), A(1,2) and A(1,2,3)

e right cuts: definition of right cuts with a maximum length of 4 defines
literals A(5), A(5,4), A(5,4,3) and A(5,4,3,2)

e cuts means both left cuts and right cuts

e one category means one literal with one chosen category, e.g. A(2).

We must emphasize that even if the coefficient type subsets covers all the
other types of literals it still makes sense to use specific subtypes. For example,
there are more than 10'3 literals - subsets with length 10 for the attribute
Age with 100 categories. At the same time, there are only 91 categories of
the type intervals with length 10.

Definitions of the set of relevant succedents and the set of relevant con-
ditions are analogous. The set of relevant antecedents, the set of relevant
succedents and the set of relevant conditions can overlap. However, associa-
tion rules with more than one literal created from the same attribute are not
generated. There are 16 various 4ft-quantifiers, some of them are shown in
Tab. 3.
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3.4 LISp-Miner System

Six additional GUHA procedures are involved in the LISp-Miner system:
SD4ft-Miner, Acdft-Miner, KL-Miner, CF-Miner, SDKL-Miner, and SDCF-
Miner. They use software tools for dealing with suitable bit-strings developed
for the 4ft-Miner procedure. We will outline the main features of these pro-
cedures.

SD4ft-Miner The SD4ft-Miner procedure mines for SD4ft-patterns of the
form o > 3 : @ =3P 4)/y. Here o, 3, 7, @, and v are Boolean attributes
derived from the columns of the analyzed data matrix M. The attributes «
and 3 define two subsets of rows of M. The attribute v defines a condition.
The attributes ¢ and v are antecedent and succedent of the association rule
¢ ~ 1 in question. The SD4ft-pattern a > 3 : ¢ ~°P 1) /v means that the
subsets given by the Boolean attributes o and [ differ for the validity of
association rule ¢ ~ 1 when the condition given by the Boolean attribute ~
is satisfied. A measure of difference is defined by the symbol ~°P which is
called the SD/ft-quantifier.

The SD4ft-quantifier corresponds to a condition concerning two 4ft-tables
(a,b,c,d) and (a’, V', ¢, d"). An example is the SD4ft-quantifier :>£ defined by
the condition |a,a—+/b,—ai+b| > p. The SD4ft-pattern a < 3 : ¢ =50 1 /7 is true
in the data matrix M if the condition corresponding to ~°? is satisfied for the
4ft-tables 4 ft(p, 1, M/(aNv)) and 4ft(p, P, M/(BA~)). The SD4ft-pattern
adf:p :>£ 1/~ thus means that the absolute value of the difference of
confidence of association rule ¢ ~ 1 in data matrix 4ft(M/(a A ~) and the
confidence of this association rule in data matrix 4ft(M /(8 A7) is at least
p. An example of the application of the SDR4ft-Miner procedure is shown in
(Rauch and Simiinek (2009)).

Ac4ft-Miner The Ac4ft-Miner procedure mines for G-action rules that are
inspired by action rules defined in (Ras and Wieczorkowska (2000)). There
are only a few, but there has been promising experience with Ac4ft-Miner
(Rauch and Simtnek (2009 A)). A precise description of G-action rules is
outside the scope of this chapter. We will only outline a simple example. Let
us take a data matrix P with rows corresponding to patients. We assume
P has columns Si,...,S, corresponding to stable attributes and columns
Fiy, ..., F, corresponding to flexible attributes. The attribute is stable if its
value cannot be changed, e.g. Sex, Year of birth or Blood type. The attribute
is flexible if its value can be subject to change, e.g. BMI (i.e. Body Mass
Indez) or Blood pressure. Let us assume that both BMI and Blood pressure
have categories low, avg (i.e. average), high. Then the expression

Sex(male) A [BMI(high — avg)] =-0.9-0.8,50,50 |Blood pressure(high — avg)]
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is an example of a G-action rule. Here Sex(male) is a stable antecedent,
[BMI(high — avg)] is a change of antecedent and BMI(high — avg) is a change
of coefficient. Generally, the change of antecedent can be built from several
changes of coeflicients in the same way as the antecedent of the association
rule is built from literals. The same is true for a change of succedent. Gener-
ally, there can also be a stable succedent.

The above G-action rule says what can happen to male patients de-
scribed in the analyzed data matrix P if they change their BMI from high
to average. The effect is described by two association rules - the rule R;:
Sex(male) AN BMI(high) =-0.9,50 Blood pressure(high) and by the rule Rp:
Sex(male) N BMI(avg) =-0.8,50 Blood pressure(avg). The rule Ry describes
the initial situation before the change i.e. 90 % of male patients with high
BMI also have high blood pressure. The rule R suggests the possible final
situation after patients change their BMI from high to average. The effect is
that 80 % of them have average blood pressure.

We must emphasize that both rules R; and Rp are evaluated on one
matrix P, the sets of rows (i.e. patients) satisfying the antecedents of R
and R g differ. The G-action rule suggest an action and indicates its possible
effect. We have to be careful when interpreting the results of the Ac4ft-Miner
procedure. We should note that the Ac4ft-Miner is still under development
but seems to be a useful data mining tool.

Patterns mined by the procedures KL-Miner, CF-Miner, SDKL-Miner,
and SDCF-Miner are evaluated on the basis of more complex contingency
tables than the contingency tables 4ft(p, 1, M) of the Boolean attributes ¢
and ¢ in data matrix M. KL-Miner and SDKL-Miner procedures deal with
KL-tables and CF-Miner and SDCF-Miner procedures deal with CF-tables,
see Fig. 9.

