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Introduction

 Credit scoring is the set of predictive models
and their underlying techniques that aid financial
institutions in the granting of credits.

 While it does not identify “good” or “bad”
applications on an individual basis, it provides
statistical odds, or probability, that an applicant
with a given score turns to be “good” or “bad”.
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Introduction

 It is impossible to use scoring model effectively
without knowing how good it is.

 Usually one has several scoring models and
needs to select just one. The best one (according
to some criteria).

 Before measuring the quality of models one
should know (among other things):

 expected reject rate (expected cutoff)
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Measuring the quality

 Once the definition of good / bad client and client's score
is available, it is possible to evaluate the quality of this
score. If the score is an output of a predictive model
(scoring function), then we evaluate the quality of this
model. We will consider following widely used quality
indexes:

 Kolmogorov-Smirnov statistics (KS)
 Gini index
 C-statistics
 Lift.
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Measuring the quality

 We consider following markings:



 KS is defined as maximal absolute difference between CDFs of good
and bad clients:

 It takes values from 0 to 1. Value 0 corresponds to random model, 

value 1 corresponds to ideal model. 
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 Lorenz curve is defined
paramertrically:

 Gini index is defined as

 It takes values from 0 to 1. Value 0

corresponds to random model, value

1 corresponds to ideal model.
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where ( ) is kth vector value of  empirical distribution function of bad (good) clients

Gini index
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 C-statistics is defined as area over
Lorenz curve:

 It takes values from 0.5 to 1. Value

0.5 corresponds to random model,

value 1 corresponds to ideal model.

 Using ROC methodology it is equal
to AUROC (AUC).
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 It represents the likelihood that randomly selected good client
has higher score than randomly selected bad client, i.e.

C-statistics
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 It is possible to consider also absolute Lift ,
but we will focus on the cumulative form.

BadRate

aBadRate
aabsLift

)(
)(

10/20

 Another possible indicator of the quality of scoring model is
cumulative Lift, which says, how many times, at a given level of
rejection, is the scoring model better than random selection (random
model). More precisely, the ratio indicates the proportion of bad clients
with smaller score than a score a, , to the proportion of bad
clients in the whole population. Formally, it can be expressed by:
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 Usually it is computed using table with numbers of all and bad
clients in some score bands (deciles).

Lift

decile # cleints
absolutely cumulatively

# bad clients Bad rate abs. Lift # bad clients Bad rate cum. Lift

1 100 35 35.0% 3.50    35 35.0% 3.50    

2 100 16 16.0% 1.60    51 25.5% 2.55    

3 100 8 8.0% 0.80    59 19.7% 1.97    

4 100 8 8.0% 0.80    67 16.8% 1.68    

5 100 7 7.0% 0.70    74 14.8% 1.48    

6 100 6 6.0% 0.60    80 13.3% 1.33    

7 100 6 6.0% 0.60    86 12.3% 1.23    

8 100 5 5.0% 0.50    91 11.4% 1.14    

9 100 5 5.0% 0.50    96 10.7% 1.07    

10 100 4 4.0% 0.40    100 10.0% 1.00    

All 1000 100 10.0% -
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 It takes positive values. Cumulative form ends in value 1.

 Upper limit of Lift depends on .Bp
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Lift, QLift

 Lift can be expressed and computed by formula:

 In practice, Lift is computed corresponding to 10%,

20%, . . . , 100% of clients with the worst score. Hence

we define:

 Typical value of q is 0.1. Then we have
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Lift and QLift for ideal model
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 It is natural to ask how look Lift and QLift in case of ideal 
model. Hence we derived following formulas.

 QLift for ideal model:

 Lift for ideal model:

We can see that the upper limit of Lift 
and QLift is equal to       . 

