# Machine Learning and Association rules

Petr Berka, Jan Rauch University of Economics, Prague {berka|rauch}@vse.cz

# **Tutorial Outline**

- Statistics, machine learning and data mining – basic concepts, similarities and differences (P. Berka)
- Machine Learning Methods and Algorithms – general overview and selected methods (P. Berka)
- Break
- GUHA Method and LISp-Miner System (J.Rauch)

## Part 1

# Statistics, machine learning and data mining

## **Statistics**

- A formal science that deals with collection, analysis, interpretation, explanation and presentation of (usually numerical) data.
- The science of making effective use of numerical data relating to groups of individuals or experiments

(wikipedia)

## Machine Learning

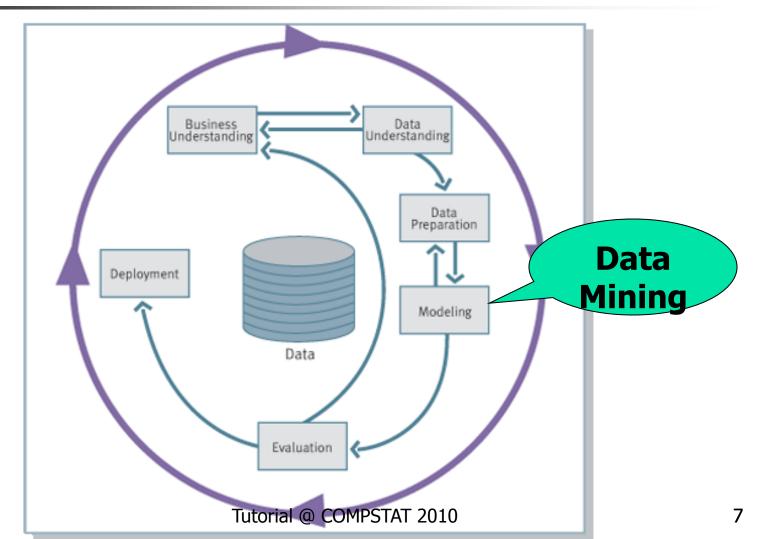
 "The field of machine learning is concerned with the question of how to construct computer programs that automatically improve with experience."

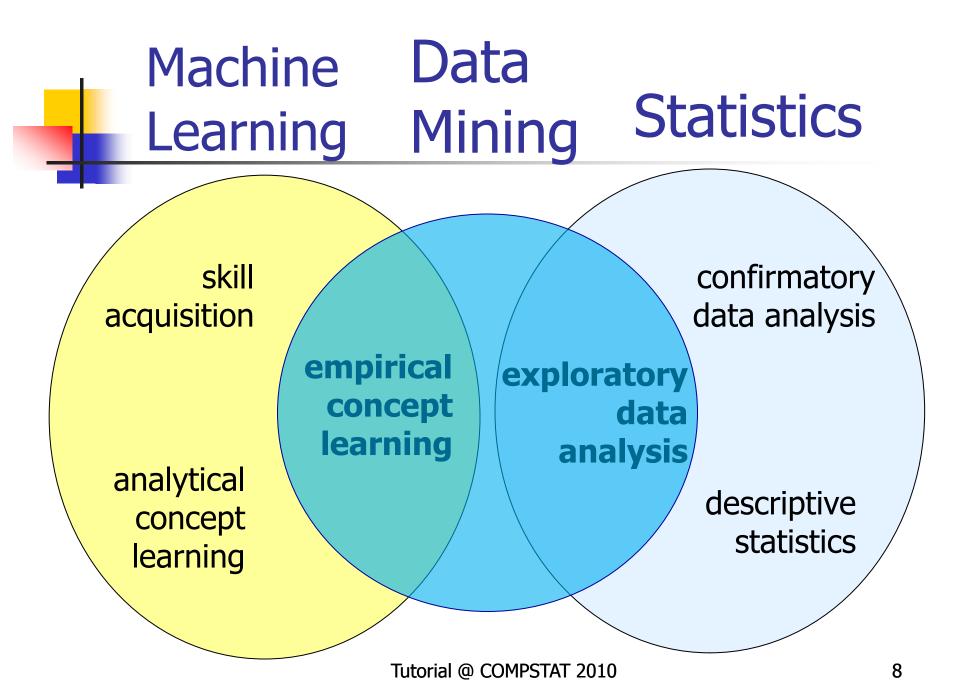
(Mitchell, 1997)

"Things learn when they change their behavior in a way that makes them perform better in a future."

(Witten, Frank, 1999)

## Knowledge Discovery in Databases


"Non-trivial process of identifying valid, novel, potentially useful and ultimately understandable patterns from data."


```
(Fayyad et al., 1996)
```

"Analysis of observational data sets to find unsuspected relationships and summarize data in novel ways that are both understandable and useful to the data owner."

(Hand, Manilla, Smyth, 2001)

## The CRISP-DM Methodology





# Statistics vs. Machine Learing

- Hypothesis driven
- Model oriented
  - formulate hypothesis
  - collect data (in a controlled way)
  - analyze data
  - interpret results

- Data driven
- Algorithm oriented
  - formulate a task
  - preprocess available data
  - apply (different) algorithms
  - interpret results

# Terminological differences

| Machine Learning         | Statistics                      |  |
|--------------------------|---------------------------------|--|
| attribute                | variable                        |  |
| target attribute, class  | dependent variable, response    |  |
| input attribute          | independent variable, predictor |  |
| learning                 | fitting, parameter estimation   |  |
| weights (in neural nets) | parameters (in regression)      |  |
| error                    | residuum                        |  |

## Similarities

## algorithms

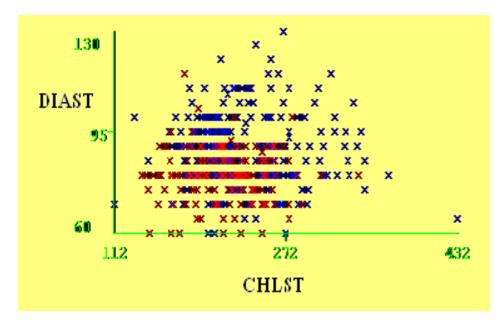
- decision trees: C4.5 ~ CART
- neural networks ~ regression
- nearest neighbor classification
- methods
  - cross-validation test
  - χ<sup>2</sup> test



## Machine Learning Methods and Algorithms

# Learning methods

- rote learning (memoryzing)
- learning from instruction, learning by being told
- learning by analogy, instance-based learning, lazy learning
- explanation-based learning
- learning from examples
- learning from observation and discovery

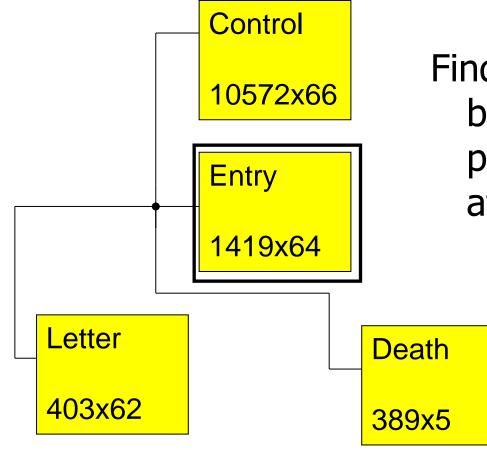

# Feedback during learning

- pre-classified examples (supervised learning)
- rewards or punishments (reinforcement learning)
- indirect hints derived from the behaviour of teacher (apprenticeship learning)
- nothing (unsupervised learning)

# **Illustrative Example**

# Data about pacients with different atherosclerosis risk

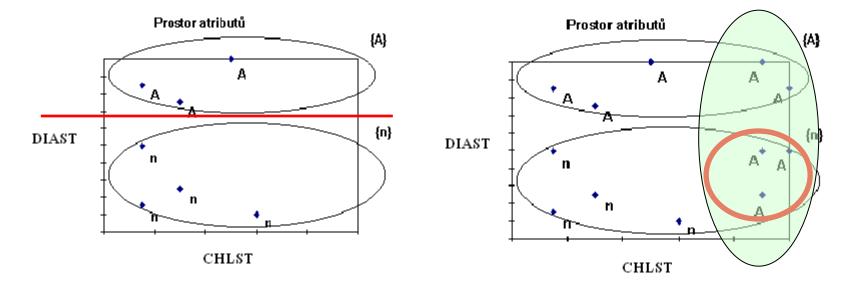
| Pac-id | DIAST | CHLST | risk |
|--------|-------|-------|------|
| P1     | 100   | 300   | Ano  |
| P2     | 85    | 247   | Ne   |
| P3     | 87    | 291   | Ano  |
| P4     | 105   | 259   | Ano  |
| P5     | 81    | 231   | Ne   |
| P6     | 105   | 288   | Ano  |
|        |       |       |      |




# Atherosclerosis risk factors study

Longitudinal (1975-2000) study of atherosclerosis risk factors in the population of middle-aged men divided into three groups (normal, risk, pathological).

- to identify atherosclerosis risk factors prevalence in a population of middle-aged men,
- to follow the development of these risk factors and their impact on the examined men health, especially with respect to atherosclerotic CVD,
- to study the impact of complex risk factors intervention on development of risk factors and CVD mortality,
- to compare (after 10-12 years) risk factors profile and health of the selected men in different groups.


# Data STULONG



Find knowledge that can be used to classify new patients according to atherosclerosis risk

## **Empirical concept learning**

- examples belonging to the same class have similar characteristics (similarity-based learning)
- we infer general knowledge from a finite set of examples (inductive learning)



# Empirical concept learning from data (1/3)

Analyzed data

$$\mathbf{D}_{\mathrm{TR}} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1m} & y_1 \\ x_{21} & x_{22} & \dots & x_{2m} & y_2 \\ \vdots & \vdots & & \vdots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nm} & y_n \end{bmatrix}$$

• Classification task: we search for **knowledge** (represented by a decision function f) f:  $\mathbf{X} \rightarrow \mathbf{Y}$ , that for input values  $\mathbf{X}$  of an example infers the value of target attribute  $\hat{\mathbf{Y}} = f(\mathbf{X})$ .

# Empirical concept learning from data (2/3)

- During classification of an example we can make an error  $Q_f(\mathbf{o}_i, \hat{y}_i)$ :  $Q_f(\mathbf{o}_i, \hat{y}_i) = (y_i \hat{y}_i)^2 \qquad Q_f(\mathbf{o}_i, \hat{y}_i) = \begin{cases} 1 & \text{for } y_i \neq \hat{y}_i \\ 0 & \text{for } y_i = \hat{y}_i \end{cases}$ 
  - For the whole training data D<sub>TR</sub> we can compute the total error Err(f, D<sub>TR</sub>), e.g. as

$$\operatorname{Err}(\mathbf{f}, \mathbf{D}_{\mathrm{TR}}) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{Q}_{\mathrm{f}}(\mathbf{o}_{i}, \hat{\mathbf{y}}_{i})$$

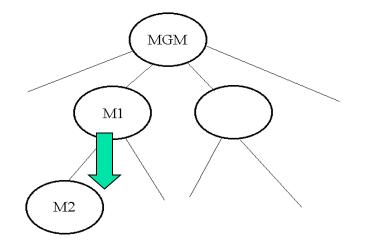
# Empirical concept learning from data (3/3)

The goal of learning is to find such a knowledge f\*, that will minimize this error

$$\operatorname{Err}(f^*, D_{\operatorname{TR}}) = \min_{f} \operatorname{Err}(f, D_{\operatorname{TR}})$$

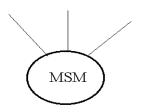
# Empirical concept learning as ...

