Using Auxiliary Information Under a Generic Sampling Design

Giancarlo Diana, Pier Francesco Perri

Department of Statistical Sciences, University of Padova
Department of Economics and Statistics, University of Calabria

19th International Conference on Computational Statistics
August 22-27, 2010 - Paris, France
1 Theoretical results
 - Auxiliary information
 - A class of estimators
 - The best estimator

2 Simulation results
 - Simulated π_i and π_{ij}
 - Accuracy of π_i and π_{ij}

3 Conclusions
Auxiliary information

- Auxiliary information plays a relevant role in sampling to obtain improved design and/or more efficient estimators

- When auxiliary information is used at the estimation stage, the ratio, product and regression methods are widely employed in many situations

- Researchers interested in the estimation of population parameters can find a huge variety of proposals in the literature. New estimators are usually proposed by modifying the structure of existing ones but...
 1. without reasonable motivations
 2. comparing them with estimators that are less efficient
 3. overlooking that, at best, they can be equivalent to the regression estimator

- This practice has inundated the literature with papers whose theoretical and practical relevance appears rather questionable
Auxiliary information

- Auxiliary information plays a relevant role in sampling to obtain improved design and/or more efficient estimators.
- When auxiliary information is used at the estimation stage, the ratio, product and regression methods are widely employed in many situations.
- Researchers interested in the estimation of population parameters can find a huge variety of proposals in the literature. New estimators are usually proposed by modifying the structure of existing ones but...
 1. without reasonable motivations
 2. comparing them with estimators that are less efficient
 3. overlooking that, at best, they can be equivalent to the regression estimator
- This practice has inundated the literature with papers whose theoretical and practical relevance appears rather questionable.
Auxiliary information

- Auxiliary information plays a relevant role in sampling to obtain improved design and/or more efficient estimators.
- When auxiliary information is used at the estimation stage, the \textit{ratio}, \textit{product} and \textit{regression} methods are widely employed in many situations.
- Researchers interested in the estimation of population parameters can find a huge variety of proposals in the literature. New estimators are usually proposed by modifying the structure of existing ones but...
 - without reasonable motivations
 - comparing them with estimators that are less efficient
 - overlooking that, at best, they can be equivalent to the regression estimator.
- This practice has inundated the literature with papers whose theoretical and practical relevance appears rather questionable.

Auxiliary information plays a relevant role in sampling to obtain improved design and/or more efficient estimators.
Auxiliary information

- Auxiliary information plays a relevant role in sampling to obtain improved design and/or more efficient estimators.
- When auxiliary information is used at the estimation stage, the *ratio*, *product* and *regression* methods are widely employed in many situations.
- Researchers interested in the estimation of population parameters can find a huge variety of proposals in the literature. New estimators are usually proposed by modifying the structure of existing ones but...
 1. without reasonable motivations
 2. comparing them with estimators that are less efficient
 3. overlooking that, at best, they can be equivalent to the regression estimator.
- This practice has inundated the literature with papers whose theoretical and practical relevance appears rather questionable.
Auxiliary information plays a relevant role in sampling to obtain improved design and/or more efficient estimators.

When auxiliary information is used at the estimation stage, the ratio, product and regression methods are widely employed in many situations.

Researchers interested in the estimation of population parameters can find a huge variety of proposals in the literature. New estimators are usually proposed by modifying the structure of existing ones but...

1. without reasonable motivations
2. comparing them with estimators that are less efficient
3. overlooking that, at best, they can be equivalent to the regression estimator

This practice has inundated the literature with papers whose theoretical and practical relevance appears rather questionable.
Auxiliary information

- Auxiliary information plays a relevant role in sampling to obtain improved design and/or more efficient estimators.

- When auxiliary information is used at the estimation stage, the *ratio*, *product* and *regression* methods are widely employed in many situations.

- Researchers interested in the estimation of population parameters can find a huge variety of proposals in the literature. New estimators are usually proposed by modifying the structure of existing ones but...
 1. without reasonable motivations
 2. comparing them with estimators that are less efficient
 3. overlooking that, at best, they can be equivalent to the regression estimator

- This practice has inundated the literature with papers whose theoretical and practical relevance appears rather questionable.
Auxiliary information plays a relevant role in sampling to obtain improved design and/or more efficient estimators.

When auxiliary information is used at the estimation stage, the *ratio*, *product* and *regression* methods are widely employed in many situations.

Researchers interested in the estimation of population parameters can find a huge variety of proposals in the literature. New estimators are usually proposed by modifying the structure of existing ones but...