Bp
1
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Lift Ratio (LR)

 Once we know form of QLift for ideal model, we can 
define Lift Ratio as analogy to Gini index.
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 It is obvious that it is global measure of
model's quality and that it takes values
from 0 to 1. Value 0 corresponds to
random model, value 1 match to ideal
model. Meaning of this index is quite
simple. The higher, the better. Important
feature is that Lift Ratio allows us to fairly
compare two models developed on
different data samples, which is not
possible with Lift.
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Rlift, IRL

 Since Lift Ratio compares areas under Lift function for actual and ideal

models, next concept is focused on comparison of Lift functions themselves. We

define Relative Lift function by
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 In connection to RLift we define

Integrated Relative Lift (IRL):

 It takes values from , for random model, to 1, for ideal model.

Following simulation study shows interesting connection to c-statistics.
2
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Example
We consider two scoring models with score distribution given in the table below.

We consider standard meaning of scores, i.e. higher score band means better

clients (the highest probability of default have clients with the lowest scores, i.e.

clients in score band 1).

 Gini indexes are equal for both models.

 From the Lorenz curves is evident, that the first model is stronger for higher score

bands and the second one is better for lower score bands.

 The same we can read from values of QLift.

score band # clients q

Scoring Model 1 Scoring Model 2

# bad clients

# cumul. 
bad 

clients
# cumul. 
bad rate QLift # bad clients

# cumul. 
bad 

clients
# cumul. 
bad rate QLift

1 100 0.1 20 20 20.0% 2.00    35 35 35.0% 3.50    
2 100 0.2 18 38 19.0% 1.90    16 51 25.5% 2.55    

3 100 0.3 17 55 18.3% 1.83    8 59 19.7% 1.97    

4 100 0.4 15 70 17.5% 1.75    8 67 16.8% 1.68    

5 100 0.5 12 82 16.4% 1.64    7 74 14.8% 1.48    

6 100 0.6 6 88 14.7% 1.47    6 80 13.3% 1.33    

7 100 0.7 4 92 13.1% 1.31    6 86 12.3% 1.23    

8 100 0.8 3 95 11.9% 1.19    5 91 11.4% 1.14    

9 100 0.9 3 98 10.9% 1.09    5 96 10.7% 1.07    

10 100 1.0 2 100 10.0% 1.00    4 100 10.0% 1.00    

All 1000 100 100

Gini = 0.42

Gini = 0.42
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Example
 Since Qlift is not defined for q=0, we extrapolated the value by 

)3.0()2.0(3)1.0(3)0( QLiftQLiftQLiftQLift

According to both Qlift and Rlift curves we can state that: 

 If expected reject rate is up to 40%, then model 2 is better.

 If expected reject rate is more than 40%, then model 1 is better. 
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Example

scoring 
model 1

scoring 
model 2

GINI 0.420 0.420

QLift(0.1) 2.000 3.500

LR 0.242 0.372

IRL 0.699 0.713

 Now, we consider indexes LR and IRL:

A

B

BA

A
LR

Using LR and IRL we can

state that model 2 is better

than model 1 although their

Gini coefficients are equal.
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Simulation study
We made a simulation with scores generated from normal distribution. Scores of bad

clients had mean equal to 0 and variance equal to 1. Scores of good clients had

mean and variance from 0.1 to 10 with step equal 0.1. Number of samples and

sample size was 1000, was equal to 0.1. IRL and c-statistics were computed for

each sample and each value of mean and variance of good client's scores. Finally,

means of IRL and c-statistics were computed.

Bp
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Conclusions

 It is necessary to judge scoring models according to
their strength in score range where cutoff is expected.
 The Gini and KS are not enough!
 Results concerning Lift can be used to obtain the best
available scoring model.
 Formula for Lift (QLift) for ideal model was derived. This
allowed to propose new advanced indexes – Lift Ratio and
Integrated Relative Lift.
 The simulation shows that IRL and c-statistics are

approximately equal in case that variances of good and

bad clients are equal. Furthermore it shows that they

significantly differ in another cases.