### ... search


we are learning both the structure and parameters of a model

## approximation

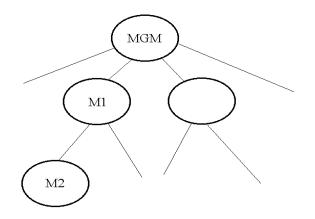
we are learning the parameters of a model

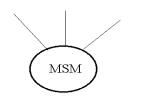

# Search (1/2)

## Ordering of models



MGM –most general model (one cluster for all examples)


M1 more general than M2 M2 more specific than M1




MSM – most specific model(s) (single cluster for each example)

# Search (2/2)

## Search methods





Direction

- top-down
- bottom-up
- Strategy
  - blind
  - heuristic
  - random
- Breadth
  - single
  - parallel

Tutorial @ COMPSTAT 2010

# Approximation (1/2)

Estimation of the parameters of a model (decision function) y=f(x)using a set of the values  $[x_i, y_i]$ 

y = f(x)

х

У

Least squares method:

Looking for parameters that minimize the overall error

$$\sum_{i} (y_{i} - f(x_{i}))^{2}$$

transformed to solving the equation

$$\frac{d}{dq}\sum_{i} \mathbf{\Psi}_{i} - f(x_{i})^{2} = 0$$

# Approximation (2/2)

- Analytical solution (known type of the function) solving a set of equations for the parameters
  - regression
- Numerical solution (unknown type of the function)
  - gradient methods

$$\nabla \operatorname{Err}(\mathbf{q}) = \left[\frac{\partial \operatorname{Err}}{\partial q_0}, \frac{\partial \operatorname{Err}}{\partial q_1}, \dots, \frac{\partial \operatorname{Err}}{\partial q_Q}\right]$$

Modification of parameters  $\mathbf{q} = [q_0, q_1, ..., q_Q]$  as  $q_j \leftarrow q_j + \Delta q_j$ where

$$\Delta \mathbf{q}_{j} = -\eta \frac{\partial \mathrm{Err}}{\partial \mathbf{q}_{j}}$$

Tutorial @ COMPSTAT 2010

# Selected algorithms

- decision trees
- decision rules
- association rules
- neural networks
- genetic algorithms
- bayesian methods
- nearest-neighbor methods

# Decision tree algorithms

### **TDIDT** algorithm

- 1. select the best splitting attribute as a root of the current (sub)tree,
- 2. divide data in this node into subsets according to the values of the selected attribute and add new node for each this subset,
- 3. if there is an added node, for which the data do not belong to the same class, goto step 1.
- only categorial attributes
- only data without noise

# Splitting criteria

How to select a splitting attribute?

. . .

 $Y_{S}$ 

 $a_{1s}$ 

 $a_{2s}$ 

a<sub>r2</sub>

S

Entropy (min) – ID3, C4.5

$$H(X) = \sum_{i=1}^{R} \frac{r_i}{n} \left( -\sum_{j=1}^{S} \frac{a_{ij}}{r_i} \log_2 \frac{a_{ij}}{r_i} \right)$$

| Gini index (min) - CART                                                                                        |
|----------------------------------------------------------------------------------------------------------------|
| $Gini(X) = \sum_{i=1}^{R} \frac{r_i}{n} \left( 1 - \sum_{j=1}^{S} \left( \frac{a_{ij}}{r_i} \right)^2 \right)$ |

$$\chi^{2} \text{(max)} - \text{CHAID}_{a_{ij}} - \frac{r_{i} \cdot s_{j}}{n}^{2}$$
$$\chi^{2}(X) = \sum_{i=1}^{R} \sum_{j=1}^{S} \frac{\left(a_{ij} - \frac{r_{i} \cdot s_{j}}{n}\right)^{2}}{\frac{r_{i} \cdot s_{j}}{n}}$$

Contingency table Y class attribute X input attribute

 $Y_1$ 

a<sub>11</sub>

**a**<sub>21</sub>

 $a_{r1}$ 

 $S_1$ 

 $X_1$ 

 $X_2$ 

.

 $X_{R}$ 

Σ

 $Y_2$ 

**a**<sub>12</sub>

a<sub>22</sub>

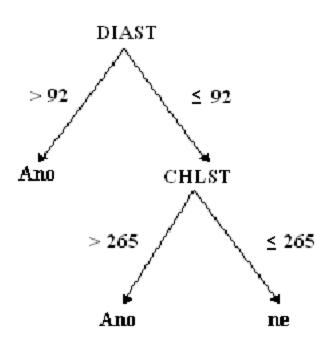
 $a_{r2}$ 

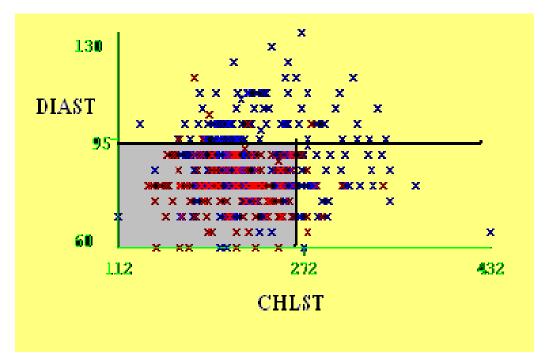
**S**<sub>2</sub>

Tutorial @ COMPSTAT 2010

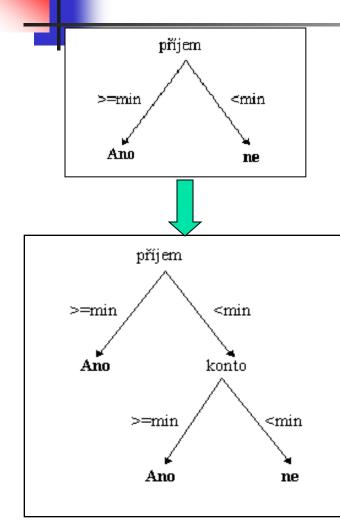
 $\sum$ 

 $r_1$ 


 $\mathbf{r}_2$ 


r<sub>r</sub>

n


29

# Decision trees in the attribute space





# Decision trees (search)



## top-down (TDIDT)

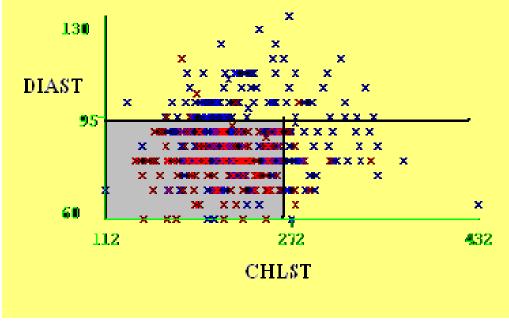
- single, heuristic
  - ID3, C4.5 (Quinlan), CART (Breiman a kol.)
- parallel heuristic
  - Option trees (Buntine), Random forrest (Breiman)

## random

- parallel
  - using genetic programming
- bottom-up additional technique during tree pruning

# Decision rules – set covering algorithms

### set covering algorithm


- 1. create a rule that covers some examples of one class and does not cover any examples of other classes
- 2. remove covered examples from training data
- 3. if there are some examples not covered by any rule, go to step 1

# each training example covered by single rule = straightforward use during classification

# Decision rules in the attribute space

IF DIASThigh) THEN risk(yes) IF CHLST(high) THEN risk(yes) IF DIAST(low)  $\land$  CHLST(low)

THEN risk(no)



Tutorial @ COMPSTAT 2010

# Decision rules (search)

top-down

IF DIAST(low) THEN

AND CHLST(low) THEN

IF DIAST(low)

- parallel heuristic
  - CN2 (Clark, Niblett), CN4 (Bruha)

## bottom-up

- single heuristic
  - Find-S (Mitchell)
- parallel heuristic
  - AQ (Michalski)
- random
  - parallel
    - GA-CN4 (Králík, Bruha)

# Decision rules – compositional algorithms (search)

### **KEX** algorithm

- 1 add empty rule to the rule set KB
- 2 repeat

2.1 find by rule specialization a rule  $Ant \Rightarrow C$  that fulfils the user given criteria on length and validity,

2.2 if this rule significantly improves the set of rules *KB* build so far then add the rule to *KB* 

each training example can be covered by more rules = these rules contribute to the final decision during classification

# KEX algorithm – more details

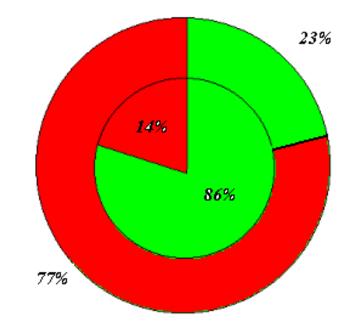
#### KEX algorithm

#### Initialization

- 1. for all category (attribute-value pair) A add  $A \Rightarrow C$  to OPEN
- 2. add empty rule to the rule set KB

#### Main loop

while OPEN is not empty


- 1. select the first implication  $Ant \Rightarrow C$  from OPEN
- 2. test if this implication significantly improves the set of rules KB built so far (using the  $\chi^2$  test, we test the difference between the rule validity and the result of classification of an example covered by Ant) then add it as a new rule to KB
- 3. for all possible categories A
  - (a) **expand** the implication  $Ant \Rightarrow C$  by adding A to Ant
  - (b) add Ant ∧ A ⇒ C to OPEN so that OPEN remains ordered according to decreasing frequency of the condition of rules
- 4. remove  $Ant \Rightarrow C$  from OPEN

# Association rules

#### IF smoking(no) ^ diast(low) THEN chlst(low)

|      | SUC | -SUC | Σ    |
|------|-----|------|------|
| ANT  | 257 | 43   | 300  |
| -ANT | 66  | 1036 | 1102 |
| Σ    | 323 | 1079 | 1402 |

- **support** a/(a+b+c+d) = 0.18
- confidence a/(a+b) = 0.86



# Association rule (generating as top-down search)

#### breadth-first Apriori (Agrawal), LISp-Miner (Rauch)

| combination |  |  |  |  |  |
|-------------|--|--|--|--|--|
| • • •       |  |  |  |  |  |
| 4a          |  |  |  |  |  |
| 4n          |  |  |  |  |  |
| 5a          |  |  |  |  |  |
| 5n          |  |  |  |  |  |
| 1n 2n       |  |  |  |  |  |
| 1n 2s       |  |  |  |  |  |
| 1n 2v       |  |  |  |  |  |
| 1n 3m       |  |  |  |  |  |
| 1n 3z       |  |  |  |  |  |
| • • •       |  |  |  |  |  |

| combination |    |    |    |    |  |
|-------------|----|----|----|----|--|
| 1n          |    |    |    |    |  |
| 1n          | 2n |    |    |    |  |
| 1n          | 2n | Зm |    |    |  |
| _1n         | 2n | Зm | 4a |    |  |
| 1n          | 2n | Зm | 4a | 5a |  |
| 1n          | 2n | Зm | 4a | 5n |  |
| _1n         | 2n | Зm | 4n |    |  |
| _1n         | 2n | Зm | 4n | 5a |  |
| _1n         | 2n | Зm | 4n | 5n |  |
| _1n         | 2n | Зm | 5a |    |  |
| ln          | 2n | Зm | 5n |    |  |

depth-first

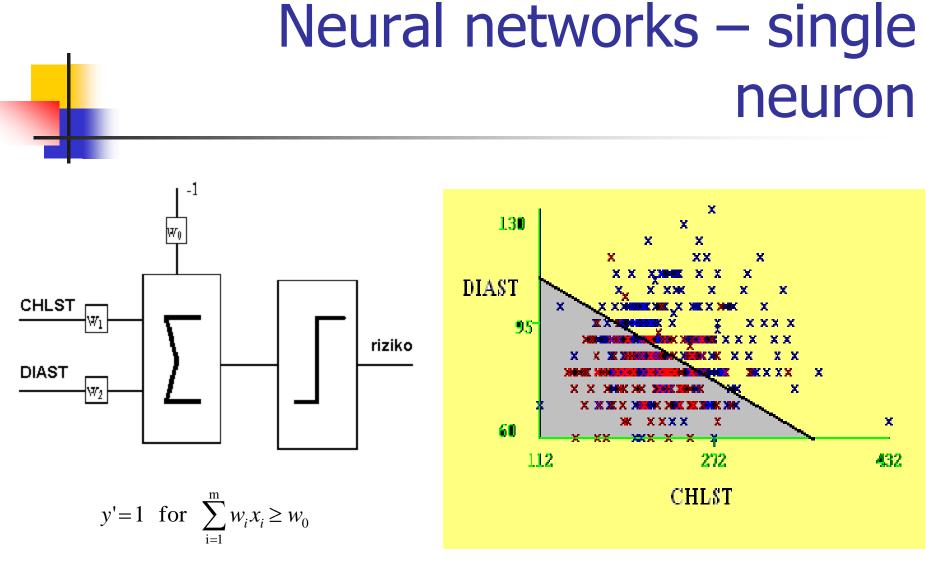
heuristic KAD (Ivánek, Stejskal)

| combination |  |  |  |  |
|-------------|--|--|--|--|
| 5a          |  |  |  |  |
| 1n          |  |  |  |  |
| 3m          |  |  |  |  |
| 3z          |  |  |  |  |
| 4a          |  |  |  |  |
| 4n          |  |  |  |  |
| 1v          |  |  |  |  |
| 1n 4a       |  |  |  |  |
| 4n 5a       |  |  |  |  |
| 1v 5a       |  |  |  |  |
| 2v          |  |  |  |  |

# Association rules algorithm

#### apriori algorithm

- 1. set *k*=1 and add all items that reach *minsup* into *L*
- 2. repeat
  - 1. increase *k*
  - 2. consider an itemset *C* of length *k*
  - 3. if all subsets of length *k*-1 of the itemset *C* are in *L* then if *C* reaches *minsup* then add *C* into *L*