1. without reasonable motivations
2. comparing them with estimators that are less efficient
3. overlooking that, at best, they can be equivalent to the regression estimator

This practice has inundated the literature with papers whose theoretical and practical relevance appears rather questionable.
Motivated by Bacanli and Kadilar (BK, 2008), we intend to show how the problem of finding the best estimator for the mean of a study variable can be treated under a generic sampling design by means of a very simple class of estimators.

- The class is not exhaustive and a more general discussion can be found, among others, in Diana and Perri (2007).
- The best estimator in the class is compared with BK estimators according to UPS, where inclusion probability are computed on the basis of a limited numbers of samples.
Motivated by Bacanli and Kadilar (BK, 2008), we intend to show how the problem of finding the best estimator for the mean of a study variable can be treated under a generic sampling design by means of a very simple class of estimators.

- The class is not exhaustive and a more general discussion can be found, among others, in Diana and Perri (2007).
- The best estimator in the class is compared with BK estimators according to UPS, where inclusion probability are computed on the basis of a limited numbers of samples.
Motivated by Bacanli and Kadilar (BK, 2008), we intend to show how the problem of finding the best estimator for the mean of a study variable can be treated under a generic sampling design by means of a very simple class of estimators.

- The class is not exhaustive and a more general discussion can be found, among others, in Diana and Perri (2007).
- The best estimator in the class is compared with BK estimators according to UPS, where inclusion probability are computed on the basis of a limited numbers of samples.
Notation

- $U = \{1, 2, \ldots, N\}$ a finite population
- Y a study variable with unknown mean $\bar{Y} = N^{-1} \sum_{i=1}^{N} y_i$
- X an auxiliary variable with $\bar{X} = N^{-1} \sum_{i=1}^{N} x_i$ known
- $p(s)$ a generic sampling design
- s a sample of size n from $p(s)$
- $\pi_i = \sum_{s \ni i} p(s)$ and $\pi_{ij} = \sum_{s \ni (i,j)} p(s)$ the first and second order inclusion probabilities
- \hat{Y}, \hat{X} two unbiased estimators of \bar{Y}, \bar{X} under $p(s)$
- τ a constant that may be related to population parameters
A class of estimators for \bar{Y}

We introduce a very simple class of estimators for \bar{Y} as

$$\hat{Y}_{pr} = \frac{\bar{Y}}{\hat{X} + \tau} \bar{X} + \tau$$

Expanding it in a Taylor’s series (δ-method) and retaining only terms up to the second degree, we get - for n sufficiently large - the first order approximation of the bias (B) and mean square error (MSE)

$$B(\hat{Y}_{pr}) = \frac{1}{\bar{X} + \tau} \left[\frac{\bar{Y} \text{Var}(\hat{X})}{\bar{X} + \tau} - \text{Cov}(\hat{X}, \hat{Y}) \right]$$

$$\text{MSE}(\hat{Y}_{pr}) = \text{Var}(\hat{Y}) + \frac{\bar{Y}^2 \text{Var}(\hat{X})}{(\bar{X} + \tau)^2} - \frac{2\bar{Y} \text{Cov}(\hat{X}, \hat{Y})}{\bar{X} + \tau}$$
Optimality of the class

Minimization of $MSE(\hat{Y}_{pr})$ is achieved for

$$\tau = \bar{X} \left[\frac{C(\hat{X})^2 - C(\hat{X}, \hat{Y})}{C(\hat{X}, \hat{Y})} \right]$$

with $C(\hat{X}) = \sqrt{Var(\hat{X})/\bar{X}}$, $C(\hat{X}, \hat{Y}) = Cov(\hat{X}, \hat{Y})/\bar{X}\bar{Y}$. For this optimum choice, we get

$$\min MSE(\hat{Y}_{pr}) = Var(\hat{Y})(1 - \rho_{\bar{X},\bar{Y}}^2)$$

which is the variance of the regression estimator

$$\hat{Y}_{lr} = \hat{Y} + \beta_{\hat{Y},\hat{X}}(\bar{X} - \hat{X})$$
Optimality of the class

Minimization of $MSE(\hat{Y}_{pr})$ is achieved for

$$\tau = \bar{X} \frac{C(\hat{X})^2 - C(\hat{X}, \hat{Y})}{C(\hat{X}, \hat{Y})}$$

with $C(\hat{X}) = \sqrt{Var(\hat{X})/\bar{X}}$, $C(\hat{X}, \hat{Y}) = Cov(\hat{X}, \hat{Y})/\bar{X}\bar{Y}$. For this optimum choice, we get

$$\text{minMSE}(\hat{Y}_{pr}) = \text{Var}(\hat{Y})(1 - \rho_{\hat{X},\hat{Y}}^2)$$

which is the variance of the regression estimator

$$\hat{Y}_{lr} = \hat{Y} + \beta_{\hat{Y},\hat{X}}(\bar{X} - \hat{X})$$

Optimality of \hat{Y}_{lr} is well-known in sampling theory but this aspect is very often overlooked. Why?
Efficiency considerations

