

Variable selection and parameter tuning in high-dimensional prediction

Christoph Bernau and Anne-Laure Boulesteix

Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie Ludwig-Maximilians-Universität München

COMPSTAT 2010, 23. August 2010

Prediction based on high-dimensional data

X: a $n \times p$ matrix containing *n* observations of *p* variables, possibly with $n \ll p$.

Examples: microarray data, chemometric data, proteomic data, metabolomic data

X₁ ... X_p Pat 1 Pat n

Y: a response variable to be predicted.

Examples: responder/non-responder, diseased/healthy

Variable selection

- Many variables are irrelevant for the prediction problem.
- Variable selection is often useful as a preliminary step to model selection.
- Example:
 - 1. Rank the variables according the absolute value of the t-statistic.
 - 2. Select the $p^* = 100$ top-ranking variables and use them for model selection.

Boulesteix et al, 2008. Evaluating microarray-based classifiers. Cancer Informatics 6:77–97.

Variable selection and cross-validation

- In small sample settings, prediction error rates are often estimated through cross-validation (CV) or related approaches (repeated subsampling, bootstrap).
- It is then essential to consider variable selection as a part of model selection and perform it for each CV iteration successively.
- Otherwise the error rate may be considerably underestimated (Ambroise and McLahan 2002).

A.-L. Boulesteix, 2007. WilcoxCV: an R package for fast variable in cross-validation. Bioinformatics 23:1702–1704.

Parameter tuning

- Many classification methods involve a parameter that has to be tuned.
- Examples:
 - the number k of nearest neighbors in the kNN algorithm
 - the penalty λ in penalized regression
 - the number of components in PLS-DA
- It is common practice to choose the value of the parameter through internal cross-validation.

Internal cross-validation (CV)

- ► Error rates are estimated via external CV corresponding to partition S = ∪S_k.
- In each learning set $S \setminus S_k$:
 - ▶ Internal CV is performed with different values $\theta_1, \ldots, \theta_m$ of the parameter.
 - The value θ^* yielding the lowest error rate is selected.
 - θ^* is used for model selection based on $S \setminus S_k$.
- In internal CV, error rates are calculated, but the goal is only to determine θ*, not to estimate the error rates.

Research question

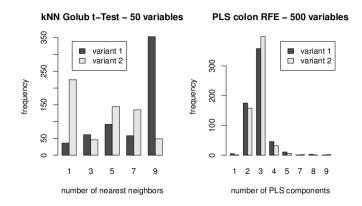
Should we perform variable selection before internal CV (V1) or repeat variable selection for each *internal* CV iteration (V2)?

- For external CV, variable selection must *always* be repeated for each iteration, but for internal CV the answer is not obvious.
- ► V2 is time consuming: for example, in LOO-CV, variable selection has to be performed n × (n − 1) times.

Our empirical study

- Two real data microarray sets
- ► Two classification methods: *kNN* and PLS+LDA
- Two variable selection methods: t-statistic and RFE
- ▶ 100 times 5-fold-CV for error estimation (external CV)
- ▶ 5 times 3-fold-CV for parameter tuning (internal CV)

Result 1: V2 selects more complex models than V1



Result 2: The error rates of V1 and V2 are similar

kNN		Golub data				colon cancer data			
		t-test		RFE		t-test		RFE	
		V1	V2	V1	V2	V1	V2	V1	V2
20 genes	mean	7.8%	7.4%	5.8%	6.1%	16.8%	18.8%	21.6%	23.3%
	std. dev.	2.6%	2.8%	2.5%	2.9%	1.9%	2.4%	3.3%	4.1%
50 genes	mean	5.9%	5.5%	1.9%	2.2%	16.4%	19.9%	16.9%	18.5%
	std. dev.	2.4%	2.7%	1.8%	1.7%	1.6%	1.9%	3.3%	3.0%

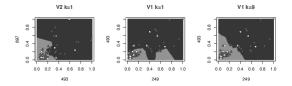
No clear difference between V1 and V2 in terms of error rate (variances are high!)

Why does V2 lead to more complex models?

- In V1 the variables are selected based on the external learning set S \ S_k.
- In V2 the variables are selected based the smaller learning set (S \ S_k) \ S_{kj}, on which the models are fit in internal CV.
- → In V2 the variables better discriminate the two classes in the learning set $(S \setminus S_k) \setminus S_{kj}$ than in V1.
- $\rightarrow\,$ In V2 complex models perform better.
- $\rightarrow\,$ In V1 complex models are fit to "bad variables" and thus lead to worse results.

Setup Results Discussion

Why does V2 lead to more complex models?

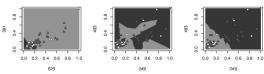


V1 k=9

V2 k=1

V1 k=1

V1 k=9



Bernau and Boulesteix

Variable selection and tuning

Further remarks

- V2 possibly leads to too complex models: since the internal learning sets are small, it is easier to find variables that separate the classes perfectly (and lead to comparatively good performance for complex models).
- A problem of V2 is that the parameter is chosen based on sets of variables but applied to another set of variables.
- A problem of V1 is that, for well-separated data sets, all parameter values yield an error rate of 0%
 → no tuning is performed in this case.

Conclusion and outlook

- No definitive answer in terms of error rate
- V2 is more intuitive but has some inconveniences and is time consuming.
- Outlook: Methods with intrinsic variable selection (such as lasso) are implicitly based on V2. Do they also lead to too complex models?