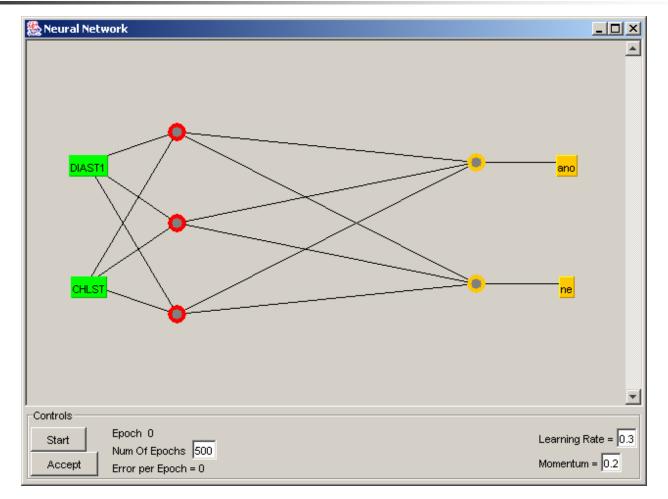

# apriori – more details

#### algorithm apriori

- 1. assign all items that reached the support of minsup into  $L_1$
- 2. let k = 2
- 3. while  $L_{k-1} \neq \emptyset$ 
  - 3.1 using the function **apriori-gen** create a set of candidates  $C_k$  from  $L_{k-1}$
  - 3.2 assign all itemsets from  $C_k$  that reached the support of minsup into  $L_k$
  - 3.3 increase k by 1

#### Function apriori-gen $(L_{k-1})$

- 1. for all itemsets  $Comb_p$ ,  $Comb_q$  from  $L_{k-1}$ if  $Comb_p$  and  $Comb_q$  share k-2 items, then add  $Comb_p \wedge Comb_q$  to  $C_k$
- for all itemsets Comb from C<sub>k</sub> if any subset with a length k − 1 of Comb is not included in L<sub>k−1</sub> then remove Comb from C<sub>k</sub>




$$y' = 0$$
 for  $\sum_{i=1}^{m} w_i x_i < w_0$ 

Tutorial @ COMPSTAT 2010

41

# Neural networks -multilayer perceptron



# Backpropagation algorithm = approximation

#### Error backpropagation algorithm

- inicialize the weights in the network with small random numbers (e.g. from the interval [-0.05, 0.05])
- 2. while the stopping condition is not satisfied for every training example  $[\mathbf{x}, y]$  do
  - 2.1 compute the output  $out_u$  for every neuron u
  - 2.2 for every neuron o from the output layer compute the error

$$error_o = out_o(1 - out_o)(y_o - out_o)$$

2.3 for every neuron h from the hidden layer compute the error

$$error_h = out_h(1 - out_h) \sum_{o \in output} (w_{ho}error_o)$$

2.4 for every connection from neuron j to neuron k modify the weight of the connection

$$w_{jk} = w_{jk} + \Delta w_{jk}$$

where

$$\Delta w_{jk} = \eta \, error_k \, x_{jk}$$
  
Tutorial @ COMPSTAT 2010

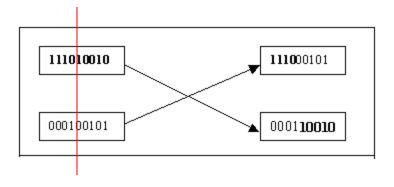
43

# Genetic algorithms = parallel random search

#### Genetic algorithm(fit,N,K,M)

#### Initialization

- 1. assign t := 0
- 2. randomly create the initial population Q(t) which contains N individuals
- 3. compute fit(h) for every individual  $h \in Q(t)$


#### Main loop

- 1. while the stopping condition is not satisfied do
  - 1.1 selection: select individuals h from the population Q(t) that will be directly inserted into the population P(t + 1)
  - 1.2 **crossover:** choose pairs of individuals (with probability K) from the population Q(t), perform crossover on each pair and insert the offsprings into the population Q(t + 1)
  - 1.3 mutation: choose individuals h (with probability M) from the population Q(t + 1) and mutate them
  - $1.4 \ \mathrm{assign} \ t := t+1$
  - 1.5 compute fit(h) for every individual  $h \in Q(t)$
- 2. return the individual h with the highest value of fit(h)Tutorial @ COMPSTAT 2010


# **Genetic algorithms**

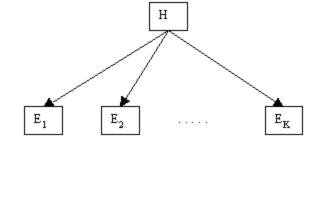
#### Genetic operations

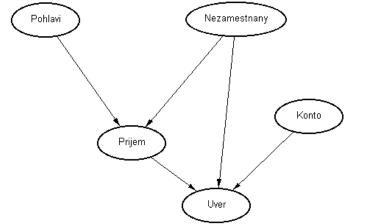
- Selection
- Cross-over



Mutation




# **Bayesian methods**


 Naive bayesian classifier (approximation)

$$P(H | E_1, ..., E_K) = \frac{\prod_{k=1}^{K} P(E_k | H) P(H)}{P(K)}$$

 Bayesian network (search, approximace)

$$P(u_1,...,u_n) = \prod_{ii-1}^n P(u_i \mid rodiče(u_i))$$





# Naive bayesian classifier

# Computing the probabilities P(risk=yes) = 0.71 P(risk=no) = 0.19 P(smoking=yes)|risk=yes) = 0.81 P(smoking=no)|risk=no) = 0.19

. . .

Classification

Class H<sub>i</sub> with highest value of  $\prod_k P(E_k|H_i) P(H_i)$ 

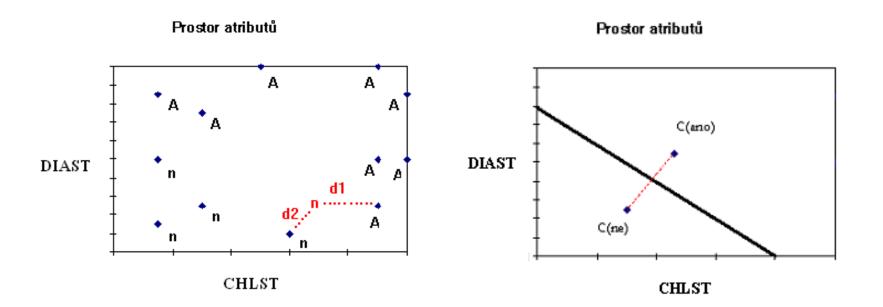
# Nearest-neighbor methods

#### **Algorithm k-NN**

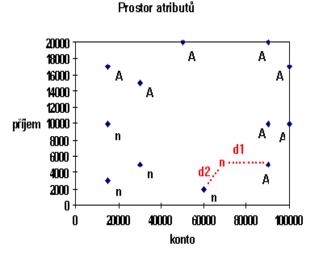
#### Learning

Add examples  $[\mathbf{x}_{i'}, \mathbf{y}_{i'}]$  into case base

#### Classification


- 1. For a new example  $\boldsymbol{x}$ 
  - 1.1. Find  $\boldsymbol{x}_1, \boldsymbol{x}_2, \dots \boldsymbol{x}_K$  K nearest neighbors
  - 1.2. assign

 $y = \hat{y'} \Leftrightarrow y'$  is the majority class of  $\mathbf{x}_{1'} \dots \mathbf{x}_{k'}$ 


# Nearest-neighbors in the attribute space

#### Using examples

#### Using centroids



# Nearest-neighbor methods

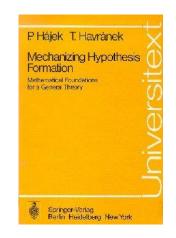


- Selecting instances to be added
  - no search
    - IB1 (Aha)
  - simple heuristic top-down search
    IB2, IB3 (Aha)
- clustering (identifying centroids)
  - simple heuristic top-down search
    - top-down (divisive)
    - bottom-up (aglomerative)
  - approximation
    - K-NN (given number of clusters)

# Further readings

- T. Mitchell: Machine Learning. McGraw-Hill, 1997
- J. Han, M. Kerber: Data Mining, Concepts and Techniques. Morgan Kaufmann, 2001
- I. Witten, E. Frank: Data Mining, Practical Machine Learning tools and Techniques with Java. 2 edition. Morgan Kaufmann, 2005
- <u>http://www.aaai.org/AITopics</u>
  <u>http://www.kdnuggets.com</u>

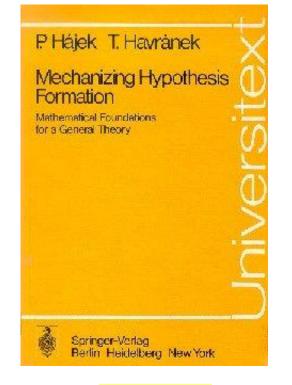
# **Break**


# Part 3

#### GUHA Method and LISp-Miner System

## **GUHA Method and LISp-Miner System**

Why here?


- Association rules coined by Agrawal in 1990's
- More general rules studied since 1960's
- GUHA method of mechanizing hypothesis formation
- Theory based on combination of
  - Mathematical logic
  - Mathematical statistics
- Several implementations
  - LISp-Miner system
- Relevant tools and theory





- GUHA main features
- Association rule couple of Boolean attributes
- GUHA procedure ASSOC
- LISp-Miner system
- Related research

# GUHA – main features





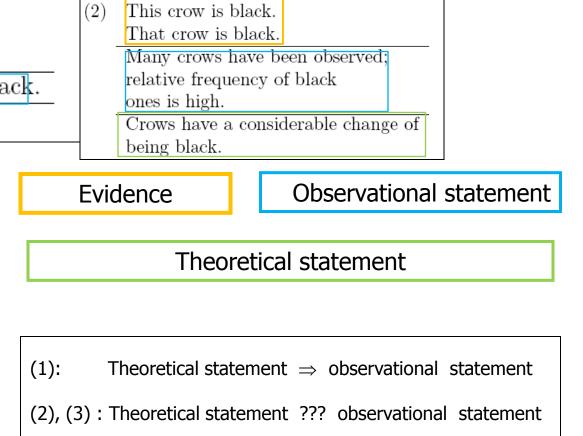
#### Starting questions:

Can computers formulate and verify scientific hypotheses?

Can computers in a rational way analyse empirical data and produce reasonable reflection of the observed empirical world? Can it be done using mathematical logic and statistics?

## Examples of hypothesis formation

This crow is black. That crow is black.


All observed crows are black.

All crows are black.

| (3) | rat<br>no.    | weight<br>g  | weight of the<br>kidney mg |  |
|-----|---------------|--------------|----------------------------|--|
|     | $\frac{1}{2}$ | $362 \\ 372$ | $1432 \\ 1601$             |  |
|     | 3             | 376          | 1436                       |  |
|     | $\frac{4}{5}$ | $407 \\ 411$ | $1633 \\ 2262$             |  |

(1)

The observed weights of the kidneys have the same order as the weights of the rats with one exception. The weight of rat's kidney is positively dependent on the weight of the rat.