- All the estimators belonging to the class can be only, at best, as efficient as \hat{Y}_{lr}. They are equivalent to it only when

$$\tau = \bar{X} \frac{C(\hat{X})^2 - C(\hat{X}, \hat{Y})}{C(\hat{X}, \hat{Y})}$$
Efficiency considerations

- All the estimators belonging to the class can be only, at best, as efficient as \hat{Y}_{lr}. They are equivalent to it only when

$$\tau = \bar{X} \frac{C(\hat{\bar{X}})^2 - C(\hat{\bar{X}}, \hat{Y})}{C(\hat{\bar{X}}, \hat{Y})}$$

- For instance, the following estimators (in SRSWOR) are not optimum in the class

<table>
<thead>
<tr>
<th>Authors</th>
<th>Estimators</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sisodia and Dwivedi (1981)</td>
<td>$\hat{Y}_{SD} = \hat{Y} \frac{\hat{X} + C_x}{\hat{X} + C_x}$</td>
<td>C_x</td>
</tr>
<tr>
<td>Singh and Kakran (1993)</td>
<td>$\hat{Y}_{SK} = \hat{Y} \frac{\hat{X} + \beta_2(x)}{\hat{X} + \beta_2(x)}$</td>
<td>$\beta_2(x)$</td>
</tr>
<tr>
<td>Upadhyaya and Singh (1999)</td>
<td>$\hat{Y}_{US1} = \hat{Y} \frac{\bar{X}/\beta_2(x) + C_x}{\bar{X}/\beta_2(x) + C_x}$</td>
<td>$C_x/\beta_2(x)$</td>
</tr>
<tr>
<td></td>
<td>$\hat{Y}_{US2} = \hat{Y} \frac{\bar{X}C_x + \beta_2(x)}{\bar{X}C_x + \beta_2(x)}$</td>
<td>$\beta_2(x)/C_x$</td>
</tr>
</tbody>
</table>
Bacanli-Kadilar estimators

Previous estimators have been considered by Bacanli and Kadilar (2008) under UPSWOR by replacing \(\hat{Y} \) and \(\hat{X} \) with Horvitz-Thompson estimator

\[
\hat{T}_{HT} = \frac{1}{N} \sum_{i \in s} \frac{t_i}{\pi_i}, \quad t = x, y
\]

with

\[
Var(\hat{T}_{HT}) = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{\pi_{ij} - \pi_i \pi_j}{\pi_i \pi_j} \right) t_i t_j, \quad t = x, y
\]
Bacanli-Kadilar estimators

Previous estimators have been considered by Bacanli and Kadilar (2008) under UPSWOR by replacing \hat{Y} and \hat{X} with Horvitz-Thompson estimator

$$\hat{T}_{HT} = \frac{1}{N} \sum_{i \in s} \frac{t_i}{\pi_i}, \quad t = x, y$$

with

$$\text{Var}(\hat{T}_{HT}) = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{\pi_{ij} - \pi_i \pi_j}{\pi_i \pi_j} \right) t_i t_j, \quad t = x, y$$

- The modified estimators have been analytically compared with the ratio estimator $\hat{Y}_r = (\hat{Y}_{HT}/\hat{X}_{HT})\hat{X}$
- Numerical comparisons have been performed by using exact expressions for π_i and π_{ij} inherited from the adaptive cluster sampling
Some questions

1. BK estimators belong to the proposed class but they are not optimum

2. Why to compare these estimators with $\hat{Y}_r = (\hat{Y}_{HT}/\hat{X}_{HT})\bar{X}$ and not with $\hat{Y}_{lr} = \hat{Y}_{HT} + \beta_{\hat{Y}_{HT},\hat{X}_{HT}} (\bar{X} - \hat{X}_{HT})$?

 It is well-known that $MSE(\hat{Y}_r) \geq MSE(\hat{Y}_{lr})$

 BK estimators can not outperform \hat{Y}_{lr}

3. The use of the exact expressions for π_i and π_{ij} from adaptive cluster sampling seems to be rather questionable
Some questions

1. BK estimators belong to the proposed class but they are not optimum.

2. Why to compare these estimators with $\hat{Y}_r = (\hat{Y}_{HT}/\hat{X}_{HT})\bar{X}$ and not with $\hat{Y}_{lr} = \hat{Y}_{HT} + \beta_{\hat{Y}_{HT},\hat{X}_{HT}} (\bar{X} - \hat{X}_{HT})$?

