Forecasting Complex Time Series:
Beanplot Time Series

Carlo Drago and Germana Scepi

Dipartimento di Matematica e Statistica
Università “Federico II” di Napoli
The Aim

Dealing with “complex” time series:

Visualizing (CLADAG 2009, GfKl 2010)
- Scalar Time Series
- Bean Plot Time Series

Synthesizing the global dynamics
- Beanplot Time Series
- Parametrization
- Attribute Time Series

Forecasting beanplot dynamics
- Attribute Time Series
- Forecasting Beanplot dynamics
Complex time series

“complex” time series: Financial Time Series

Higher Volatility

Structural Changes

Volatility Clustering

High Frequency data: the number of observations can be overwhelming with periodic (intra-day and intra-week) patterns

Irregularly spaced time series with random daily numbers of observations

Missing data

Visualizing, modeling and forecasting
Beanplot time series

A beanplot time series is an ordered sequence of beanplots over the time. Each temporal interval can be considered as a domain of values that is related to the chosen interval temporal (daily, week, and month).

The beanplot can be considered as a particular case of an interval-valued modal variable at the same time like boxplots and histograms (see Arroyo and Mate 2006).

In a beanplot variable we are taking into account at the same time the intervals of minimum and maximum and the density in form of a kernel nonparametric estimator (the density trace see Kampstra 2008).

\[
\hat{f}_{x,h} = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right)
\]
The beanplot time series show the complex structure of the underlying phenomenon by representing jointly the data location (the bean line) the size (the interval between minimum and maximum) and the shape (the density trace) over the time.

The bumps represent the values of maximum density showing important equilibrium values reached in a single temporal interval. Bumps can also show the intra-period patterns over the time and more in general the beanplot shape shows the intra-period dynamic.
We can consider as fundamental the bandwidth. With a higher bandwidth, the beanplot gives a smoothed visualization of the entire representation. So we need to choose carefully the parameter for the bandwidth (there are a lot of criteria, such as Sheather-Jones method, see Kampstra 2008). The bandwidth becomes an index of volatility at time t.

Dow Jones closing prices from the 1-11-2003 to the 30-6-2010
Attribute time series

For each time \(t \) we consider an internal model represented by each Beanplot

For each time \(t \) we can consider \(n \) descriptors of the beanplots

Each descriptor is represented over the time as an attribute time series (see Matè and Arroyo, 2008)

By the attribute time series we take into account the dynamics of the phenomenon. In this sense we can consider the correlation over the time of the beanplot features
Attribute time series (1)

At each time t from the kernel density estimate we consider the minimum, maximum, center and some coefficients from a polynomial model.

Data: A Beanplot time series $\{b_{Y_t}\} t = 1...T$

Result: A vector with n elements of \bar{x} (minima, maxima and a center) and \tilde{y} (the polynomial coefficients) given the bandwidth h

```
begin
  Choice of the $n$ points to parametrize
  Choice of the $h$ bandwidth to use
  for $t \in T$ do
    Parametrizing the $\bar{x}$ by extracting the minima, maxima and centers
    Parametrizing the $\tilde{y}$ by estimating a polynomial regression
  end
  Is the internal models not fitting data adequately?
  if the internal model is not adequately fitted then
    change the number of parameters $n$ or the bandwidth $h$
  end
end
```

Algorithm 1: Beanplot internal modelling: parametrization
Attribute time series (1)

At each time t from the kernel density estimate we consider the minimum, maximum, center and some coefficients from a polynomial model.

Fig. 4. A simulated beanplot time series: time parametrizations.
Attribute time series (2)

Alternative: at each time t from the kernel density estimate we can obtain n parameters as coordinates \bar{x} \bar{y}

Data: A Beanplot time series $\{b_{yt}\} t = 1...T$
Result: A vector with n elements of \bar{x} and \bar{y} coordinates given the bandwidth h

```
begin
  Choice of the $n$ points to parametrize
  Choice of the $h$ bandwidth to use
  for $t \in T$ do
    Parametrizing the $\bar{x}$
    Parametrizing the $\bar{y}$
  end
  Is the internal models not fitting data adequately?
  if the internal model is not adequately fitted then
    change the number of parameters $n$ or the bandwidth $h$
  end
end
```

Algorithm 2: Beanplot internal modelling: parametrization
Parametrization example: Dow Jones data

Beanplot time series for the closing prices

Attribute time series \((X; 25; 50; 75)\)

Attribute time series \((Y; 25; 50; 75)\)

The bandwidth chosen and used in the application is \(h=80\).
Start to consider the n attribute time series of the descriptors (e.g. $x_1, x_2, x_3, y_1, y_2, y_3$) of the beanplots for $t=1,\ldots,T$.