## From an observational statement to a theoretical statement



(1): Theoretical statement  $\Rightarrow$  observational statement

Theoretical statement

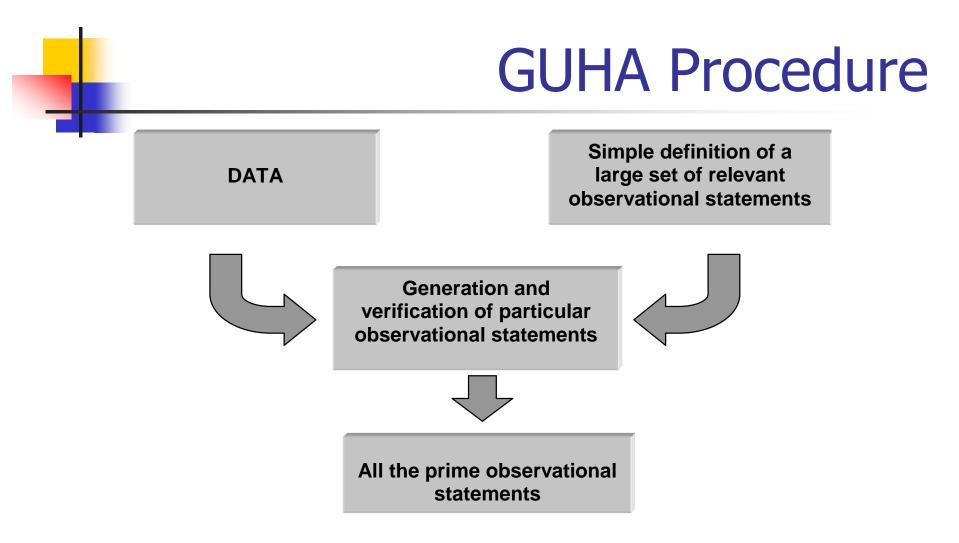
(2), (3) : Theoretical statement ??? observational statement

- Justified by some *rules of rational inductive inference*
- Some philosophers reject any possibility of formulating such rules
- Nobody believes that there can be universal rules
- There are non-trivial rules of inductive inference applicable under some well described circumstances
- Some of them are useful in mechanized inductive inference

Scheme of inductive inference:

theoretical assumptions, observational statement

theoretical statement


# Logic of discovery

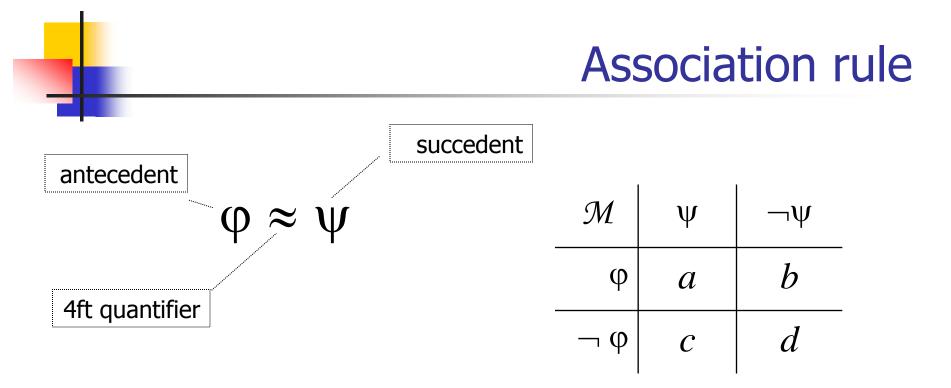
 Five questions:
 Scheme of inductive inference:
 theoretical assumptions, observational statement

 theoretical statement
 theoretical statement

- L0: In what languages does one formulate observational and theoretical statements? (What is the synthic and semantics of these languages? What is the relation to the classical first ord predicate calculus?)
- L1: What are rational inductive inference rules bridging the gap between observational and theoretical sentences? (What does it mean that a theoretical statement is justified?)
- L2: Are there rational methods for deciding whether a theoretical statement is justified (on the basis of given theoretical assumptions and observational statements)?
- L3: What a the conditions for a theoretical statement or a set of theoretical statements to be of interest (importance) with respect to the task of scientific cognition?
- L4: Are there methods for suggesting such a set of statements, which is as interesting, as possible?

L0 – L2: Logic of induction L3 – L4: Logic of suggestion L0 – L4: Logic of discovery




Observational : Theoretical statement = 1:1

# Outline

- GUHA main features
- Association rule couple of Boolean attributes
  - Data matrix and Boolean attributes
  - Association rule
  - 4ft-quantifiers
- GUHA procedure ASSOC
- LISp-Miner
- Related research

#### Data matrix and Boolean attributes

| A <sub>1</sub>                                                           | $A_2$ |  | $A_{m}$ | A <sub>1</sub> (3) | A <sub>2</sub> (7,9) | $A_1(3) \wedge A_2(7,9)$ |  |
|--------------------------------------------------------------------------|-------|--|---------|--------------------|----------------------|--------------------------|--|
| 3                                                                        | 9     |  | 6       | 1                  | 1                    | 1                        |  |
| 7                                                                        | 5     |  | 7       | 0                  | 0                    | 0                        |  |
|                                                                          |       |  |         |                    |                      |                          |  |
| 4                                                                        | 7     |  | 5       | 0                  | 1                    | 0                        |  |
| Data matrix $\mathcal{M}$ Boolean attributes $\varphi$ , $\psi$ , $\chi$ |       |  |         |                    | , χ                  |                          |  |
| Tutorial @ COMPSTAT 2010 62                                              |       |  |         |                    | 62                   |                          |  |



$$F_{\approx}(a,b,c,d) = \begin{cases} 1 \dots \phi \approx \psi \text{ is true in } \mathcal{M} \\ 0 \dots \phi \approx \psi \text{ is false in } \mathcal{M} \\ \text{Tutorial @ COMPSTAT 2010} \end{cases}$$

# Important simple 4ft-quantifiers (1)

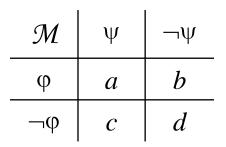
$$\begin{array}{c|c} \mathcal{M} & \Psi & \neg \Psi \\ \hline \phi & a & b \\ \hline \neg \phi & c & d \end{array}$$

Founded implication: 
$$\varphi \Rightarrow_{p,Base} \psi \qquad \frac{a}{a+b} \ge p \land a \ge Base$$

Double founded implication:  $\varphi \Leftrightarrow_{p,Base} \psi$   $\frac{a}{a+b+c} \ge p \land a \ge Base$ 

Founded equivalence:  $\varphi \equiv_{p,Base} \psi$ 

$$\frac{a+d}{a+b+c+d} \ge p \land a \ge Base$$


## Important simple 4ft-quantifiers (2)

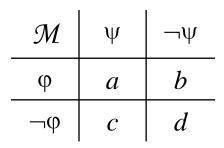
| ${\mathcal M}$ | ψ | -ψ |
|----------------|---|----|
| φ              | a | b  |
| -φ             | С | d  |

Above Average:  $\varphi \Rightarrow^{+}_{p,Base} \psi \quad \frac{a}{a+b} \ge (1+p) \frac{a+c}{a+b+c+d} \land a \ge Base$ 

"Classical":  $\varphi \rightarrow_{C,S} \psi$   $\frac{a}{a+b} \ge C \land \frac{a}{a+b+c+d} \ge S$ 

#### 4ft-quantifiers – statistical hypothesis tests (1)




Lower critical implication for  $0 , <math>0 < \alpha < 0.5$ 

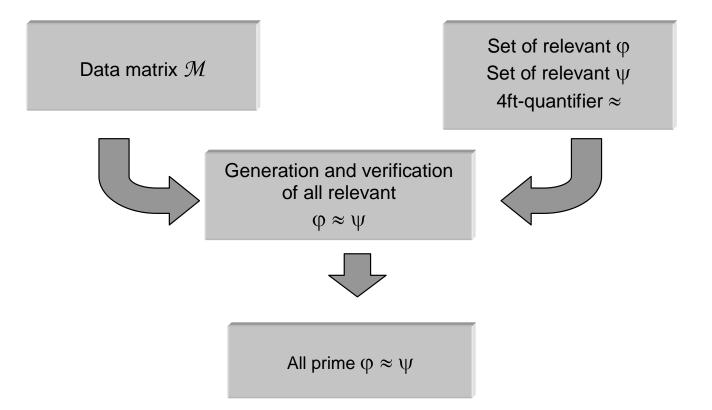
$$\phi \Rightarrow^!_{p,\alpha,\textit{Base}} \psi$$

$$\sum_{i=a}^{a+b} \binom{a+b}{i} p^i (1-p)^{a+b-i} \le \alpha \land a \ge Base$$

The rule  $\phi \Rightarrow_{p;\alpha}^! \psi$  corresponds to the statistical test (on the level  $\alpha$ ) of the null hypothesis  $H_0$ :  $P(\psi \mid \phi) \le p$  against the alternative one  $H_1$ :  $P(\psi \mid \phi) > p$ . Here  $P(\psi \mid \phi)$  is the conditional probability of the validity of  $\psi$  under the condition  $\phi$ .

#### 4ft-quantifiers – statistical hypothesis tests (2)




Fisher's quantifier for  $0 < \alpha < 0.5$ 

The rule  $\phi \sim_{\alpha,Base} \psi$  corresponds to the statistical test (on the level  $\alpha$  of the null hypothesis of independence of  $\phi$  and  $\psi$  against the alternative one of the positive dependence.

# Outline

- GUHA main features
- Association rule couple of Boolean attributes
- GUHA procedure ASSOC
- LISp-Miner
- Related research

# GUHA procedure ASSOC



#### GUHA – selected implementations (1)

 1966 - MINSK 22 (I. Havel) Boolean data matrix simplified version association rules punch tape

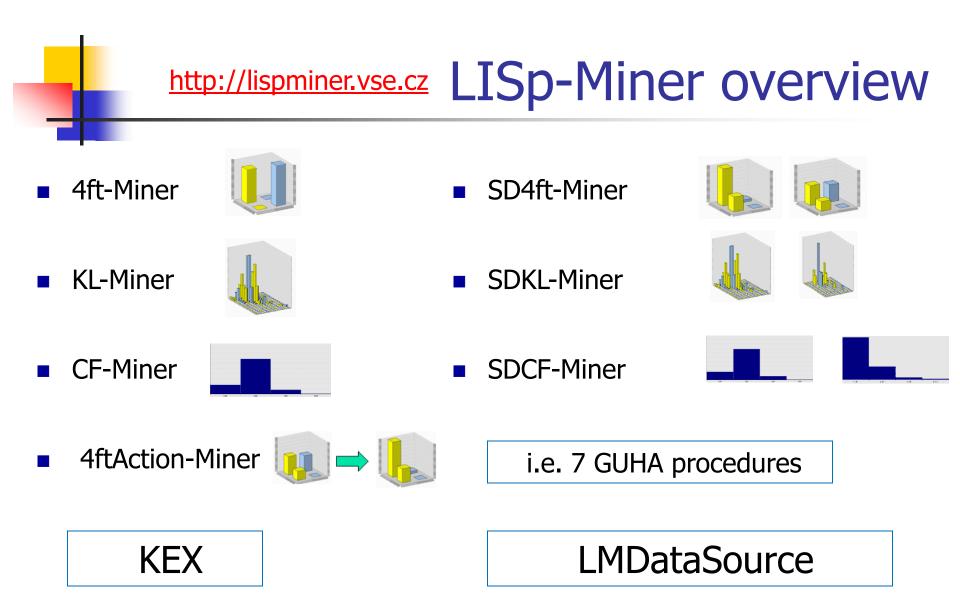


- end of 1960s IBM 7040 (I. Havel)
- 1976 IBM 370 (I. Havel, J. Rauch) Boolean data matrix association rules statistical quantifiers bit strings punch cards



#### GUHA – selected implementations (2)

- Early 1990s PC-GUHA MS DOS A. Sochorová, P. Hájek, J. Rauch
- Since 1995 GUHA+-Windows
   D. Coufal + all.




LISp-Miner

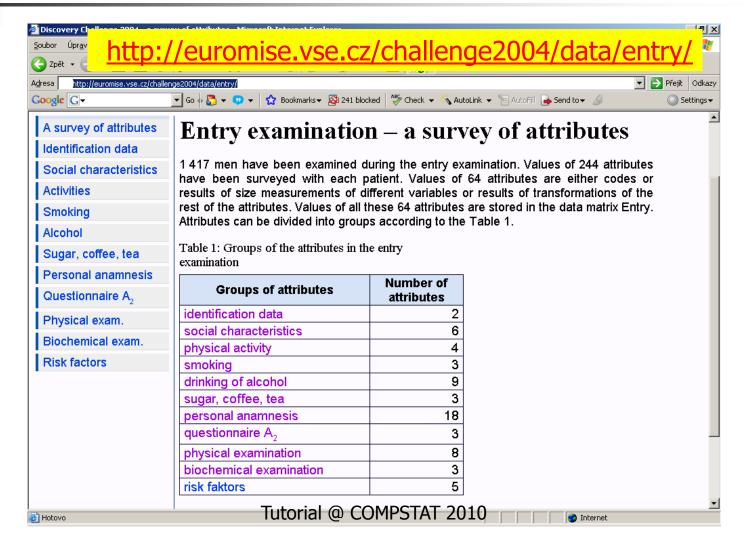
- Since 1996 LISp-Miner Windows
   M. Šimůnek + J. Rauch + all.
   7 GUHA procedures KEX related research
- Since 2006 Ferda, M. Ralbovský + all.