 It is well-known that $MSE(\hat{Y}_r) \geq MSE(\hat{Y}_{lr})$

 BK estimators can not outperform \hat{Y}_{lr}

3. The use of the exact expressions for π_i and π_{ij} from adaptive cluster sampling seems to be rather questionable.
Some questions

1. BK estimators belong to the proposed class but they are not optimum

2. Why to compare these estimators with $\hat{Y}_r = (\hat{Y}_{HT}/\hat{X}_{HT})\bar{X}$ and not with $\hat{Y}_{lr} = \hat{Y}_{HT} + \beta_{\hat{Y}_{HT},\hat{X}_{HT}}(\bar{X} - \hat{X}_{HT})$?

 It is well-known that $MSE(\hat{Y}_r) \geq MSE(\hat{Y}_{lr})$.

 BK estimators can not outperform \hat{Y}_{lr}

3. The use of the exact expressions for π_i and π_{ij} from adaptive cluster sampling seems to be rather questionable
Some questions

1. BK estimators belong to the proposed class but they are not optimum

2. Why to compare these estimators with $\hat{Y}_r = (\hat{Y}_{HT}/\hat{X}_{HT})\bar{X}$ and not with $\hat{Y}_{lr} = \hat{Y}_{HT} + \beta_{\hat{Y}_{HT},\hat{X}_{HT}} (\bar{X} - \hat{X}_{HT})$?

 It is well-known that $MSE(\hat{Y}_r) \geq MSE(\hat{Y}_{lr})$

 BK estimators can not outperform \hat{Y}_{lr}

3. The use of the exact expressions for π_i and π_{ij} from *adaptive cluster sampling* seems to be rather questionable

 Possible solution: $\hat{\pi}_i$ and $\hat{\pi}_{ij}$
The explicit derivation of π_i and π_{ij} becomes prohibitive when N and/or n increase: $\binom{N}{n}$ samples are to be investigated.

To overcome the problem, a solution can be adopted by simulating π_i and π_{ij}.

implement in R the procedure drawing the PPS samples by
\[
sample(U, n, replace=FALSE, prob=p)
\]
Computing π_i and π_{ij}

- The explicit derivation of π_i and π_{ij} becomes prohibitive when N and/or n increase: $\binom{N}{n}$ samples are to be investigated.
- To overcome the problem, a solution can be adopted by simulating π_i and π_{ij}

Algorithm

1. Each unit has a selection probability $p_i = z_i / \sum_{j=1}^{N} z_j$
2. $M < \binom{N}{n}$ samples WOR are independently drawn from U
3. M_i and M_{ij} are the number of samples that contain unit i and units (i,j)
4. Estimate π_i and π_{ij} with $\hat{\pi}_i = M_i / M$ and $\hat{\pi}_{ij} = M_{ij} / M$
5. Modify HT-estimator and its variance by using $\hat{\pi}_i$ and $\hat{\pi}_{ij}$

- Implement in R the procedure drawing the PPS samples by `sample(U,n,replace=FALSE,prob=p)`
Computing π_i and π_{ij}

- The explicit derivation of π_i and π_{ij} becomes prohibitive when N and/or n increase: $\binom{N}{n}$ samples are to be investigated.
- To overcome the problem, a solution can be adopted by simulating π_i and π_{ij}.

Algorithm

1. Each unit has a selection probability $p_i = \frac{z_i}{\sum_{j=1}^{N} z_j}$
2. $M < \binom{N}{n}$ samples WOR are independently drawn from U
3. M_i and M_{ij} are the number of samples that contain unit i and units (i,j)
4. Estimate π_i and π_{ij} with $\hat{\pi}_i = \frac{M_i}{M}$ and $\hat{\pi}_{ij} = \frac{M_{ij}}{M}$
5. Modify HT-estimator and its variance by using $\hat{\pi}_i$ and $\hat{\pi}_{ij}$

- Implement in R the procedure drawing the PPS samples by `sample(U,n,replace=FALSE,prob=p)`
Computing π_i and π_{ij}

- The explicit derivation of π_i and π_{ij} becomes prohibitive when N and/or n increase: $\binom{N}{n}$ samples are to be investigated.
- To overcome the problem, a solution can be adopted by simulating π_i and π_{ij}.