M| ecr ... cp
r1|{N1,1 ... N1,L Milry ... rx
ni ... K

TK|MK1 ... NK,L
KL(R,C,M) CF(R, M)

Fig. 9. KL-table KL(R,C, M) and CF-table CF(R, M)

We assume the attribute R has the categories 71,...,rx and the at-
tribute C has the categories ci,...,cr. The expression ny; in the KL-table
KL(R,C, M) = {nk)l}ﬁcill”':_ﬁ{ denotes the number of rows of the data matrix
M for which the value of attribute R is ry and the value of attribute C' is
¢;. The expression ny in the CF-table CF(R, M) = (ny,...nk) denotes the



Machine Learning and Association Rules 27

number of rows in the data matrix M for which the value of attribute R is
TE.

KL-Miner, CF-Miner, S]?KL—Miner7 and SDCF-Miner procedures are briefly
introduced in (Rauch and Simunek (2005 A)). The KL-Miner procedure is
described in more detail in (Rauch et al. (2005)), (Berka (2009)).

KL-Miner The KL-Miner procedure mines for KL-patterns R ~ C/+. The
KL-pattern R ~ C/~v means that the attributes R and C are in a relation
given by the symbol ~ when the condition given by the Boolean attribute
v is satisfied. The symbol ~ is called the KL-quantifier. It corresponds to a
condition concerning the KL-table KL(R,C, M’) for the attributes R and C
in the data matrix M’ in question. The KL-pattern R ~ C/ is true in the
data matrix M if the condition corresponding to ~ is satisfied in the KL-
table KL(R,C, M/~) for the attributes R and C' in the data matrix M /7.
We must remember that the data matrix M /v consists of all rows of M
satisfying ~.

An example of the KL-quantifier is Kendall’s quantifier Nfe” with
0 < p < 1 defined by the condition |1,| > p. Here 7, is Kendall’s coeffi-
cient, 7, = 2AP—Q) , where P =% gD o 2j>l N,

Vst ) (2 -smz ) ’

Q= Zk,l Nl D ik Zj<l Nijy, Mhex = Dy Mkt and nyp = >, . Kendall’s
quantifier is used for ordinal attributes. 73, takes values from (—1,1) with the
following interpretation: 7, > 0 indicates positive ordinal dependence®, 7, < 0
indicates negative ordinal dependence, 7, = 0 indicates ordinal independence,
and |7, = 1] indicates that C' is a function of R.

CF-Miner The CF-Miner procedure mines for CF-patterns of the form
~ R/~. The CF-pattern ~ R/~v means that frequencies of categories of the
attribute R satisfy the condition given by the symbol ~ when an other condi-
tion given by the Boolean attribute ~y is satisfied. The symbol ~ is called the
CF-quantifier here. The CF-quantifier corresponds to a condition concerning
the CF-table CF(R, M’) for the attribute R in the data matrix M’ in ques-
tion. The CF-pattern ~ R/~ is true in the data matrix M if the condition
corresponding to ~ is satisfied in the CF-table CF (R, M /) for the attribute
R in the data matrix M /7.

SDKL-Miner and SDCF-Miner SDKL-Miner and SDCF-Miner proce-
dures are derived from KL-Miner and CF-Miner procedures respectively in
a similar manner to the way the SD4ft-Miner procedure is derived from the
4ft-Miner procedure.

!i.e. high values of C often coincide with high values of R and low values of C
often coincide with low values of R
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3.5 Logical Calculi of Association Rules

Observational calculi are special logical calculi introduced in (H4jek and
Havrdnek (1978)). Their formulas correspond to statements about the an-
alyzed data, see section 3.1. Observational predicate calculi are modifications
of classical predicate calculi — only finite models are allowed and general-
ized quantifiers are added. These calculi are defined in (Héjek and Havranek
(1978)), there are open and closed formulas with values defined in Tarski
style. Informally speaking, observational monadic predicate calculus with 4ft-
quantifiers as the only generalized quantifiers can be understood as predicate
calculus of associational rules. We can obtain a logical calculus of associa-
tion rules (Rauch (2005)) with formulas - association rules ¢ &~ v defined
in section 3.2 by additional simple modification of the predicate calculus of
associational rules.

There are theoretically interesting and practically important results con-
cerning logical calculus of association rules. The results are related to classes
of association rules. The important classes of association rules are implica-
tional rules and equivalence rules (i.e. associational) defined in (Héjek and
Havrének (1978)), double implicational rules, X-double implicational rules
and Y-equivalence rules (Rauch (2005)).

The results deal with missing information, the definability of 4ft-quantifiers
in classical predicate calculus and tables of critical frequencies making it pos-
sible to avoid complex computation when verifying rules with 4ft-quantifiers
corresponding to statistical hypothesis test (e.g. quantifier of lower critical
double implication @;,Q,B and Fisher’s quantifier ~, p defined in Tab. 3),
see (Rauch (2008)).

Very important results concern deduction rules, for all practically impor-
tant 4ft-quantifiers there is a criterion making it possible to decide if the
deduction rule f:w/ concerning association rules ‘f:w/ and £2Y¥ is correct
or not. Such deduction rules can be used e.g. to deal with domain knowledge,
see (Rauch (2009)).

=
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