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M otivation

Nowadays many robust methods are available to detect outliers in a multivariate,
possibly high-dimensional data set (e.g. robust covariance estimators, robust

PCA methods, .. .).

Once an observation is flagged as an outlier, it is often interesting to know which
variables contribute most to this outlyingness.
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M otivation

Nowadays many robust methods are available to detect outliers in a multivariate,
possibly high-dimensional data set (e.g. robust covariance estimators, robust
PCA methods, .. .).

Once an observation is flagged as an outlier, it is often interesting to know which
variables contribute most to this outlyingness.

Given observations x4, ..., x, with ; € R”. Given weights w; > 0 determining
the outlyingness of x; (e.g. based on robust Mahalanobis distances). Suppose
w; Is small (so x; is outlying). Let k& < p.

Goal: select k£ variables out of p that contribute most to the outlyingness of x;.
—— Variable selection for outliers.
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Overview

1. A simple idea.
(a) Outline.
(b) Problems.

2. Main proposal.
3. Two algorithms

(a) Moderate dimension.

(b) High dimension.
4. Example.
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1. A smpleidea

Denote x,, the weighted sample mean and and S, the weighted sample
covariance matrix.

A typical measure of the outlyingness of x; is its squared robust Mahalanobis
distance:

(iIZi — :Ew)tSw (wz — iw).

It is well known that this also equals the maximal standardized distance between
the projection of x; and the projection of the weighted sample mean:

(atwi — atziw)Q

. o t _1 L — —
(@ = @) Sy (@ = Bu) = | max, e

A simple idea is to check the coefficients of the direction a for which the
maximum on the right hand side is attained.
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1. A simpleidea: example
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a = (0.99,0.14) = X; contributes most to the outlyingness of observation 51.
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1. A simpleidea: problems

Note that

(a*x; — at:Ew)Q S (= — @w)
arg _ max _ tg ~ Na—1 (. ~ ‘
ack?lal=1  a'Sya [Sw™ (i — Zw) ||

This direction of maximal outlyingness can be computed very easily, but

@ Does not work in high dimensions (p>n).
@ Even in moderate dimensions the curse of dimensionality causes trouble.
@ Very dependent on the covariance structure.
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1. A simpleidea: problems
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2. Main proposal

Result

Let X\, = (wi(xh — ), ..., wa(xh — x%))".

Let y, = (n — 1) - with e; the ith canonical basis vector.

Then the direction of maximal outlyingness can be written as a normed LS
solution.

(a'w; —a'z.)” _ 0 with 6 = in || Xl
Ve emrial=t  a'Sea 6] = arg TR [[Yw — Aw

Proposal
Add a L; type penalty:

p
a(t) = with 6(t) = arg min [y, — X8| subjectto > [8;] < t.

[0)] pets 2

This yields a path of sparse directions of maximal outlyingness.
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2. Examplesrevisited
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2. Examplesrevisited

10 dimensions
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2. Examplesrevisited
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2. Examplesrevisited
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2. Examplesrevisited

10 dimensions
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2. Examplesrevisited
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2. Forward ver sus backward

LASSO is essentially a forward method: starting from scratch variables are added
to the model.

This might lead to difficulties in situations where variables only contribute to the
outlyingness in combination with other highly correlated variables.

In that case the simple backward approach might be better.
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Forward ver sus backward
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2. Forward ver sus backward
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2. Forward ver sus backward
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3. An algorithm in moderate dimensions

If p < n we can combine the forward and backward approach to select &k << p
variables contributing most to the outlyingness of ;.

1. Compute the full LASSO path.

2. Forj e{0,...,k}
Let S; be the set of the j variables taken first into the model by LASSO and
the k£ — 5 variables with largest coefficients in the unregularized solution.

3. Retain the set §; for which the robust Mahalanobis distance of x; is the
largest.

This turns out to work very well.
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3. An algorithm in high dimensions

If p > n a backward approach is impossible, so the previous algorithm cannot be
used.

An interesting extension of the LASSO is the elastic net (Zou, Hastie, 2005)
adding an additional L. type penalty. This can be useful e.g. in data with a lot of
correlation between the variables.

1. Compute the path

p
a(t) = with 6(t) = arg min [ly. — XwB|* + A;]|8]|° subjectto > 16,| <t.

6] pesy 2

Let S; be the set of k variables selected by this elastic net for )\;,
j=1,..., M.

2. Select the set §; for which the outlyingness of x; is the largest.

COMPSTAT2010 — p.20/26



4. Example

The breast cancer data set by West et al. (2001) contains p = 7129 gene

expression profiles for 49 breast cancer patients. There are 25 ER+ cases and 24
ER- cases. Here we only consider the ER+ cases.

A robust PCA algorithm reveals 4 outliers.
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4. Example
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4. Example

The breast cancer data set by West et al. (2001) contains p = 7129 gene
expression profiles for 49 breast cancer patients. There are 25 ER+ cases and 24
ER- cases. Here we only consider the ER+ cases.

A robust PCA algorithm reveals 4 outliers.

For each outlier we can search for the 10 genes that are contributing most to its
outlyingness.
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4. Example

The breast cancer data set by West et al. (2001) contains p = 7129 gene

expression profiles for 49 breast cancer patients. There are 25 ER+ cases and 24
ER- cases. Here we only consider the ER+ cases.

A robust PCA algorithm reveals 4 outliers.

For each outlier we can search for the 10 genes that are contributing most to its
outlyingness.

For 11, 12 and 19 we find genes that have no immediate biological interpretation.

For 17 it turns out that 6 out of 10 selected variables also appear in the list of 20
genes by West et al. most relevant for differentiating between ER+ and ER-.
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4. Example

The breast cancer data set by West et al. (2001) contains p = 7129 gene
expression profiles for 49 breast cancer patients. There are 25 ER+ cases and 24
ER- cases. Here we only consider the ER+ cases.

A robust PCA algorithm reveals 4 outliers.

For each outlier we can search for the 10 genes that are contributing most to its
outlyingness.

For 11, 12 and 19 we find genes that have no immediate biological interpretation.

For 17 it turns out that 6 out of 10 selected variables also appear in the list of 20
genes by West et al. most relevant for differentiating between ER+ and ER-.

This confirms West et al.: for 11, 12 and 19 array hybridization failed, whereas 17
IS a mislabeled observation.
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5. Conclusion

Summary:

@ Given a robust procedure that detects outliers. How to select variables most
relevant for the outlyingness of an outlier?

@ The direction of maximal outlyingness is a normed solution of a least
squares problem. By adding a LASSO type penalty a regularized path of
sparse directions can be defined.

@ In moderate dimensions:
@ Graphical display.
@ An automatic algorithm is proposed combining forward and backward
selection.

@ In high dimensions:
@ Elastic net.
@ Essentially forward.
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