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TP and SR matrices

Definition. A matrix is strictly totally positive (STP) if all its minors
are positive and it is totally positive (TP) if all its minors are nonnegative.

Definition. A matrix is called sign-regular (SR) if all k × k minors of
A have the same sign (which may depend on k) for all k. If, in addition, all
minors are nonzero, then it is called strictly sign-regular (SSR).

Variation diminishing properties of sign-regular matrices A: if A is
a nonsingular (n+ 1)× (n+ 1) matrix, then A is sign-regular if and only if
the number of changes of strict sign in the ordered sequence of components
of Ax is less than or equal to the number of changes of strict sign in the
ordered sequence (x0, . . . , xn), for all x = (x0, . . . , xn)T ∈ Rn+1.

Proposition. Let A be a nonsingular TP matrix. Then all the
eigenvalues of A are positive.

Nice properties of eigenvalues and eigenvectors of these matrices
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Effects of finite precision arithmetic on numerical algorithms:
• Roundoff errors.
• Data uncertainty.

Key concepts:
• Conditioning: it measures the sensibility of solutions to perturbations

of data.
• Growth factor: it measures the relative size of the intermediate

computed numbers with respect to the initial coefficients or to the final
solution.

• Backward error: if the computed solution is the exact solution of a
perturbated problem, it measures such perturbation.

• Forward error: it measures the distance between the exact solution and
the computed solution.
(Forward error) ≤ (Backward error) × (Condition)
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Growth factor

ρW
n (A) :=

maxi,j,k |a(k)
ij |

maxi,j |aij |
ρW

n associated with partial pivoting of an n×n matrix is bounded above
by 2n. ρW

n associated with complete pivoting of an n×n matrix is “usually”
bounded above by n.

Gauss elimination of a symmetric positive definite matrix (without row
or column exchanges) presents ρW

n = 1.

Amodio and Mazzia have introduced the growth factor

ρn(A) :=
maxk ‖A(k)‖∞
‖A‖∞

.

P. Amodio, F. Mazzia: A new approach to backward error analysis of
LU factorization, BIT 39 (1999) pp. 385–402.
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Condition number

κ(A) := ‖A‖∞ ‖A−1‖∞.

The Skeel condition number:

Cond(A) := ‖ |A−1| |A| ‖∞.

• Cond(A) ≤ κ(A)
• Cond(DA) = Cond(A) for any nonsingular diagonal matrix D

Accurate calculation: the relative error is bounded by O(ε), where ε
is the machine precision.

Admissible operations in algorithms with high
relative precision: products, quotients, sums of numbers of the same sign
and sums/subtractions of exact data:

The only forbidden operation is true subtraction, due to possible
cancellation in leading digits.
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Definition. A system of functions (u0, . . . , un) is totally positive (TP)
if all its collocation matrices are totally positive.

TP systems of functions are interesting due to the variation diminishing
properties of totally positive matrices

Definition. A TP basis (u0, . . . , un) is normalized totally positive
(NTP) if

n∑
i=0

ui(t) = 1, ∀t ∈ I.

Collocation matrices of NTP systems are TP and stochastic

The Bernstein basis is a normalized B-basis of the space of polynomials
of degree less than or equal to n on a compact interval [a, b]:

bi(t) :=
(n
i

)( t− a
b− a

)i(
b− t
b− a

)n−i

, i = 0, . . . , n.
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Optimal conditioning of Bernstein collocation matrices

DELGADO J., P. J.M.: “Optimal conditioning of Bernstein collocation
matrices” (2009). SIAM J. Matrix Anal. Appl. 31, 990-996..

DELGADO J., P. J.M.: “Running Relative Error for the Evaluation
of Polynomials” (2009). SIAM Journal on Scientific Computing 31 , pp.
3905-3921.

Theorem. Let (b0, . . . , bn) be the Bernstein basis, let (v0, . . . , vn)
be another NTP basis of Pn on [0, 1], let 0 ≤ t0 < t1 < · · · < tn ≤ 1 and
V := M

(
v0,...,vn

t0,...,tn

)
and B := M

(
b0,...,bn

t0,...,tn

)
. Then

κ∞(B) ≤ κ∞(V ).
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Cond(A) := ‖ |A−1| |A| ‖∞.