The attribute time series represent the external models (the dynamics over the time $t=1,\ldots,T$) where each beanplot can be considered as the internal model at time t.

Forecasting attribute time series.
Forecasting methods

- **Univariate Methods** (ARIMA, Smoothing Splines, Neural Networks, Hybrid Methods)
- **Multivariate Methods** (VAR, VECM)

Forecasts combination

Univariate methods when there is not an explicit relationship between the attributes with/or without autocorrelation

Multivariate methods if a correlation explicitly exists
Forecasting Procedure

Start to consider the n attribute time series of the descriptors of the beanplots for $t=1,...,T$. They represent the beanplot dynamics over the time.

Checking for the stationarity and the autocorrelation. Detecting the features of the dynamics (trends, cycles, seasonality). Analyzing the relationships between the attributes.

Forecasting them using a specific method.

Considering as Beanplot description the forecasts obtained from the Forecasting Method.

Diagnostics
Forecasting on attribute (coordinates) time series

Start to consider the n attribute time series of coordinates.

Checking the autocorrelation in the X and in the Y. Analyzing the relationships between the X and between Y. Analyzing the features of the dynamics (trends, cycles, seasonality).

Choose one or two methods of forecasting for X and Y.

Considering as Beanplot description the forecasts obtained from the Forecasting Method.

Diagnostics

We have tested our procedure on a lot of simulated data sets, with high number of observations and different starting models, we report only the results obtained on the real data set of Dow Jones.
Application

- Dow Jones data (1928-10-01\2010-7-30 – 20549 observations)

- Forecasting model period (1998-08-03\2008-08-03). Forecasting of the 2009 year and for the interval 2009-2010

- Forecasting methods used: VAR, Auto-Arima, Exponential Smoothing, Smoothing Splines.

- Forecasting combinations (Mean, Exponential Smoothing, Auto-Arima) ...

- Comparing the forecasts obtained with whose obtained by the “naïve” model

- Diagnostics (accuracy)
1) We compare the forecasting models with the naive model in the 2009 interval.

2) To compute the accuracy we consider the entire forecasting interval 2009-2010.
1) Attribute time series: X representing the location and the size dynamics.
1) Attribute time series: Y representing the shape dynamics
Augmented-Dickey-Fuller tests on the attribute time series (1)

1) X

Augmented Dickey-Fuller Test

data: as.vector(d$x1[420:474])
Dickey-Fuller = -1.2098, Lag order = 3, p-value = 0.893
alternative hypothesis: stationary

Augmented Dickey-Fuller Test

data: as.vector(d$x2[420:474])
Dickey-Fuller = -1.0624, Lag order = 3, p-value = 0.9203
alternative hypothesis: stationary

Augmented Dickey-Fuller Test

data: as.vector(d$x3[420:474])
Dickey-Fuller = -0.9409, Lag order = 3, p-value = 0.9393
alternative hypothesis: stationary

1) Y

Augmented Dickey-Fuller Test

data: as.vector(d$y1[420:474])
Dickey-Fuller = -4.1904, Lag order = 3, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(as.vector(d$y1[420:474])):
p-value smaller than printed p-value

Augmented Dickey-Fuller Test

data: as.vector(d$y2[420:474])
Dickey-Fuller = -3.5076, Lag order = 3, p-value = 0.04903
alternative hypothesis: stationary

Augmented Dickey-Fuller Test

data: as.vector(d$y3[420:474])
Dickey-Fuller = -3.4256, Lag order = 3, p-value = 0.06106
alternative hypothesis: stationary
Augmented-Dickey-Fuller tests on the attribute time series (2)

1) X

Augmented Dickey-Fuller Test

data: as.vector(d$x1[420:486])
Dickey-Fuller = -2.6031, Lag order = 4, p-value = 0.3303
alternative hypothesis: stationary

Augmented Dickey-Fuller Test

data: as.vector(d$x2[420:486])
Dickey-Fuller = -2.837, Lag order = 4, p-value = 0.2353
alternative hypothesis: stationary

Augmented Dickey-Fuller Test

data: as.vector(d$x3[420:486])
Dickey-Fuller = -3.0299, Lag order = 4, p-value = 0.1570
alternative hypothesis: stationary