# Outline

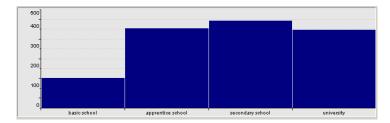
- GUHA main features
- Association rule couple of Boolean attributes
- GUHA procedure ASSOC
- LISp-Miner
  - Overview
  - Application examples
- Related research



# LISp-Miner, application examples

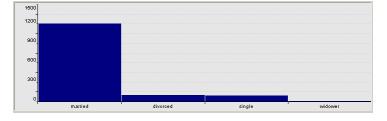

- Stulong data set
- 4ft-Miner (enhanced ASSOC procedure):
  - $\mathcal{B}$  (Physical, Social)  $\approx^{?} \mathcal{B}$  (Biochemical)
- SD4ft-Miner:
  - normal  $\otimes$  risk:  $\mathcal{B}$  (Physical, Social)  $\approx^{?} \mathcal{B}$  (Biochemical)

# Stulong data set (1)

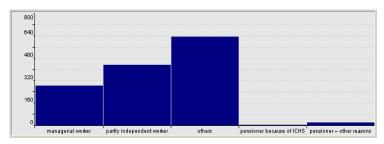

| Discovery Challenge 2004 - Micro                                                                         | soft Internet Explorer                                                                                                                                                                                                                |  |  |  |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Soubor Úpr <u>a</u> vy Zobrazit Oblibené<br>🌏 Zpět + 📀 + 💌 😰 🏠<br>Agresa 🕘 http://euromise.vse.cz/challe | http://euromise.vse.cz/challenge2004/                                                                                                                                                                                                 |  |  |  |
| Google G-                                                                                                | 💽 Go 🖟 🎦 👻 🖤 👻 Bookmarks 🛛 🔊 241 blocked 🛛 🏶 Check 👻 🔨 AutoLink 👻 🔚 AutoFill 🍙 Send to 🗸 🖉 Settings 🗸                                                                                                                                 |  |  |  |
| • <u>EuroMISE</u>                                                                                        | Homepage   People   Projects                                                                                                                                                                                                          |  |  |  |
| Projects > Discovery Ch                                                                                  | hallenge 2004                                                                                                                                                                                                                         |  |  |  |
| Challenge overview                                                                                       | Discovery Challenge 2004                                                                                                                                                                                                              |  |  |  |
| STULONG basic<br>information                                                                             | EuroMISE – Cardio                                                                                                                                                                                                                     |  |  |  |
| STULONG data set                                                                                         |                                                                                                                                                                                                                                       |  |  |  |
| Discovery Challenge<br>tasks                                                                             | Here you can get data set STULONG prepared for Discovery Challenge of ECML/PKDD 2004 conference.                                                                                                                                      |  |  |  |
| Data transformation                                                                                      | STULONG is the data set concerning the twenty years lasting longitudinal study of the                                                                                                                                                 |  |  |  |
| Download                                                                                                 | risk factors of the atherosclerosis in the population of 1 417 middle aged men. Four data                                                                                                                                             |  |  |  |
| Contact persons                                                                                          | matrices are included.                                                                                                                                                                                                                |  |  |  |
| Further use of data                                                                                      | The goal of the discovery challenge is to get new knowledge from the STULONG data.<br>Especially we are interested in answers to the set of analytical questions.                                                                     |  |  |  |
|                                                                                                          | STULONG data consists of raw data matrices. Various data transformations are necessary before the analysis. We offer both results of some useful transformations and tools for further possible transformations.                      |  |  |  |
| ì                                                                                                        | The Stulong data set was used in Discovery Challenge 2002 of ECML/PKDD-2002 and Discovery Challenge of ECML/PKDD-2003. Thus there are some former results that can be interesting from the point of view of Discovery Challenge 2004. |  |  |  |

75

# Stulong data set (2)

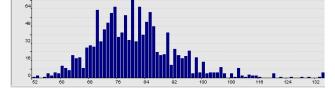



# Social characteristcs

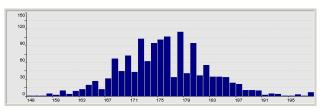



#### Education

Marital status

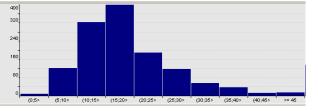


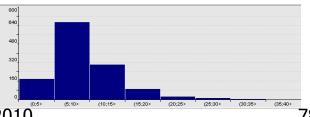

Responsibility in a job




# **Physical examinations**



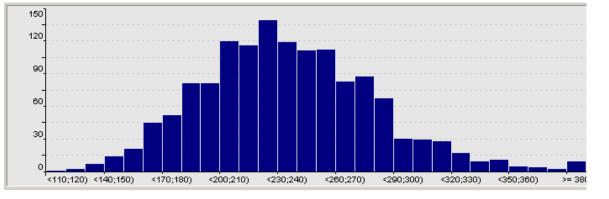




Height [cm]

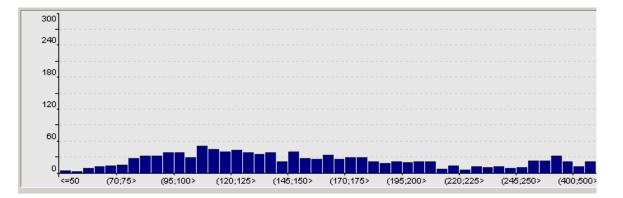


Skinfold above musculus triceps [mm]

Skinfold above musculus subscapularis [mm]







..... additional attributes

# **Biochemical examinations**

#### Cholesterol [mg%]



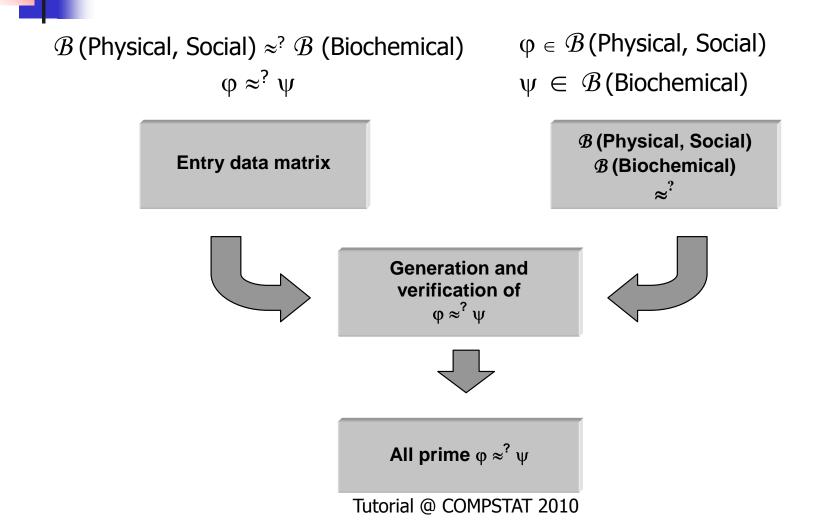
Triglycerides in mg%



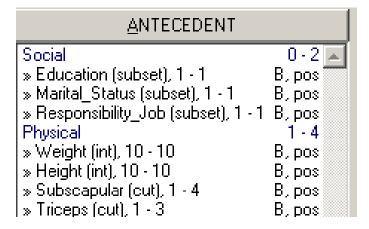
# LISp-Miner, application examples

- Stulong data set
- 4ft-Miner (enhanced ASSOC procedure):
  - $\mathcal{B}$  (Physical, Social)  $\approx^{?} \mathcal{B}$  (Biochemical)
- SD4ft-Miner:
  - normal  $\otimes$  risk:  $\mathcal{B}$  (Physical, Social)  $\approx^{?} \mathcal{B}$  (Biochemical)

### $\mathcal{B}$ (Physical, Social) $\approx$ ? $\mathcal{B}$ (Biochemical)


In the ENTRY data matrix,

are there some interesting relations between Boolean attributes describing combination of results of Physical examination and Social characteristics and results of Biochemical examination?


 $\phi \approx \psi$  $\phi \in \mathcal{B}$  (Physical, Social)  $\psi \in \mathcal{B}$  (Biochemical)  $\approx^{?}$  evaluated using 4-fould table

| ENTRY | Ψ | $\neg \psi$ |
|-------|---|-------------|
| φ     | а | b           |
| -φ    | С | d           |

### Applying GUHA procedure 4ft-Miner



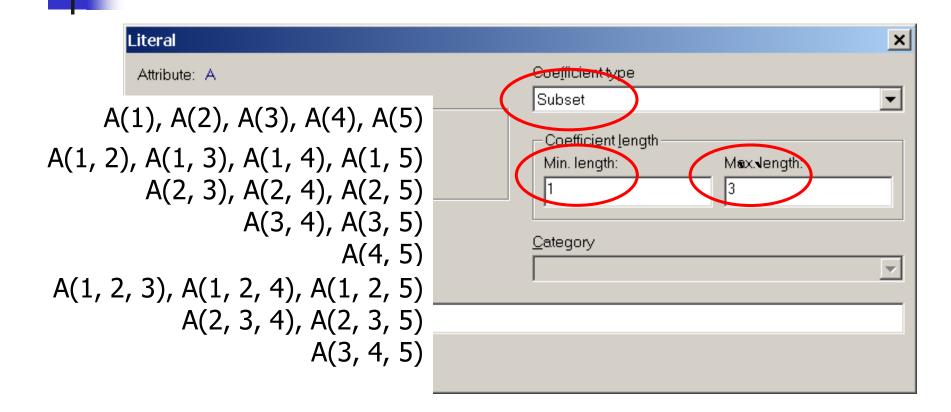
### Defining $\mathcal{B}(Social, Physical)$ (1)



 $\mathscr{B}(\text{Social}, \text{Physical}) = \mathscr{B}(\text{Social}) \land \mathscr{B}(\text{Physical})$ 

 $\mathscr{B}(\text{Social}) = \Lambda_0^2[\mathscr{B}(\text{Education}), \mathscr{B}(\text{Marital Status}), \mathscr{B}(\text{Responsibility_Job})]$ 

 $\mathscr{B}(\text{Physical}) = \Lambda_1^4 [\mathscr{B}(\text{Weight}), \mathscr{B}(\text{Height}), \mathscr{B}(\text{Subscapular}), \mathscr{B}(\text{Triceps})]$ 


# Defining $\mathcal{B}$ (Social, Physical) (2)

| ANTECEDENT                                                                                                                                                                                                                                  |                                                                                      | Literal              |                                                 |                                                                       | ×            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------|-------------------------------------------------|-----------------------------------------------------------------------|--------------|
| Social<br>» Education (subset), 1 - 1<br>» Marital_Status (subset), 1 - 1<br>» Responsibility_Job (subset), 1 - 1<br>Physical<br>» Weight (int), 10 - 10<br>» Height (int), 10 - 10<br>» Subscapular (cut), 1 - 4<br>» Triceps (cut), 1 - 3 | 0 - 2<br>B, pos<br>B, pos<br>B, pos<br>1 - 4<br>B, pos<br>B, pos<br>B, pos<br>B, pos | Attribute: Education | Gace type<br>● Positive<br>● Negative<br>● Both | Coefficient type<br>Subset<br>Coefficient length<br>Min. length:<br>1 | Max. length: |

Education: basic school, apprentice school, secondary school, university

 $\mathscr{B}$  (Education): Subsets of length 1 - 1 Education (basic school), Education (apprentice school) Education (secondary school), Education (university)

#### Note: Attribute A with categories 1, 2, 3, 4, 5 Literals with coefficients Subset (1 - 3):



### Defining $\mathcal{B}$ (Social, Physical) (3)

| ANTECEDENT                                                                                                                                                                                                                                                                 | Literal                                                                                                               |                                                 |                                                                                | ×        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------|----------|
| <ul> <li>» Education (subset), 1 - 1</li> <li>» Marital_Status (subset), 1 - 1</li> <li>» Responsibility_Job (subset), 1 - 1</li> <li>Physical</li> <li>» Weight (int), 10 - 10</li> <li>» Height (int), 10 - 10</li> <li>B</li> <li>» Subscapular (cut), 1 - 4</li> </ul> | 0 - 2 Attribute: Weight   3, pos Literal type   3, pos Basic   1 - 4 Remaining   3, pos Pos   3, pos Pos   3, pos Pos | Gace type<br>● Positive<br>○ Negative<br>○ Both | Coefficient type<br>Interval<br>Coefficient length<br>Min. length:<br>10<br>10 | <b>▼</b> |

Set of categories of Weight: 52, 53, 54, 55, ....., 130, 131, 132, 133  $\mathscr{B}$  (Weight): Intervals of length 10 - 10: Weight(52 - 61), Weight(53 - 62), ... 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,...., 128, 129, 130, 131, 132, 133 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,...., 128, 129, 130, 131, 132, 133 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,...., 128, 129, 130, 131, 132, 133

52, 53, 54, 55, 56, ..., 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133

## Defining $\mathcal{B}$ (Social, Physical) (4)

Gade type:

Positive

O Negative

O Both

#### ANTECEDENT 0 - 2 🗖 Social » Education (subset), 1 - 1 B, pos » Marital Status (subset), 1 - 1 B, pos » Responsibility Job (subset), 1 - 1. B, pos Physical. 1 - 4 » Weiaht (int), 10 - 10 B, pos » Height (int), 10 - 10 B, pos » Subscapular (cut), 1 - 4 B, pos » Triceps (cut), 1 - 3 B. Dos