Algorithm

1. Each unit has a selection probability $p_i = \frac{z_i}{\sum_{j=1}^{N} z_j}$
2. $M < \binom{N}{n}$ samples WOR are independently drawn from U
3. M_i and M_{ij} are the number of samples that contain unit i and units (i,j)
4. Estimate π_i and π_{ij} with $\hat{\pi}_i = \frac{M_i}{M}$ and $\hat{\pi}_{ij} = \frac{M_{ij}}{M}$
5. Modify HT-estimator and its variance by using $\hat{\pi}_i$ and $\hat{\pi}_{ij}$

- Implement in R the procedure drawing the PPS samples by `sample(U, n, replace=FALSE, prob=p)`
Computing π_i and π_{ij}

- The explicit derivation of π_i and π_{ij} becomes prohibitive when N and/or n increase: \(\binom{N}{n} \) samples are to be investigated.
- To overcome the problem, a solution can be adopted by simulating π_i and π_{ij}

Algorithm

1. Each unit has a selection probability $p_i = \frac{z_i}{\sum_{j=1}^{N} z_j}$
2. $M < \binom{N}{n}$ samples WOR are independently drawn from U
3. M_i and M_{ij} are the number of samples that contain unit i and units (i,j)
4. Estimate π_i and π_{ij} with $\hat{\pi}_i = \frac{M_i}{M}$ and $\hat{\pi}_{ij} = \frac{M_{ij}}{M}$
5. Modify HT-estimator and its variance by using $\hat{\pi}_i$ and $\hat{\pi}_{ij}$

- Implement in R the procedure drawing the PPS samples by

  ```r
  sample(U, n, replace=FALSE, prob=p)
  ```
Computing π_i and π_{ij}

- The explicit derivation of π_i and π_{ij} becomes prohibitive when N and/or n increase: $\binom{N}{n}$ samples are to be investigated.
- To overcome the problem, a solution can be adopted by simulating π_i and π_{ij}.

Algorithm

1. Each unit has a selection probability $p_i = \frac{z_i}{\sum_{j=1}^{N} z_j}$
2. $M < \binom{N}{n}$ samples WOR are independently drawn from U
3. M_i and M_{ij} are the number of samples that contain unit i and units (i,j)
4. Estimate π_i and π_{ij} with $\hat{\pi}_i = M_i/M$ and $\hat{\pi}_{ij} = M_{ij}/M$
5. Modify HT-estimator and its variance by using $\hat{\pi}_i$ and $\hat{\pi}_{ij}$

- Implement in R the procedure drawing the PPS samples by `sample(U, n, replace=FALSE, prob=p)`
Computing π_i and π_{ij}

- The explicit derivation of π_i and π_{ij} becomes prohibitive when N and/or n increase: $\binom{N}{n}$ samples are to be investigated.
- To overcome the problem, a solution can be adopted by simulating π_i and π_{ij}.

Algorithm

1. Each unit has a selection probability $p_i = z_i / \sum_{j=1}^{N} z_j$
2. $M < \binom{N}{n}$ samples WOR are independently drawn from U
3. M_i and M_{ij} are the number of samples that contain unit i and units (i,j)
4. Estimate π_i and π_{ij} with $\hat{\pi}_i = M_i / M$ and $\hat{\pi}_{ij} = M_{ij} / M$
5. Modify HT-estimator and its variance by using $\hat{\pi}_i$ and $\hat{\pi}_{ij}$

- Implement in R the procedure drawing the PPS samples by `sample(U,n,replace=FALSE,prob=p)`
Computing \(\pi_i \) and \(\pi_{ij} \)

- The explicit derivation of \(\pi_i \) and \(\pi_{ij} \) becomes prohibitive when \(N \) and/or \(n \) increase: \(\binom{N}{n} \) samples are to be investigated.
- To overcome the problem, a solution can be adopted by simulating \(\pi_i \) and \(\pi_{ij} \).

Algorithm

1. each unit has a selection probability \(p_i = \frac{z_i}{\sum_{j=1}^{N} z_j} \)
2. \(M < \binom{N}{n} \) samples WOR are independently drawn from \(U \)
3. \(M_i \) and \(M_{ij} \) are the number of samples that contain unit \(i \) and units \((i,j)\)
4. estimate \(\pi_i \) and \(\pi_{ij} \) with \(\hat{\pi}_i = \frac{M_i}{M} \) and \(\hat{\pi}_{ij} = \frac{M_{ij}}{M} \)
5. modify HT-estimator and its variance by using \(\hat{\pi}_i \) and \(\hat{\pi}_{ij} \)

Implement in R the procedure drawing the PPS samples by:

```
sample(U,n,replace=FALSE,prob=p)
```
Computing π_i and π_{ij}

- The explicit derivation of π_i and π_{ij} becomes prohibitive when N and/or n increase: $\binom{N}{n}$ samples are to be investigated.
- To overcome the problem, a solution can be adopted by simulating π_i and π_{ij}.