1) Y

Augmented Dickey-Fuller Test

data: as.vector(d$y1[420:486])
Dickey-Fuller = -3.1761, Lag order = 4, p-value = 0.09909
alternative hypothesis: stationary

Augmented Dickey-Fuller Test

data: as.vector(d$y2[420:486])
Dickey-Fuller = -2.6417, Lag order = 4, p-value = 0.3146
alternative hypothesis: stationary

Augmented Dickey-Fuller Test

data: as.vector(d$y3[420:486])
Dickey-Fuller = -2.9976, Lag order = 4, p-value = 0.1701
alternative hypothesis: stationary
X- Attribute Time Series Phillips-Ouliaris Cointegration test

Phillips-Ouliaris Cointegration Test

Year 1998-2008

data: x
Phillips-Ouliaris demeaned = -66.6506, Truncation lag parameter = 0, p-value = 0.01

Warning message:
In po.test(x) : p-value smaller than printed p-value

Phillips-Ouliaris Cointegration Test

All observations

data: x
Phillips-Ouliaris demeaned = -476.8951, Truncation lag parameter = 4, p-value = 0.01

Warning message:
In po.test(x) : p-value smaller than printed p-value
X- Attribute Time Series Forecasting Model: Smoothing Splines

> fcast
 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
 68 10381.40 9714.439 11048.37 9361.369 11401.44

> ma[487:487]
[1] 10217.75

> ma[486:486]
[1] 9654.484

> fcast
 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
 68 10186.09 9434.691 10937.48 9036.927 11335.24

> me[487:487]
[1] 9971.102

> me[486:486]
[1] 9479.097

> fcast
 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
 68 9929.244 9051.217 10807.27 8586.417 11272.07

> mi[487:487]
[1] 9724.453

> mi[486:486]
[1] 9303.71
Forecasting Complex Time Series

X- Attribute Time Series Forecasting Model: Auto-Arima

<table>
<thead>
<tr>
<th>Point Forecast</th>
<th>Lo 80</th>
<th>Hi 80</th>
<th>Lo 95</th>
<th>Hi 95</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>9943.349</td>
<td>9344.497</td>
<td>10542.2</td>
<td>9027.483</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Point Forecast</th>
<th>Lo 80</th>
<th>Hi 80</th>
<th>Lo 95</th>
<th>Hi 95</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>9932.239</td>
<td>9282.696</td>
<td>10581.78</td>
<td>8938.849</td>
</tr>
</tbody>
</table>

```r
> ma[487:487]
[1] 10217.75
> ma[486:486]
[1] 9654.484
> me[487:487]
[1] 9971.102
> me[486:486]
[1] 9479.097
```

<table>
<thead>
<tr>
<th>Point Forecast</th>
<th>Lo 80</th>
<th>Hi 80</th>
<th>Lo 95</th>
<th>Hi 95</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>9303.71</td>
<td>8487.453</td>
<td>10119.97</td>
<td>8055.352</td>
</tr>
</tbody>
</table>

```r
> mi[487:487]
[1] 9724.453
> mi[486:486]
[1] 9303.71
```
Y- Attribute Time Series Forecasting Model (1): VAR

\[
\begin{array}{cccccc}
\text{mi} & \text{fcst} & \text{lower} & \text{upper} & \text{CI} \\
\text{me} & \text{fcst} & \text{lower} & \text{upper} & \text{CI} \\
\text{ma} & \text{fcst} & \text{lower} & \text{upper} & \text{CI}
\end{array}
\]

\[
\begin{array}{cccccc}
\text{mi.fcast} & 0.00130732 & -0.0002138551 & 0.002828495 & 0.001521175 \\
\text{me.fcast} & 0.001921221 & -0.000262222 & 0.004104663 & 0.002183443 \\
\text{ma.fcast} & 0.001723613 & -0.0003721843 & 0.003819411 & 0.002095797
\end{array}
\]

\[
\begin{array}{cccc}
\text{a[474:474,]} \\
\text{mi} & \text{me} & \text{ma} \\
474 & 0.001493228 & 0.001697756 & 0.0003257626
\end{array}
\]