(0;5), (5;10), (10;15), ..., (25;30) (30;35) (35;40)

Coefficient type

Min. length:

Coefficient length

Cut

```
\mathscr{B} (Triceps): Cuts 1 - 3
Left cuts 1 - 3
```

Set of categories of Triceps:

```
i.e. Triceps(low)
```

```
(0;5>, (5;10>, (10;15>, (15;20>, (20;25>, (25;30>, (30;35>, (35;40>)
(0;5>, (5;10>, (10;15>, (15;20>, (20;25>, (25;30>, (30;35>, (35;40>)
```

Literal

Attribute: Triceps

Literal type:

C Remaining

Basic

```
(0;5\rangle, (5;10\rangle, (10;15\rangle, (15;20\rangle, (20;25\rangle, (25;30\rangle, (30;35\rangle, (35;40\rangle
```

Tutorial @ COMPSTAT 2010

Max. length:

3

- i.e. Triceps(1 10)
- i.e. Triceps(1 15)

х

Ŧ

## Defining $\mathcal{B}$ (Social, Physical) (5)

Gade type:

Positive

O Negative

O Both

#### ANTECEDENT 0 - 2 🗖 Social » Education (subset), 1 - 1 B, pos » Marital Status (subset), 1 - 1 B, pos » Responsibility Job (subset), 1 - 1. B, pos Physical. 1 - 4 » Weiaht (int), 10 - 10 B, pos » Height (int), 10 - 10 B, pos » Subscapular (cut), 1 - 4 B, pos » Trideos (dut), 1 - 3 B. Dos

Set of categories of Triceps:

```
(0;5), (5;10), (10;15), ..., (25;30) (30;35) (35;40)
```

Coefficient type

Min. length:

Coefficient length

Cut

```
\mathscr{B} (Triceps): Cuts 1 - 3
Right cuts 1 - 3
```

```
(0;5), (5;10), (10;15), (15;20), (20;25), (25;30), (30;35), (35;40)
```

Literal

Attribute: Triceps

Literal type:

O Remaining

Basic

```
(0;5\rangle, (5;10\rangle, (10;15\rangle, (15;20\rangle, (20;25\rangle, (25;30\rangle, (30;35\rangle, (35;40\rangle
```

```
(0;5\rangle, (5;10\rangle, (10;15\rangle, (15;20\rangle, (20;25\rangle, (25;30\rangle, (30;35\rangle, (35;40\rangle
```

Tutorial @ COMPSTAT 2010

```
i.e. Triceps(high)
```

```
i.e. Triceps(35 - 40)
```

Max. length:

3

i.e. Triceps(30 - 40)

```
i.e. Triceps(25 – 45)
```

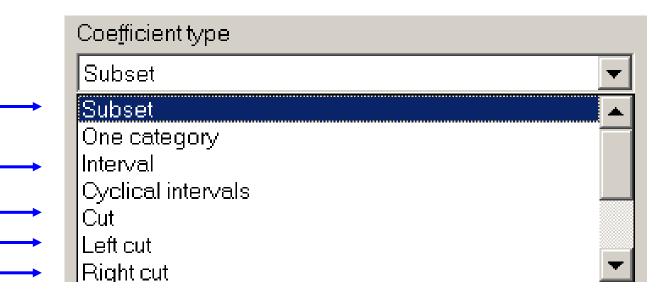
х

Ŧ

# Defining $\mathcal{B}$ (Social, Physical) (6)

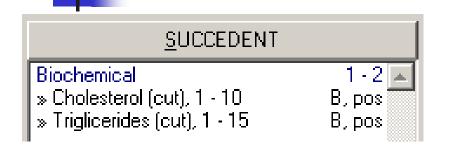
| ANTECEDENT                           |                  |
|--------------------------------------|------------------|
| Social                               | 0 - 2 🔺          |
| » Education (subset), 1 - 1          | B, pos \overline |
| │ » Marital_Status (subset), 1 - 1   | B, pos 🔛         |
| » Responsibility_Job (subset), 1 - 1 | B, pos           |
| Physical                             | 1 - 4            |
| » Weight (int), 10 - 10              | B, pos           |
| » Height (int), 10 - 10              | B, pos 🔛         |
| subscapular (cut), 1 - 4             | B, pos 🔛         |
| » Triceps (cut), 1 - 3               | B, pos           |

Examples of  $\phi \in \mathcal{B}$  (Social, Physical):


Education (basic school)

```
Education (university) \land Marital_Status(single) \land Weight (52 – 61)
```

```
Marital_Status(divorced) \land Weight (52 – 61) \land Triceps (25 – 45)
```


```
Weight (52 – 61) \land Height (52 – 61) \land Subscapular(0 – 10) \land Triceps (25 – 45)
```

### Note: Types of coefficients



#### See examples above

# Defining $\mathcal{B}$ (Biochemical)

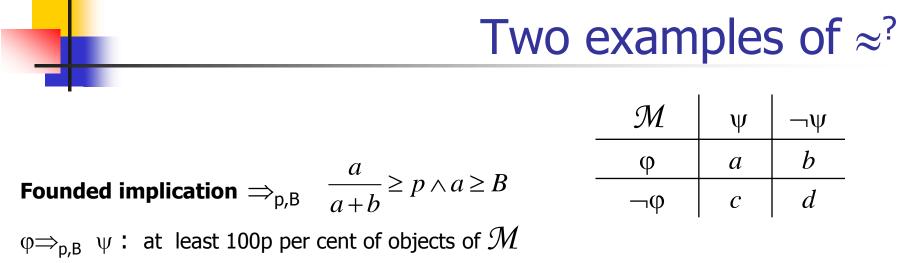


Analogously to  $\mathcal{B}$  (Social, Physical)

Examples of  $\psi \in \mathcal{B}$  (Biochemical):

```
Cholesterol (110 – 120), Cholesterol (110 – 130), ..., Cholesterol (110 – 210)
```

```
Cholesterol (\geq 380), Cholesterol (\geq 370), ..., Cholesterol (\geq 290)
```


```
Cholesterol (\geq 380) \wedge Triglicerides (\leq 50), ...
```

Cholesterol ( $\geq$  380)  $\land$  Triglicerides ( $\leq$  300), ...

# Defining $\approx$ ? in $\phi \approx$ ? $\psi$

#### $\approx$ ? corresponds to a condition concerning 4ft( $\phi, \psi, \mathcal{M}$ )

|                             |                | I       | I                                                                                                                                                                              | Quantifier                                                                                                                                                                                   | × |
|-----------------------------|----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                             | ${\mathcal M}$ | Ψ       | $\neg \psi$                                                                                                                                                                    | Quantifier<br>E-guantifier                                                                                                                                                                   |   |
|                             | φ              | a       | b                                                                                                                                                                              | Founded Implication<br>Lower Critical Implication                                                                                                                                            |   |
|                             | ηφ             | С       | d                                                                                                                                                                              | Upper Critical Implication<br>Above Average Implication<br>Below Average Implication<br>Double Founded Implication<br>Double Lower Critical Implication<br>Double Upper Critical Implication |   |
| 17 types of 4ft-quantifiers |                | tifiers | Founded Equivalence<br>Lower Critical Equivalence<br>Upper Critical Equivalence<br>Simple Deviation<br>Fisher quantifier<br>Chi Sauscod avantifier<br>OK Cancel Default values | •                                                                                                                                                                                            |   |
|                             |                |         |                                                                                                                                                                                | OK Cancel Default values                                                                                                                                                                     |   |



 $\phi$ satisfying  $\phi$  satisfy also  $\psi \phi$  and there are at least Base objects satisfying both  $\phi$  and  $\psi$ 

Above average 
$$\Rightarrow^+_{p,B}$$
  $\frac{a}{a+b} \ge (1+p) \land \frac{a+c}{a+b+c+d} \land a \ge B$ 

 $\phi \Rightarrow_{p,B}^{+} \psi$ : the relative frequency of objects of M satisfying  $\psi$  among the objects satisfying  $\phi$  is at least 100p per cent higher than the relative frequency of  $\psi$  in the whole data matrix  $\mathcal{M}$  and there are at least Base objects satisfying both  $\phi$  and  $\psi$ 

#### Solving $\mathcal{B}(Social, Physical) \Rightarrow_{0.9,50} \mathcal{B}(Biochemical)$ (1)

| Task                                                                                                                                                     |                                                           | ×                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Basic parameters<br>Name:CLT 1 Founded implication<br>Comment: Demo UNCC<br>Group of tasks: Default task-group<br>Data matrix: Entry<br>Owner: PowerUser | on 0.9,50                                                 | <u>E</u> dit<br>∐ake ownership                                                                   |
| ANTECEDENT                                                                                                                                               | QUANTIEIERS                                               | SUCCEDENT                                                                                        |
| » Education (subset), 1 - 1 B,                                                                                                                           | 0 - 2 A BASE count= 50.000<br>pos FUI p= 0.900<br>pos pos | Biochemical     1 - 2     Scholesterol (cut), 1 - 10     Striglicerides (cut), 1 - 15     B, pos |
| Physical» Weight (int), 10 - 10B,» Height (int), 10 - 10B,» Subscapular (cut), 1 - 4B,                                                                   | 1 - 4<br>pos<br>pos<br>pos<br>pos<br>pos                  | $\mathcal{B}$ (Biochemical)                                                                      |
| ${\mathcal B}$ (Social, Physical)                                                                                                                        |                                                           |                                                                                                  |

#### Solving $\mathcal{B}(Social, Physical) \Rightarrow_{0.9,50} \mathcal{B}(Biochemical)$ (2)

PC with 1.66 GHz, 2 GB RAM

2 min. 40 sec.

5.10<sup>6</sup> rules verified

0 true rules

| 😵 LM _STULONG.mdb Metabase - LISp-Mir                             | ner 4ftResult module                              |
|-------------------------------------------------------------------|---------------------------------------------------|
| Data <u>s</u> ource <u>T</u> ask description <u>Hypotheses</u> He | elp                                               |
| 1 🐼 🔊 🕅 1                                                         | ? №?                                              |
| Number of verifications: 5003726                                  | C Show all hypotheses<br>C Show hypotheses just f |
| Number of hypotheses: 0                                           | Add group Del group                               |
| Actual group of hypotheses: All hypothesis                        |                                                   |
| Number of hypotheses in the group: 0<br>Nr. Id Conf Hypothesis    | Number of actually shown hypotheses: 0            |
|                                                                   |                                                   |

Problem: Confidence 0.9 in  $\Rightarrow_{0.9,50}$  too high

Solution: Use confidence 0.5 Tutorial @ COMPSTAT 2010

95

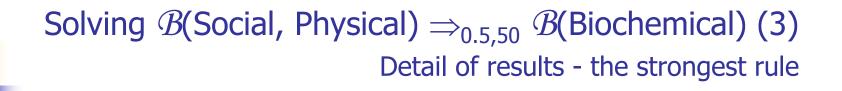
### Solving $\mathcal{B}(\text{Social, Physical}) \Rightarrow_{0.5,50} \mathcal{B}(\text{Biochemical})$ (1)

| Task                                                                                                                                                                                                                                                           |                                                                               |                                                                                       |   |                                                                                                                | X                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------|-----------------------------|
| Basic parameters<br>Name:CLT 1A Founded impl<br>Comment: Demo UNCC<br>Group of tasks: Default task-grou<br>Data matrix: Entry<br>Owner: PowerUser                                                                                                              |                                                                               |                                                                                       |   | Lak                                                                                                            | <u>E</u> dit<br>æ ownership |
| <u>ANTECEDENT</u><br>Social<br>» Education (subset), 1 - 1<br>» Marital_Status (subset), 1 - 1<br>» Responsibility_Job (subset), 1 -<br>Physical<br>» Weight (int), 10 - 10<br>» Height (int), 10 - 10<br>» Subscapular (cut), 1 - 4<br>» Triceps (cut), 1 - 3 | B, pos<br>1 B, pos<br>1 - 4<br>B, pos<br>B, pos<br>B, pos<br>B, pos<br>B, pos | $\frac{\text{QUANTIFIERS}}{\text{BASE count}= 50.000}$ FUI p= 0.500 $\implies 0.5,50$ | 4 | <u>SUCCEDENT</u><br>Biochemical<br>» Cholesterol (cut), 1 - 10<br>» Triglicerides (cut), 1 - 15<br>B(Biochemic | 1-2<br>B, pos<br>B, pos     |
| B(Social, Phys                                                                                                                                                                                                                                                 |                                                                               |                                                                                       |   |                                                                                                                | =1                          |

