

Structural Modelling of Nonlinear Exposure-Response Relationships for Longitudinal Data

Xiaoshu Lu and Esa-Pekka Takala

Finnish Institute of Occupational Health, Finland

- . Background
- . Mathematical Model
- . Model Validity and Illustration
- . Conclusions

Background

. Many research is grounded on exposure and risk assessment

. Linear model often used to assess exposureresponse relationship

. Standard methods provide few theories for nonlinear exposure-response studies

. See an example in the following

Linear mixed-effects model shows parameter estimate of -0.61 is statistically discernible at 5% level. Response is negatively associated with exposure which is incorrect.

Mathematical Model

Model equations

Model estimation

Model Equations

 Methodological framework for model buildup

 Model is quivalent to a mixedeffects model

Model Buildup

- Let {x}_t and {y}_t be exposure and response measures for any subject
- Use Hodrick-Prescott (HP) filter technique to extract the trend-cycle component
- Obtain structural mapping of exposure to response for individual subject
- Extend the mapping to group subjects by adding random subject effects

Model Equations

$$y_{t} = y^{trend}_{t} + \varepsilon_{y}^{trend}_{t}$$
(1)
$$y_{trend}^{t+1} = 2 y_{trend}^{t} - y_{trend}^{t-1} + \varepsilon_{y}^{cycle}_{t}$$
(2)

similarly

$$X_{t} = X^{trend}_{t} + \varepsilon_{x}^{trend}_{t} \qquad (3)$$

$$X_{trend}^{t+1} = 2 X_{trend}^{t} - X_{trend}^{t-1} + \varepsilon_{x}^{cycle}_{t} \qquad (4)$$
Finnish Institute of
Paris-08,2010

$y_t = x_t \alpha + \sum (t - j) \eta_j$

Where $\eta_t \sim N(0, \sigma_{\eta}^2)$

This is for individual subject

$\mathbf{y}_{it} = \mathbf{x}_{it}\alpha + \mathbf{x}_{it}\mathbf{u}_i + \sum (t - j)\eta_j + \varepsilon_{it}$

Where $\varepsilon_{it} \sim N(0, \sigma_{\varepsilon}^2)$

This is for group subjects where u_i is inserted to account for subject-specific variation from the group mean

In matrix form (mixed-effects model)

$$\mathbf{Y} = \mathbf{X}\mathbf{a} + \mathbf{Z}_{u}\mathbf{u} + \mathbf{Z}_{\eta}\eta + \varepsilon$$

$$\begin{bmatrix} u \\ \eta \\ \varepsilon \end{bmatrix} = N(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \Sigma_u & 0 & 0 \\ 0 & \Sigma_\eta & 0 \\ 0 & 0 & \Sigma_\varepsilon \end{bmatrix})$$

$$\Sigma_{u} = \sigma_{u}^{2} I, \Sigma_{\varepsilon} = \sigma_{\varepsilon}^{2} I$$

 $\boldsymbol{V} = \operatorname{Var}(\boldsymbol{Y}) = \boldsymbol{\sigma}_{u}^{2}\boldsymbol{Z}_{u}\boldsymbol{Z}_{u}^{T} + \boldsymbol{Z}_{\eta}\boldsymbol{\Sigma}_{\eta}\boldsymbol{Z}_{\eta}^{T} + \boldsymbol{\sigma}_{\varepsilon}^{2}\boldsymbol{I}$

Model Estimation

- If V is known the estimates are the best linear unbiased predictors (BLUPs) of the model
- If V is unknown the estimates of parameters and V are jointly using iterative methods
- In SAS's MIXED procedure, for example, modified Newton-Raphson method is adopted

Model Validity and Illustration

- Consider the hypothetical data in Fig. 1
- Define y_t as the response and x_t the timevarying exposure at the th day
- The proposed model has the following exposure-response form

 $y^{trend}_{t} = a_0 + a_1 x^{trend}_{t} + \varepsilon_t$

Occupational Health

where y^{trend}_{t} and x^{trend}_{t} are calculated according to HP decomposition

Results and comparison of model fit to the hypothetical data

	Response		
	Proposed model	Linear mixed-effects model	$Pr > \chi^2$
Exposure (a ₁)	1.86***	-0.61***	
AIC (smaller better)	-6.3	89.7	***

p***<0.001; p**<0.005; p*<0.1

Conclusions

- Exposure measures are common in many fields
- We present some ways to structural modelling nonlinear longitudinal data that can not easily be modeled by traditional statistical methods
- The proposed approach includes the deseasoning method as a special case which is often limited to a time series only.
- The developed model is computationally attractive as various software packages and routines exist to perform the final obtained mixed-effects model

Thank You For Your Attention

Finnish Institute of Occupational Health