\[
\begin{array}{cccc}
\text{a[473:473,]} \\
\text{mi} & \text{me} & \text{ma} \\
473 & 0.001662459 & 0.002125261 & 0.0003807355
\end{array}
\]
Y- Attribute Time Series Forecasting Model (2): Smoothing Splines

```r
> fcast
  Point Forecast   Lo 80    Hi 80    Lo 95    Hi 95
68  0.00056241531 -0.0006723961 0.001920702 -0.001358748 0.002607054
69  0.0005705273 -0.0007465263 0.001887581 -0.001443732 0.002584787
70  0.0005169014 -0.0008237607 0.001857563 -0.001533464 0.002567267
> ma[487:487]
[1] 0.0008703803
> ma[486:486]
[1] 0.001082339

> fcast
  Point Forecast   Lo 80    Hi 80    Lo 95    Hi 95
68  0.0005747982 -0.0007846799 0.001934276 -0.001504344 0.002653941
69  0.0005042496 -0.0008866913 0.001895191 -0.001623011 0.002631510
70  0.0004337011 -0.0009942359 0.001861638 -0.001750140 0.002617542
>
> me[487:487]
[1] 0.001508289
>
> me[486:486]
[1] 0.001163507

> fcast
  Point Forecast   Lo 80    Hi 80    Lo 95    Hi 95
68  0.001043531  6.708196e-06 0.002080354 -0.0005421527 0.002629215
69  0.001029806 -1.391073e-05 0.002073523 -0.0005664211 0.002626033
70  0.001018081 -3.525033e-05 0.002067413 -0.0005917916 0.002623954
>
> mi[487:487]
[1] 0.001308662
>
> mi[486:486]
[1] 0.002439116
```
Accuracy of the X - Forecasting Model: Smoothing Splines

<table>
<thead>
<tr>
<th></th>
<th>ME</th>
<th>RMSE</th>
<th>MAE</th>
<th>MPE</th>
<th>MAPE</th>
<th>MASE</th>
<th>ACF1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>-724.98359618</td>
<td>870.80098344</td>
<td>724.98359618</td>
<td>-7.00068426</td>
<td>7.00068426</td>
<td>1.66883151</td>
<td>-0.02703744</td>
</tr>
<tr>
<td></td>
<td>Theil's U</td>
<td>3.41615261</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mi</td>
<td>-687.14544074</td>
<td>845.05524562</td>
<td>687.14544074</td>
<td>-6.78688151</td>
<td>6.78688151</td>
<td>1.44464157</td>
<td>-0.05126588</td>
</tr>
<tr>
<td></td>
<td>Theil's U</td>
<td>2.73143851</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma</td>
<td>-670.10896403</td>
<td>807.55987717</td>
<td>670.10896403</td>
<td>-6.32769632</td>
<td>6.32769632</td>
<td>1.63633285</td>
<td>-0.01099898</td>
</tr>
<tr>
<td></td>
<td>Theil's U</td>
<td>3.82159500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Accuracy of the X - Forecasting Model: Auto-Arima

Me

<table>
<thead>
<tr>
<th>ME</th>
<th>RMSE</th>
<th>MAE</th>
<th>MPE</th>
<th>MAPE</th>
<th>MASE</th>
<th>ACF1</th>
<th>Theil's U</th>
</tr>
</thead>
<tbody>
<tr>
<td>-26.7652053</td>
<td>108.0789029</td>
<td>89.5969885</td>
<td>-0.2517275</td>
<td>0.8668322</td>
<td>0.2062423</td>
<td>-0.2051609</td>
<td>0.4178992</td>
</tr>
</tbody>
</table>

Mi

<table>
<thead>
<tr>
<th>ME</th>
<th>RMSE</th>
<th>MAE</th>
<th>MPE</th>
<th>MAPE</th>
<th>MASE</th>
<th>ACF1</th>
<th>Theil's U</th>
</tr>
</thead>
<tbody>
<tr>
<td>730.2562626</td>
<td>762.9834507</td>
<td>730.2562626</td>
<td>7.2321626</td>
<td>7.2321626</td>
<td>1.5352769</td>
<td>-0.2538137</td>
<td>2.4132294</td>
</tr>
</tbody>
</table>

Ma

<table>
<thead>
<tr>
<th>ME</th>
<th>RMSE</th>
<th>MAE</th>
<th>MPE</th>
<th>MAPE</th>
<th>MASE</th>
<th>ACF1</th>
<th>Theil's U</th>
</tr>
</thead>
<tbody>
<tr>
<td>444.42729015</td>
<td>460.89262417</td>
<td>444.42729015</td>
<td>4.22206220</td>
<td>4.22206220</td>
<td>1.08524287</td>
<td>-0.07776208</td>
<td>2.08105251</td>
</tr>
</tbody>
</table>
Accuracy of the Y - Forecasting Model: VAR