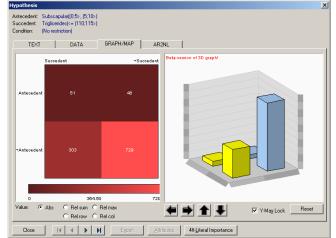
### Solving $\mathcal{B}(\text{Social, Physical}) \Rightarrow_{0.5,50} \mathcal{B}(\text{Biochemical})$ (2)

| LM _STULONG.mdb Metabase - LISp-Miner 4ftResult n<br>Datagource <u>lask description</u> <u>Hypotheses</u> Help                             | nodule                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 12 🔊 💽 👔 🕫                                                                                                                                 |                                                                                   |
| Task:CLT 1A Founded implication 0.5, 50<br>Comment: Demo UNCC<br>Group of tasks: Default task-group<br>Data matrix: Entry                  | <ul> <li>Show all hypotheses</li> <li>Show hypotheses just from group:</li> </ul> |
| Task run<br>Start: 20.10.2007 15:23:47 Total time: 0h 2m 53s<br>Number of verifications: 5003720<br>Number of hypotheses: 30               | Add group Del group Edit group                                                    |
| Actual group of hypotheses: All <mark>hypothesis</mark><br>Number of hypotheses in the group: 30 Number of actua<br>Nr. Id Conf Hypothesis | ally shown hypotheses: 30                                                         |
| 4 9 0.519 Weight(7180) & Height(176185) & Subs                                                                                             |                                                                                   |

30 rules with confidence  $\geq$  0.5


Problem: The strongest rule has confidence only 0.526, see detail

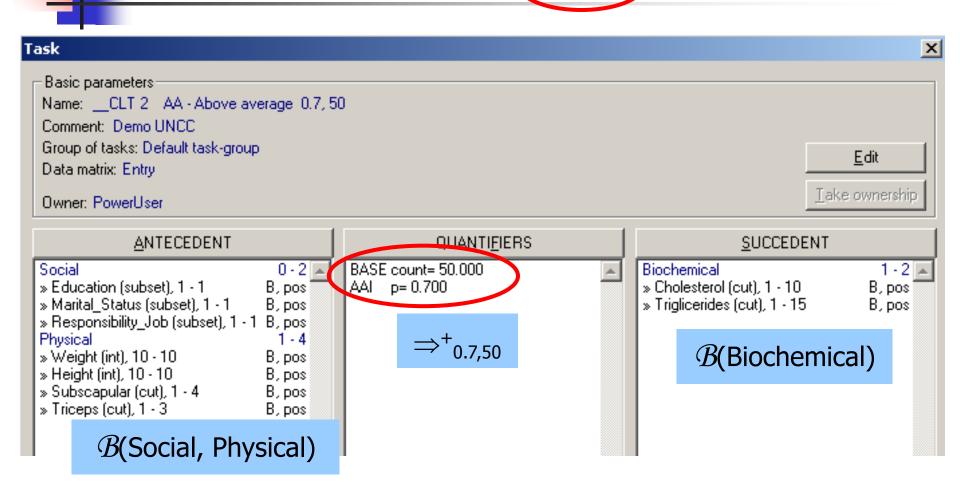
Solution: Search for rules expressing 70% higher relative frequency than average


Tutorial @ COMPSTAT 2010

It means to use  $\Rightarrow^+_{0.7,50}$  instead of  $\Rightarrow_{0.5,50}$ 

97








| Entry                             | Triglicerides(≤115) | ¬ Triglicerides(≤115) |
|-----------------------------------|---------------------|-----------------------|
| Subscapular(0;10>                 | 51                  | 46                    |
| $\neg$ Subscapular(0;10 $\rangle$ | 303                 | 729                   |

 $\begin{array}{l} \text{Subscapular(0;10)} \Rightarrow_{0.53,\ 51} \text{Triglicerides(} \leq 115\text{)} \\ \text{Tutorial @ COMPSTAT 2010} \end{array}$ 

### Solving $\mathcal{B}(\text{Social, Physical}) \Rightarrow^{+}_{0.7,50} \mathcal{B}(\text{Biochemical}) (1)$



### Solving $\mathcal{B}(\text{Social, Physical}) \Rightarrow^{+}_{0.7,50} \mathcal{B}(\text{Biochemical})$ (2)

| 🖉 LM _STULONG.mdb Metabase - LISp-Miner 4ftResult modu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | le                                                       |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|--|
| Datasource Task description Hypotheses Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |  |  |  |  |
| Image: A state of the state |                                                          |  |  |  |  |
| Task:CLT 2 Above average 0.7<br>Comment: Base = 20 p = 1.2 delka intervalu v sukcedentu je 1<br>Group of tasks: Default task-group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Show all hypotheses     Show hypotheses just from group: |  |  |  |  |
| Data matrix: Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |  |  |  |  |
| Task run<br>Start: 20.10.2007 15:18:27 Total time: 0h 2m 40s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |  |  |  |  |
| Number of verifications: 5003726<br>Number of hypotheses: 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Add group Del group Edit group                           |  |  |  |  |
| Actual group of hypotheses: All hypothesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |  |  |  |  |
| Number of hypotheses in the group: 14 Number of actually sh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nown hypotheses: 14                                      |  |  |  |  |
| Nr. Id AvgDf Hypothesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |  |  |  |  |
| 1 6 0.827 Weight(6675) & Subscapular(<= (10;15>) & Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |  |  |  |  |
| 2 3 0.816 Weight(6675) & Subscapular(<= (10;15>) •••<br>3 10 0.784 Weight(6877) & Subscapular(<= (10;15>) & Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |  |  |  |  |
| 5 8 0.763 Weight(6776) & Subscapular(<= (10;15>) & Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |  |  |  |  |
| 6 12 0.763 Weight(6978) & Subscapular(<= (10;15>) & Triceps(<= (10;15>) +++ Triglicerides(<= (90;95>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |  |  |  |  |
| 7 2 0.757 Weight(6574) & Subscapular(<= (10;15>) & Triceps((0;5>, (5;10>) +++ Triglicerides(<= (100;105>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          |  |  |  |  |
| 8 7 0.753 Weight(6776) & Subscapular(<= (10;15>) ••• Triglicerides(<= (90;95>)<br>9 11 0.753 Weight(6978) & Subscapular(<= (10;15>) ••• Triglicerides(<= (90;95>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |  |  |  |  |
| 11 1 0.737 Weight(6170) & Triceps((0;5>, (5;10>) ••• Tri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          |  |  |  |  |
| 12 4 0.712 Weight(6675) & Subscapular(<= (10;15>) & Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | iceps((0;5>, (5;10>) ••• Triglicerides(<= (95;100>)      |  |  |  |  |
| 13 5 0.702 Weight(6675) & Subscapular(<= (10;15>) & Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |  |  |  |  |
| 14 14 0.700 Subscapular(<= (10;15>) & Triceps(<= (10;15>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ••• Triglicerides(<= [80;85>]                            |  |  |  |  |

14 rules with relative frequency of succedent  $\geq$  0.7 than average, example – see detail

#### Solving $\mathcal{B}(\text{Social, Physical}) \Rightarrow^{+}_{0.7,50} \mathcal{B}(\text{Biochemical})$ (3) Detail of results - the strongest rule

| $(\phi: Weight (65;75) \land Subscapular(\leq 15) \land Triceps(\leq 15)$ | Entry       | ψ   | $\neg \psi$ |      |
|---------------------------------------------------------------------------|-------------|-----|-------------|------|
|                                                                           | φ           | 51  | 114         | 165  |
| $\psi$ : Triglicerides ( $\leq$ 95)                                       | $\neg \phi$ | 140 | 824         | 964  |
| confidence = $51 / 165 = 0.31$ (not interesting!)                         |             | 191 | 938         | 1129 |

relative frequency of patients satisfying  $\boldsymbol{\psi}$  in the whole data matrix:

 $\frac{51\!+\!140}{51\!+\!114\!+\!140\!+\!824}\!=\!0.17$ 

relative frequency of patients satisfying  $\psi$  among the patients satisfying  $\phi$ :  $\frac{51}{51+114} = 0.31$ i.e. 82 % higher

$$\frac{51}{51+114} = (1+0.82)\frac{51+140}{51+114+140+824}$$

thus 
$$\phi \Rightarrow^+_{0.82,51} \psi$$


# 4ft-Miner, summary

- mines for rules  $\phi \approx \psi / \chi$  and conditional rules  $\phi \approx \psi / \chi$
- very fine tools to define set of relevant  $\varphi$ ,  $\psi$ ,  $\chi$
- elements of semantics ..... Right cuts 1 3 i.e. Triceps(high
- measures of association  $\approx$  on 4ft( $\varphi$ ,  $\psi$ ,  $\mathcal{M}$ ) =  $\langle a, b, c, d \rangle$
- works very fast
- does not use Apriori, uses bit string approach

# LISp-Miner, application examples

- Stulong data set
- 4ft-Miner (enhanced ASSOC procedure):
  - $\mathcal{B}$  (Physical, Social)  $\approx^{?} \mathcal{B}$  (Biochemical)
- SD4ft-Miner:
  - normal  $\otimes$  risk:  $\mathcal{B}$  (Physical, Social)  $\approx$ ?  $\mathcal{B}$  (Biochemical)

# **SD4ft-Miner Motivation**



Is there any difference between normal and risk patients what concerns

 $\mathscr{B}$  (Social, Physical)  $\approx^{?} \mathscr{B}$  (Biochemical)?

normal  $\otimes$  risk:  $\mathcal{B}$  (Social, Physical)  $\approx^{?} \mathcal{B}$  (Biochemical)

### Normal $\otimes$ Risk: $\mathcal{B}$ (Social, Physical) $\approx^{?} \mathcal{B}$ (Biochemical) (1)

Is there any difference between normal and risk what concerns  $\phi \Rightarrow_{p, B} \psi$ ?

| normal | ψ                     | ψ     |   | risk        | ψ                     | ψ     | 1000<br>800     |        |      |              |
|--------|-----------------------|-------|---|-------------|-----------------------|-------|-----------------|--------|------|--------------|
| φ      | $a_1$                 | $b_1$ | - | φ           | $a_2$                 | $b_2$ | - eco<br>400    |        | Risk |              |
| φ      | <i>c</i> <sub>1</sub> | $d_1$ |   | $\neg \phi$ | <i>c</i> <sub>2</sub> | $d_2$ | 200_<br>_<br>0_ | Normal | risk | Pathological |

Example of difference:  $|confidence_{normal} - confidence_{risk}| \ge 0.3$ 

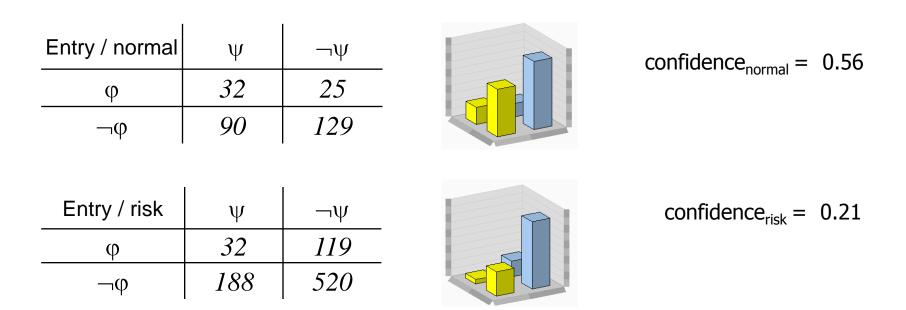
Condition of interestingness:

$$\left|\frac{a_1}{a_1 + b_1} - \frac{a_2}{a_2 + b_2}\right| \ge 0.3 \land a_1 \ge 30 \land a_2 \ge 30$$