Theorem. Let (b0, . . . , bn) be the Bernstein basis, let (v0, . . . , vn)
be another TP basis of Pn on [0, 1], let 0 ≤ t0 < t1 < · · · < tn ≤ 1 and
V := M

(
v0,...,vn

t0,...,tn

)
and B := M

(
b0,...,bn

t0,...,tn

)
. Then

Cond(BT ) ≤ Cond(V T ).
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Definition. A real matrix is a P-matrix if all its principal minors are
positive

Some classes of P -matrices:

C1: Symmetric positive definite matrices.
A matrix is totally positive if all its minors are nonnegative.
C2: Nonsingular totally positive matrices.
A nonsingular matrix A with positive diagonal elements and nonpositive

off-diagonal elements is an M -matrix if A−1 ≥ 0.
C3: Nonsingular M -matrices.
C4: Matrices with positive diagonal elements which are strictly

diagonal dominant by rows.
C5: Matrices with positive row sums and all its off-diagonal elements

bounded above by the corresponding row means B-matrices.

Principal submatrices inherit these properties.
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Diagonal dominance
THEOREM. (Wilkinson) If A is a nonsingular matrix diagonally

dominant by rows or columns, then we can perform Gauss elimination
without row exchanges, the obtained matrices A(k)[k, . . . , n] preserve the
same propertyfor all k ∈ {1, . . . , n} and the growth factor is ρW

n (A) ≤ 2.
J. M. P.: Pivoting strategies leading to diagonal dominance by rows,

Numer. Math. 81 (1998), pp. 293–304.
THEOREM. If the LU decomposition of a nonsingular matrix A

satisfies that U is diagonally dominant by rows, then ρn(A) ≤ 1 and
Cond(U) ≤ 2n− 1.

J. M. P.: Scaled pivots and scaled partial pivoting strategies, SIAM J.
Numer. Anal. 41 (2003), pp. 1022-1031.

THEOREM. Let U = (uij)1≤i,j≤n be an upper triangular
matrix which is strictly diagonally dominant by rows and let p :=
min1≤i≤n{|uii|/

∑n
j=i |uij |}. Then Cond(U) ≤ 1/(2p− 1).

J. M. P.: Strict diagonal dominance and optimal bounds for the Skeel
condition number. To appear in SIAM J. Numer. Anal..
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M-matrices

Nonsingular M -matrices are matrices with nonpositive off-diagonal
elements and nonnegative inverse.

An M -matrix has a row such that the diagonal element is diagonally
dominant. The corresponding symmetric pivoting strategy is called
symmetric diagonally dominant (d. d.). The computational cost can
be performed O(n2).

Given Ax = b, let e := (1, . . . , 1)T and b1 := Ae. The symmetric
m.a.d.d. pivoting strategy produces the sequence of matrices

A = A(1) → Ã(1) → A(2) → Ã(2) → · · · → A(n) = U

and the corresponding sequence of vectors

b1 = b
(1)
1 → b̃1

(1)
→ b

(2)
1 → b̃1

(2)
→ · · · → b

(n)
1 = c.

The largest component of b(k)
1 [k, . . . , n] determines the kth pivot.

GE with any symmetric pivoting strategy, then all matrices A(t) are
also M -matrices.
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Theorem. Let A be an n × n (n ≥ 3) nonsingular M -matrix. Let
ρW

n be the growth factor associated with symmetric d.d. pivoting strategy.
Then

ρW
n < n− 1.

If we solve Ax = b by Gaussian elimination with this pivoting strategy
in finite precision floating point arithmetic, then the computed solution x̂
satisfies (A+ ∆A)x̂ = b with:

‖∆A‖∞ < 4(n− 1)γn‖A‖∞ +O(u2).

J. M. P.: A note on a paper by P. Amodio and F. Mazzia, BIT 41
(2001), pp. 640–643: ρn(A) = 1

Any symmetric d.d. pivoting strategy leads to an upper triangular
matrix U which is strictly diagonally dominant by rows. Then

Cond(U) ≤ (1/(2p− 1)).
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Accurate SVDs of diagonally dominant M-matrices

A rank revealing decomposition of a matrix A is a decomposition
A = XDY T , where X,Y are well conditioned and D is a diagonal matrix.
In that paper it is shown that if we can compute an accurate rank revealing
decomposition then we also can compute (with an algorithm presented there)
an accurate singular value decomposition. Obviously, an LDU -factorization
with L,U well conditioned, is a rank revealing decomposition.

J. Demmel, M. Gu, S. Eisenstat, I. Slapnicar, K. Veselic and Z. Drmac:
Computing the singular value decomposition with high relative accuracy,
Linear Algebra Appl. 299 (1999), 21-80.