\[
\begin{array}{cccc}
\text{mi} & \text{fcst} & \text{lower} & \text{upper} & \text{CI} \\
[1,] & 0.001307320 & -0.0002138551 & 0.002828495 & 0.001521175 \\
[2,] & 0.001306081 & -0.0002335895 & 0.002845752 & 0.001539671 \\
[3,] & 0.001281202 & -0.0002590280 & 0.002821432 & 0.001540230 \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{me} & \text{fcst} & \text{lower} & \text{upper} & \text{CI} \\
[1,] & 0.001921221 & -0.0002622220 & 0.004104663 & 0.002183443 \\
[2,] & 0.001708049 & -0.0005095786 & 0.003925676 & 0.002217627 \\
[3,] & 0.001680837 & -0.0005372168 & 0.003898892 & 0.002218054 \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{ma} & \text{fcst} & \text{lower} & \text{upper} & \text{CI} \\
[1,] & 0.001723613 & -0.0003721843 & 0.003819411 & 0.002095797 \\
[2,] & 0.001677462 & -0.0004598880 & 0.003814812 & 0.002137350 \\
[3,] & 0.001644710 & -0.0004941241 & 0.003783543 & 0.002138834 \\
\end{array}
\]

> a[474:474,]

\[
\begin{array}{cccc}
\text{mi} & \text{me} & \text{ma} \\
474 & 0.001493228 & 0.001697756 & 0.0003257626 \\
\end{array}
\]
Forecasting Complex Time Series

Forecasting Combinations

Mi

```r
> fcastc
```

```r
> mi[487:487]
[1]  9724.453
```

```r
> mi[486:486]
[1]  9303.71
```

```r
> accuracy(fcastc, mi[487:491], test=1:length(mi[487:491]))

<table>
<thead>
<tr>
<th>ME</th>
<th>RMSE</th>
<th>MAE</th>
<th>MPE</th>
<th>MAPE</th>
<th>ACF1</th>
<th>Theil's U</th>
</tr>
</thead>
<tbody>
<tr>
<td>-11.1463398</td>
<td>306.9813503</td>
<td>218.0693273</td>
<td>-0.1394663</td>
<td>2.1775206</td>
<td>0.1160837</td>
<td>1.0390254</td>
</tr>
</tbody>
</table>
```

Ma

```r
> fcastc
[1]  10148.26  10370.51 10575.59 10773.98 10969.77
```

```r
> ma[487:487]
[1]  10217.75
```

```r
> ma[486:486]
[1]  9654.484
```

```r
> accuracy(fcastc, ma[487:491], test=1:length(ma[487:491]))

<table>
<thead>
<tr>
<th>ME</th>
<th>RMSE</th>
<th>MAE</th>
<th>MPE</th>
<th>MAPE</th>
<th>ACF1</th>
<th>Theil's U</th>
</tr>
</thead>
<tbody>
<tr>
<td>-37.79376842</td>
<td>309.80563169</td>
<td>221.01913411</td>
<td>-0.38996357</td>
<td>2.11724821</td>
<td>-0.05685781</td>
<td>0.95373980</td>
</tr>
</tbody>
</table>
```
Forecasting Complex Time Series

Forecasting Combinations

```r
> fcastc
[1]  9990.71 10293.34 10554.54 10795.24 11014.49
>
> me[487:487]
[1] 9971.102
>
> me[486:486]
[1] 9479.097
>
> accuracy(fcastc, me[487:491], test=1:length(me[487:491]))

                      ME    RMSE     MAE    MPE    MAPE     ACF1 Theil's U
-237.9950413 424.3254152 277.8830721 -2.3331762 2.7169712 0.1419578 1.4003025
```
Final Forecasts

Mi

> fcastc

Ma

> fcastc
[1] 10148.26 10370.51 10575.59 10773.98 10969.77

Me

> fcastc
[1] 9990.71 10293.34 10554.54 10795.24 11014.49

Point Forecast
0.001043531

Point Forecast
0.0006241531

Point Forecast
0.0005747982
Alternative parametrization of the polynomial model

Fanchart for variable mm1

Fanchart for variable mm2

Fanchart for variable mm3
Some developments

- Beanplot clustering of different beanplot time series and considering them in a Forecasting Model (see Drago Scepi 2010 presented at Gfkl\Cladag in Karlsruhe).

- Forecasts Combinations using different forecasting methods

- Multivariate case: Cointegration (Long run and short run)

- Beanplot TSFA

an internal parametrization, where it is crucial to fit adequately (or usefully) the data.
Some References