#### Normal $\otimes$ Risk: $\mathcal{B}$ (Social, Physical) $\approx^{?} \mathcal{B}$ (Biochemical) (2)

| Task                                                                                   |                                                |                                                                                       |                                             | ×                              |
|----------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------|
| BASIC PARAMETERS<br>Name: _CLT 3 SD4ft der<br>Comment: -                               | mo                                             |                                                                                       | SD4ft-Miner proc                            |                                |
| Group of tasks: Default ta<br>Data matrix: Entry                                       | sk-group                                       |                                                                                       |                                             | <u>E</u> dit<br>Take ownership |
| Owner: PowerUser                                                                       |                                                |                                                                                       |                                             | Tarra anniaismb                |
| <u>A</u> NTECEDEN                                                                      | Г                                              | QUANTI <u>F</u> IERS                                                                  |                                             | EDENT                          |
| Social<br>» Education(*)<br>» Marital_Status(*)<br>» Responsibility_Job(*)<br>Physical | 0 - 2 A<br>B, pos<br>B, pos<br>B, pos<br>1 - 4 | TypeRel. ValueUBASE FirstSet>=30.00 /rBASE SecondSet>=30.00 /rFUI DiffValAbs>=0.30 /r | Abs. — » Triglicerides(*)<br>Abs.           | 1 - 2 💻<br>B, pos<br>B, pos    |
| » Weight(*)<br>» Height(*)<br>» Subscapular(*)<br>» Triceps(*)                         | B, pos<br>B, pos<br>B, pos<br>B, pos<br>B, pos | $\left \frac{a_1}{a_1+b_1} - \frac{a_2}{a_2+b_2}\right  \ge 0.3 \land a_1 \ge 0.3$    | $3 \wedge a_2 \ge 0.3$ $\mathcal{B}(Bioch)$ | emical)                        |
| B(Social, Phy                                                                          | /sical)                                        |                                                                                       | Total length: 1 - 2                         | 2                              |
| ( <u>1</u> ) FIRST SET                                                                 |                                                | (2) SECOND SET                                                                        | <u>c</u> oni                                | DITION                         |
| First set<br>» Group of patients( norma                                                | 1 - 1 🛋<br>I) B, pos                           | Second set 1 - 1 🛌<br>» Group of patients( risk) B, pos                               | Condition                                   | 0 - 0 🔺                        |
| normal                                                                                 |                                                | Tutorial @ COMPSTAT 2010                                                              |                                             | 106                            |

#### Normal $\otimes$ Risk: $\mathcal{B}$ (Social, Physical) $\approx^{?} \mathcal{B}$ (Biochemical) (3)


| 😵 LM _STULONG.mdb Metabase - LISp-Min                                                                                | er SD4ft-Result module                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Datasource Task description Hypotheses Hel                                                                           | ρ                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Task: _CLT 3 SD4ft demo<br>Comment: -                                                                                | <ul> <li>Show all hypotheses</li> <li>Show hypotheses just from group:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                     |
| Group of tasks: Default task-group<br>Data matrix: Entry<br>Task run<br>Start: 22.10.2007 19:25:41 Total time: 0h 10 | )m 15s                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Number of verifications: 18983250<br>Number of hypotheses: 32                                                        | Add group Del group Edit group                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Actual group of hypotheses: All hypothesis                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Number of hypotheses in the group: 32                                                                                | Number of actually shown hypotheses: 32                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nr. Id Df-Conf 1:Conf 2:Conf Hypothesis                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2 20 0.337 0.566 0.229 Marital_Status                                                                                | s(married) & Weight(7685) & Height(172181) & Triceps(<= (10;15>) ••• Cholesterol(<= <200;210)) : Group of patients(normal) × Group of patients(<br>s(married) & Weight(7483) & Height(167176) & Triceps(<= (10;15>) ••• Cholesterol(<= <200;210)) : Group of patients(normal) × Group of patients(<br>s(married) & Weight(7786) & Height(172181) & Triceps(<= (10;15>) ••• Cholesterol(<= <200;210)) : Group of patients(normal) × Group of patients( |

#### 19 000 000 patterns verified in 10 minutes

32 patterns found

The strongest one – see detail

#### normal $\otimes$ risk: $\mathcal{B}$ (Social, Physical) $\approx$ ? $\mathcal{B}$ (Biochemical) (4) Detail of results - the strongest rule



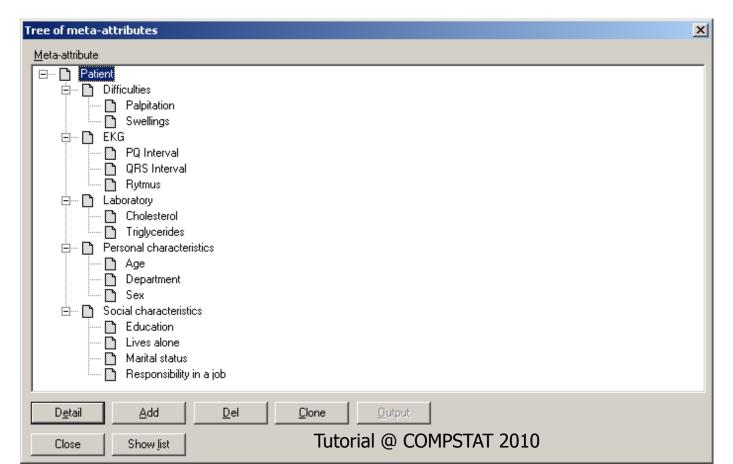
 $\phi$ : Marital\_Status(married)  $\land$  Weight (75,85)  $\land$  Height (172,181)  $\land$  Triceps( $\leq$ 15)

 $\Psi$ : Cholesterol ( $\leq$  210)

 $confidence_{normal} - confidence_{risk} = 0.35$ Tutorial @ COMPSTAT 2010

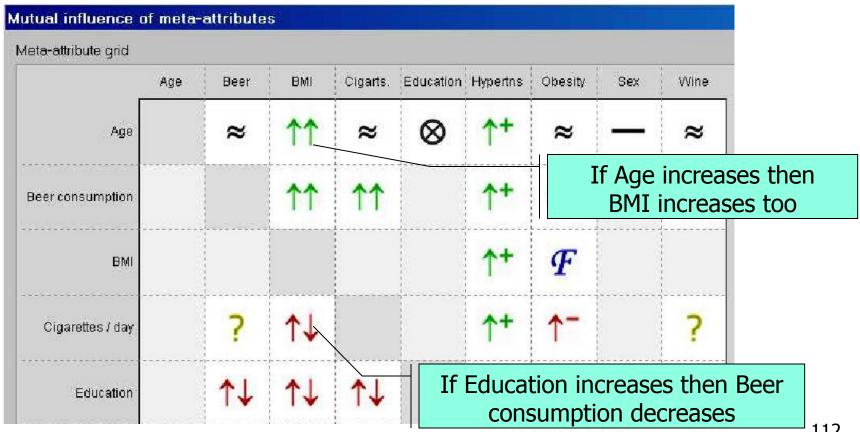
# SD4ft-Miner, Summary

- Mines for patterns  $\alpha \otimes \beta$ :  $\phi \approx \psi / \chi$
- Are there any differences between sets  $\alpha$  and  $\beta$  what concerns relation of some  $\phi$  and  $\psi$  when condition  $\chi$  is satisfied?
- Based on same principles as 4ft-Miner
  - **\Box** definitions of  $\alpha$ ,  $\beta$ ,  $\phi$ ,  $\psi$ ,  $\chi$
  - **u** measures of association on  $\langle a, b, c, d \rangle$
- Powerful tool, requires careful applications
- Necessity to use domain knowledge


# Outline

#### GUHA – main features

- Association rule couple of Boolean attributes
- GUHA procedure ASSOC
- LISp-Miner
- Related research
  - Domain knowledge
  - SEWEBAR project
  - Observational calculi
  - EverMiner project


# LISp-Miner Knowledge Base (1)

Storing and maintaining groups of attributes:



# LISp-Miner Knowledge Base (2)

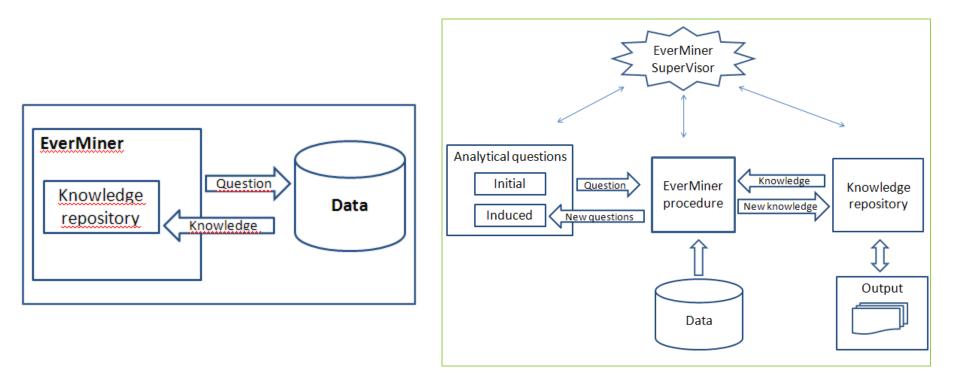
#### Mutual influence of attributes



# SEWEBAR project

#### SEWEBAR (SEmantic WEB and Analytical Reports)




#### http://sewebar.vse.cz/

#### Key Concepts

LISp-Miner Data Mining System

- Ferda Data Mining System
- Association Rules
- GUHA method

# EverMiner project



# **Observational calculi**

- Logical calculi with formulas patterns mined from data
- Study of logical properties of such calculi
- Logic of association rules  $\phi \approx \psi$
- Deduction rules between association rules

• 
$$\frac{\varphi \approx \psi}{\varphi' \approx \psi'}$$
 is correct iff ... ;  $\frac{A(\alpha) \Rightarrow_{0.9,50} B(\beta)}{A(\alpha) \Rightarrow_{0.9,50} B(\beta) \lor C(\gamma)}$  is correct

Various applications

# LISp-Miner - authors

| People - Wanadoo<br>Soubor Úpravy Zobrazit Oblbené Nástroje Ná<br>Soubor Úpravy Zobrazit Oblbené Nástroje Ná                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | http://lispminer.vse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cz/people.html  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 🕤 ▼ 🌀 Zpět ▼ 💌 🔊 🎧 🛄 🌟 Obiber<br>  Adresa 🗃 http://ispminer.vse.cz/people.html                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Scientific feat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ures: Jan Rauch |
| LISp-Miner                                                                                                                                                                                                                                                  | _<br>Imj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | plementation features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : Milan Šimůnek |
| procedures<br>Peopl<br>Contact p<br>The LISp-<br>teaching.<br>features a<br>LISp-Mine<br><cernyz@<br>Development<br/>Miner was<br/>by Mian S<br/>1999 and<br/>4ft-Miner.<br/>Petr Berk<br/>implement<br/>in implement<br/>Simůne<br/>Miner, CF</cernyz@<br> | erson: Jan Rauch <u><rauch@vse.cz></rauch@vse.cz></u><br>Miner system is a free and open academic sy<br>The development of the system is supervised b<br>and Milan Simůnek <u><simunek@vse.cz></simunek@vse.cz></u> – implem<br>er system is managed by Martin Kejkula <u><kejku< u=""><br/>wse.cz&gt;<br/>ent of the LISp-Miner system started in 1996 w<br/>s implemented. The project was done by Jan Ra<br/>Simůnek. A new conception of the 4ft-Miner war<br/>subsystem <u>Elementary</u> was implemented by M.</kejku<></u> | y Jan Rauch <u>crauch@vse.cz&gt;</u> – scientific<br>hentation features. The home page of the<br><u>la@vse.cz&gt;</u> . Web master: Zdeněk Černý<br>when the first version of the procedure 4ft-<br>auch and the procedure was implemented<br>s created by J. Rauch and M. Šimůnek in<br>Šimůnek. For more details see <u>history of</u><br>ng procedure <u>KEX</u> and this project was<br>of bits developed for 4ft-Miner were used<br>nt of LISp-Miner system was prepared by<br>ation of new data mining procedures KL-<br>Miner invented by J. Rauch. Also several |                 |
| Lat of par                                                                                                                                                                                                                                                  | anle took nort in the LICs Minor development too                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •               |
| X Diskuse - 💋 🕅 🗐 🗐 🦅 Přihlásit se k odběru                                                                                                                                                                                                                 | IIII 🖄 🖉 Na serveru http://lispminer.vse.cz/ nejsou diskuse k dispozici.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 116             |

# Further readings

- Rauch J., Šimůnek M. (2005) An Alternative Approach to Mining Association Rules.In: Lin T Y et al. (eds) Data Mining: Foundations, Methods, and Applications, Springer-Verlag, pp. 219—238
- Šimůnek M. (2003) Academic KDD Project LISp-Miner. In Abraham A. et all (eds) Advances in Soft Computing - Intelligent Systems Design and Applications, Springer, Berlin Heidelberg New York
- Rauch J.: (2005) Logic of Association Rules. Applied Intelligence 22, 9–-28.
- Rauch J., Šimůnek M.(2009) Dealing with Background Knowledge in the SEWEBAR Project. In: Berendt B. et al.: Knowledge Discovery Enhanced with Semantic and Social Information}. Berlin, Springer-Verlag, 2009, pp. 89 – 106
- Kliegr T., Ralbovský M., Sv\'atek V., Šimůnek M., Jirkovský V., Nemrava J., Zemánek, J.(2009) Semantic Analytical Reports: A Framework for Postprocessing data Mining Results. In: Foundations of Intelligent Systems. Berlin, Springer Verlag, 2009, pp. 88 — 98.