Algorithm

1. Each unit has a selection probability $p_i = z_i / \sum_{j=1}^{N} z_j$
2. $M < \binom{N}{n}$ samples WOR are independently drawn from U
3. M_i and M_{ij} are the number of samples that contain unit i and units (i,j)
4. Estimate π_i and π_{ij} with $\hat{\pi}_i = M_i / M$ and $\hat{\pi}_{ij} = M_{ij} / M$
5. Modify HT-estimator and its variance by using $\hat{\pi}_i$ and $\hat{\pi}_{ij}$

- Implement in R the procedure drawing the PPS samples by `sample(U, n, replace=FALSE, prob=p)`
Numerical examples

- Numerical study on real data from Cochran (1977, p. 34): weekly expenditure on food (y), weekly family income (x) and number of persons per family (z)
- $N = 32$ and $n = 10, 15, 20$.
- $M = 100,000$ samples are considered instead of $\binom{32}{n}$.
- To evaluate the performance of $\hat{\pi}_i$ and $\hat{\pi}_{ij}$, we compare the efficiency of \hat{Y}_{lr} with that of BK estimators.
- Two situations are considered
 1. **EPS**: units are selected according to SRSWOR for which π_i and π_{ij} are known in advance: $\pi_i = n/N$ and $\pi_{ij} = \frac{n(n-1)}{N(N-1)}$.
 2. **UPS**: units are selected according to Midzuno scheme: $\pi_i = p_i + (1 - p_i) \frac{n-1}{N-1}$ and $\pi_{ij} = \frac{n-1}{N-1} \left[\frac{N-n}{N-2} (p_i + p_j) + \frac{n-2}{N-2} \right]$.
Numerical examples

- Numerical study on real data from Cochran (1977, p. 34): weekly expenditure on food \(y\), weekly family income \(x\) and number of persons per family \(z\)
- \(N = 32\) and \(n = 10, 15, 20\).
- \(M = 100\,000\) samples are considered instead of \(\binom{32}{n}\)
- To evaluate the performance of \(\hat{\pi}_i\) and \(\hat{\pi}_{ij}\), we compare the efficiency of \(\hat{Y}_{lr}\) with that of BK estimators
- Two situations are considered

1. **EPS**: units are selected according to SRSWOR for which \(\pi_i\) and \(\pi_{ij}\) are known in advance: \(\pi_i = n/N\) and \(\pi_{ij} = \frac{n(n-1)}{N(N-1)}\)
2. **UPS**: units are selected according to Midzuno scheme:
 \[
 \pi_i = p_i + (1 - p_i) \frac{n-1}{N-1} \quad \text{and} \quad \pi_{ij} = \frac{n-1}{N-1} \left[\frac{N-n}{N-2} (p_i + p_j) + \frac{n-2}{N-2} \right]
 \]
Numerical examples

- Numerical study on real data from Cochran (1977, p. 34): weekly expenditure on food (y), weekly family income (x) and number of persons per family (z)
- \(N = 32 \) and \(n = 10, 15, 20 \).
- \(M = 100,000 \) samples are considered instead of \(\binom{32}{n} \)
- To evaluate the performance of \(\hat{\pi}_i \) and \(\hat{\pi}_{ij} \), we compare the efficiency of \(\hat{Y}_{ir} \) with that of BK estimators
- Two situations are considered
 1. **EPS**: units are selected according to SRSWOR for which \(\pi_i \) and \(\pi_{ij} \) are known in advance: \(\pi_i = n/N \) and \(\pi_{ij} = \frac{n(n-1)}{N(N-1)} \)
 2. **UPS**: units are selected according to Midzuno scheme:
 \[
 \pi_i = p_i + (1 - p_i) \frac{n-1}{N-1} \quad \text{and} \quad \pi_{ij} = \frac{n-1}{N-1} \left[\frac{N-n}{N-2} (p_i + p_j) + \frac{n-2}{N-2} \right]
 \]
Numerical examples

- Numerical study on real data from Cochran (1977, p. 34): weekly expenditure on food (y), weekly family income (x) and number of persons per family (z)
- $N = 32$ and $n = 10, 15, 20.$
- $M = 100,000$ samples are considered instead of $\binom{32}{n}$
- To evaluate the performance of $\hat{\pi}_i$ and $\hat{\pi}_{ij}$, we compare the efficiency of \hat{Y}_{lr} with that of BK estimators
- Two situations are considered
 1. EPS: units are selected according to SRSWOR for which π_i and π_{ij} are known in advance: $\pi_i = n/N$ and $\pi_{ij} = \frac{n(n-1)}{N(N-1)}$
 2. UPS: units are selected according to Midzuno scheme:
 $\pi_i = p_i + (1 - p_i)\frac{n-1}{N-1}$ and $\pi_{ij} = \frac{n-1}{N-1} \left[\frac{N-n}{N-2} (p_i + p_j) + \frac{n-2}{N-2} \right]$
Numerical examples