They provided an algorithm for computing an accurate singular value
decomposition from a rank revealing decomposition has a complexity of
O(n3) elementary operations.
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J. Demmel and P.S. Koev: Accurate SVDs of weakly dominant M-
matrices, Numer. Math. 98 (2004), pp. 99-104.

They present a method to compute accurately an LDU -decomposition
of an n × n M -matrix diagonally dominant by rows. They use symmetric
complete pivoting and so they can guarantee that one of the obtained
triangular matrices is diagonally dominant and the other one has the off-
diagonal elements with absolute value bounded above by the diagonal
element

J.M. P.: LDU decompositions with L and U well conditioned”.
Electronic Transactions of Numerical Analysis 18 (2004), pp. 198-208.

The m.a.d.d. pivoting strategy is used and so both triangular matrices
are diagonally dominant.

Q. Ye: Computing Singular Values of Diagonally Dominant Matrices to
High Relative Accuracy. To appear in Math. Comp.
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Applications of bounds of the minimal eigenvalue
of an M-matrix in linear progamming

M. Garćıa-Esnaola and J.M. P., Sign consistent linear programing
problems. Optimization 58 (2009), 935–946.

A nonsingular matrix A with positive diagonal elements and nonpositive
off-diagonal elements is an M-matrix if A−1 ≥ 0.

R. Mathias and J. S. Pang, Error bounds for the linear complementarity
problem with a P -matrix. Linear Algebra Appl. 132 (1990), 123–136.

X. Chen and S. Xiang, Computation of error bounds for P-matrix linear
complementarity problems. Math. Program., Ser. A 106 (2006) 513–525.

X. Chen and S. Xiang, Perturbation bounds of P-matrix linear
complementarity problems. SIAM J. Opt. 18 (2007), 1250–1265.

.

15



The linear complementarity problem consists of finding vectors
x ∈ Rn satisfying

Mx+ q ≥ 0, x ≥ 0, xT (Mx+ q) = 0, (1)

where M is an n × n real matrix and q ∈ Rn. We denote this problem by
LCP(M, q) and its solutions by x∗.

We say that a matrix is an H-matrix if its comparison matrix is a
nonsingular M -matrix. An H-matrix with positive diagonals is a P -matrix.

If M in (1) is a P -matrix, then for any x ∈ Rn:

‖x− x∗‖∞ ≤ maxd∈[0,1]n‖(I −D +DM)−1‖∞‖r(x)‖∞,

where I is the n × n identity matrix, D the diagonal matrix D = diag(di)
with 0 ≤ di ≤ 1 for all i = 1, . . . , n, x∗ is the solution of the LCP(M, q) and
r(x) := min(x,Mx+q), where the min operator denotes the componentwise
minimum of two vectors.
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If M in (1) is an H-matrix with positive diagonals, then

maxd∈[0,1]n‖(I −D +DM)−1‖∞ ≤ ‖M̃−1max(Λ, I)‖∞, (2)

where M̃ is the comparison matrix of M , Λ is the diagonal part of M
(Λ := diag(mii)) and max(Λ, I) := diag(max{m11, 1}, . . . ,max{mnn, 1}).

M. Garćıa-Esnaola and J.M. P., Comparisons of error bounds for linear
complementarity problems of H-matrices. To appear in Linear Algebra Appl.

Theorem. Let us assume that M = (mij)1≤i,j≤n is an H-matrix
with positive diagonal entries. Let D̄ = diag(d̄1, . . . , d̄n), d̄i > 0, for
all i = 1, . . . , n, be a diagonal matrix such that MD̄ is strictly diagonally
dominant by rows. For any i = 1, . . . , n, let β̄i := miid̄i −

∑
j 6=i |mij |d̄j .

Then

maxd∈[0,1]n‖(I −D +DM)−1‖∞ ≤ max{maxi{d̄i}
mini{β̄i}

,
maxi{d̄i}
mini{d̄i}

}. (3)
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With a particular choice of D̄, then β̄i = 1 for all i in Theorem 2.1 and
so formula (2.2) becomes

maxd∈[0,1]n‖(I −D +DM)−1‖∞ ≤ max{maxi{d̄i},
maxi{d̄i}
mini{d̄i}

}. (4)

Example. Let k > 2 and

M =
(

2k −k + 1
−2k + 2 k

)
.