- Numerical study on real data from Cochran (1977, p. 34): weekly expenditure on food \(y \), weekly family income \(x \) and number of persons per family \(z \)
- \(N = 32 \) and \(n = 10, 15, 20 \).
- \(M = 100,000 \) samples are considered instead of \(\binom{32}{n} \).
- To evaluate the performance of \(\hat{\pi}_i \) and \(\hat{\pi}_{ij} \), we compare the efficiency of \(\hat{Y}_{lr} \) with that of BK estimators.
- Two situations are considered
 1. **EPS**: units are selected according to SRSWOR for which \(\pi_i \) and \(\pi_{ij} \) are known in advance: \(\pi_i = n/N \) and \(\pi_{ij} = \frac{n(n-1)}{N(N-1)} \).
 2. **UPS**: units are selected according to Midzuno scheme: \(\pi_i = p_i + (1 - p_i) \frac{n-1}{N-1} \) and \(\pi_{ij} = \frac{n-1}{N-1} \left[\frac{N-n}{N-2} (p_i + p_j) + \frac{n-2}{N-2} \right] \).
Numerical examples

- Numerical study on real data from Cochran (1977, p. 34): weekly expenditure on food (y), weekly family income (x) and number of persons per family (z)
- $N = 32$ and $n = 10, 15, 20$.
- $M = 100\,000$ samples are considered instead of $\binom{32}{n}$.
- To evaluate the performance of $\hat{\pi}_i$ and $\hat{\pi}_{ij}$, we compare the efficiency of \hat{Y}_{lr} with that of BK estimators.
- Two situations are considered
 1. **EPS**: units are selected according to SRSWOR for which π_i and π_{ij} are known in advance: $\pi_i = n/N$ and $\pi_{ij} = \frac{n(n-1)}{N(N-1)}$.
 2. **UPS**: units are selected according to Midzuno scheme:
 \[\pi_i = p_i + (1 - p_i) \frac{n-1}{N-1} \quad \text{and} \quad \pi_{ij} = \frac{n-1}{N-1} \left[\frac{N-n}{N-2} (p_i + p_j) + \frac{n-2}{N-2} \right] \]
Numerical examples

- Numerical study on real data from Cochran (1977, p. 34): weekly expenditure on food \((y)\), weekly family income \((x)\) and number of persons per family \((z)\)
- \(N = 32\) and \(n = 10, 15, 20\).
- \(M = 100,000\) samples are considered instead of \(\binom{32}{n}\).
- To evaluate the performance of \(\hat{\pi}_i\) and \(\hat{\pi}_{ij}\), we compare the efficiency of \(\hat{\bar{Y}}_{lr}\) with that of BK estimators.
- Two situations are considered
 1. **EPS**: units are selected according to SRSWOR for which \(\pi_i\) and \(\pi_{ij}\) are known in advance: \(\pi_i = n/N\) and \(\pi_{ij} = \frac{n(n-1)}{N(N-1)}\).
 2. **UPS**: units are selected according to Midzuno scheme:
 \[
 \pi_i = p_i + (1 - p_i)\frac{n-1}{N-1} \quad \text{and} \quad \pi_{ij} = \frac{n-1}{N-1} \left[\frac{N-n}{N-2} (p_i + p_j) + \frac{n-2}{N-2} \right]
 \]
MSE under exact and simulated π_i and π_{ij} - SRSWOR

EPS: units are selected according to SRSWOR for which π_i and π_{ij} are known in advance: $\pi_i = n/N$ and $\pi_{ij} = \frac{n(n-1)}{N(N-1)}$

<table>
<thead>
<tr>
<th>n</th>
<th>\hat{Y}_r</th>
<th>\hat{Y}_{lr}</th>
<th>\hat{Y}_{SD}</th>
<th>\hat{Y}_{SK}</th>
<th>\hat{Y}_{US1}</th>
<th>\hat{Y}_{US2}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.148</td>
<td>3.14</td>
<td>3.145</td>
<td>3.147</td>
<td>3.145</td>
<td>3.162</td>
</tr>
<tr>
<td>20</td>
<td>1.669</td>
<td>1.663</td>
<td>1.669</td>
<td>1.670</td>
<td>1.669</td>
<td>1.678</td>
</tr>
<tr>
<td></td>
<td>1.669</td>
<td>1.667</td>
<td>1.668</td>
<td>1.669</td>
<td>1.669</td>
<td>1.678</td>
</tr>
</tbody>
</table>
MSE under exact and simulated π_i and π_{ij} - SRSWOR