Then for that choice, we have d̄ = (1/2, 1)T and so, the bound (4) is 2. On
the other hand, M̃ = M ,

M̃−1 =
( k

4k−2
k−1
4k−2

k−1
2k−1

k
2k−1

)
, ‖M̃−1max(Λ, I)‖∞ =

3k2 − 2k
2k − 1

.

Therefore the bound (2) can be arbitrarily large.

M. Garćıa-Esnaola and J.M. P.,Error bounds for linear complementarity
problems of B-matrices. Applied Mathematics Letters 22, 1071-1075.
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Bounds for the minimal eigenvalue

e := (1, . . . , 1)T , r := Ae, rmax := max
i
{ri}, rmin := min

i
{ri}(> 0),

Theorem. Let A = (aij)1≤i,j≤n be a Z-matrix strictly diagonally
dominant by rows with positive diagonal entries. Then A has
a positive eigenvalue λmin with minimal absolute value among all its
eigenvalues, and satisfies:

(0 <)rmin ≤ λmin ≤ rmax.

19



Theorem. Let A = (aij)1≤i,j≤n be a Z-matrix strictly diagonally
dominant by rows with positive diagonal entries. Then:

1
rmax

≤ ‖A−1‖∞ ≤
1

rmin
. (1)

Moreover, for any matrix norm ‖ · ‖, one has (1/rmax) ≤ ‖A−1‖.
The upper bound of the right hand side of (1) was already provided by

Varah for any Z-matrix strictly diagonally dominant by rows in
J. M. Varah, A lower bound for the smallest singular value of a matrix,

Linear Algebra Appl. 11 (1975), 3–5
through r̃min instead of rmin:

r̃max := max
i
{r̃i}, r̃min := min

i
{r̃i}(> 0), r̃i := |aii|−

∑
j 6=i

|aij |, i = 1, . . . , n.

The lower bound of the right hand side of (1) does not hold for
strictly diagonally dominant matrices whose entries have arbitrary sign:

A =
(

2 1
−2 3

)
, A−1 =

(
3/8 −1/8
1/4 1/4

)
, ‖A−1‖∞ = 1

2 .
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Given a nonsingular n×n M -matrix A, there exists a positive diagonal
matrixD such thatAD is strictly diagonally dominant by rows (with positive
diagonal entries). Given the matrix AD, let rD := (AD)e, where is given in
(2.1), and given rD = (rD

1 , . . . , r
D
n )T then we can define

rD
max := max

i
{rD

i }, rD
min := min

i
{rD

i }(> 0).

R. S. Varga, On diagonal dominance arguments for bounding ‖A−1‖∞,
Linear Algebra Appl. 14 (1976), 211–217:

‖A−1‖∞ ≤
maxi{ di}
rD
min

.
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Theorem. Let A = (aij)1≤i,j≤n be a nonsingular M -matrix and
let D = diag(di) be a positive diagonal matrix such that AD is strictly
diagonally dominant by rows. Then A has a positive eigenvalue λmin with
minimal absolute value among all its eigenvalues, and satisfies:

(0 <)
rD
min

maxi{di}
≤ λmin ≤

rD
max

mini{di}
.

Besides, one has

mini{di}
rD
max

≤ ‖A−1‖∞ ≤
maxi{ di}
rD
min

.

J.M. P.: “Eigenvalue bounds for some classes of P-matrices”. Numerical
Linear Algebra with Applications 16 (2009), pp. 871-882.
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Minimal eigenvalue of TP matrices

Given i ∈ {1, . . . , n} let

Ji := {j | |j − i| is odd}, Ki := {j 6= i | |j − i| is even}.

Theorem. Let A be a nonsingular totally positive matrix, and let
λmin(> 0) be its minimal eigenvalue. Then:

λmin ≥ min
i
{aii −

∑
j∈Ji

aij}. (1)

Gerschgorin Theorem applied to any real matrix A = (aij)1≤i,j≤n

implies that
min

i
{aii −

∑
j 6=i

aij} ≤ min
i
{Reλi}. (2)
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The following nonsingular matrix A is totally positive:

A =

 12 7 1
0 6 1
0 3 8

 .

The eigenvalues of A are 12, 9 and 5. The bound given by (1) implies
that λmin ≥ 5 and so it cannot be improved. However, the lower bound
for λmin given by (2) is now λmin ≥ min{4, 5, 5} = 4.

J.M. P.: “Eigenvalue bounds for some classes of P-matrices”. Numerical
Linear Algebra with Applications 16 (2009), pp. 871-882.
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