- **EPS**: units are selected according to SRSWOR for which π_i and π_{ij} are known in advance: $\pi_i = n/N$ and $\pi_{ij} = \frac{n(n-1)}{N(N-1)}$

<table>
<thead>
<tr>
<th>n</th>
<th>\hat{Y}_r</th>
<th>\hat{Y}_{lr}</th>
<th>\hat{Y}_{SD}</th>
<th>\hat{Y}_{SK}</th>
<th>\hat{Y}_{US1}</th>
<th>\hat{Y}_{US2}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.148</td>
<td>3.14</td>
<td>3.145</td>
<td>3.147</td>
<td>3.145</td>
<td>3.162</td>
</tr>
<tr>
<td>20</td>
<td>1.669</td>
<td>1.663</td>
<td>1.669</td>
<td>1.670</td>
<td>1.669</td>
<td>1.678</td>
</tr>
<tr>
<td></td>
<td>1.669</td>
<td>1.667</td>
<td>1.668</td>
<td>1.669</td>
<td>1.669</td>
<td>1.678</td>
</tr>
</tbody>
</table>

♠ despite of the severe reduction of the cardinality of the sample space, no striking differences appear in the precision of the estimators

♠ small variations tend to disappear as $n \uparrow$
Theoretical results
Auxiliary information
A class of estimators
The best estimator
Simulation results
Simulated \(\pi_i \) and \(\pi_{ij} \)
Accuracy of \(\pi_i \) and \(\pi_{ij} \)
Conclusions

MSE under exact and simulated \(\pi_i \) and \(\pi_{ij} \) - SRSWOR

EPS: units are selected according to SRSWOR for which \(\pi_i \) and \(\pi_{ij} \) are known in advance:
\[
\pi_i = \frac{n}{N} \quad \text{and} \quad \pi_{ij} = \frac{n(n-1)}{N(N-1)}
\]

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\hat{Y}_r)</th>
<th>(\hat{Y}_{lr})</th>
<th>(\hat{Y}_{SD})</th>
<th>(\hat{Y}_{SK})</th>
<th>(\hat{Y}_{US1})</th>
<th>(\hat{Y}_{US2})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.148</td>
<td>3.14</td>
<td>3.145</td>
<td>3.147</td>
<td>3.145</td>
<td>3.162</td>
</tr>
<tr>
<td>20</td>
<td>1.669</td>
<td>1.663</td>
<td>1.669</td>
<td>1.670</td>
<td>1.669</td>
<td>1.678</td>
</tr>
<tr>
<td></td>
<td>1.669</td>
<td>1.667</td>
<td>1.668</td>
<td>1.669</td>
<td>1.669</td>
<td>1.678</td>
</tr>
</tbody>
</table>

♠ despite of the severe reduction of the cardinality of the sample space, no striking differences appear in the precision of the estimators

♠ small variations tend to disappear as \(n \uparrow \)
MSE under exact and simulated π_i and π_{ij} - Midzuno UPS

UPS: units are selected according to Midzuno scheme:

$$\pi_i = p_i + (1 - p_i) \frac{n-1}{N-1} \quad \text{and} \quad \pi_{ij} = \frac{n-1}{N-1} \left[\frac{N-n}{N-2} (p_i + p_j) + \frac{n-2}{N-2} \right]$$

<table>
<thead>
<tr>
<th>n</th>
<th>Method</th>
<th>\hat{Y}_r</th>
<th>\hat{Y}_{lr}</th>
<th>\hat{Y}_{SD}</th>
<th>\hat{Y}_{SK}</th>
<th>\hat{Y}_{US1}</th>
<th>\hat{Y}_{US2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Midzuno</td>
<td>5.978</td>
<td>5.498</td>
<td>5.976</td>
<td>5.988</td>
<td>5.980</td>
<td>6.064</td>
</tr>
<tr>
<td></td>
<td>Est. prob.</td>
<td>5.813</td>
<td>4.945</td>
<td>5.796</td>
<td>5.917</td>
<td>5.832</td>
<td>6.665</td>
</tr>
<tr>
<td>15</td>
<td>Midzuno</td>
<td>3.102</td>
<td>2.963</td>
<td>3.102</td>
<td>3.106</td>
<td>3.103</td>
<td>3.134</td>
</tr>
<tr>
<td></td>
<td>Est. prob.</td>
<td>2.877</td>
<td>2.065</td>
<td>2.870</td>
<td>2.925</td>
<td>2.886</td>
<td>3.267</td>
</tr>
<tr>
<td>20</td>
<td>Midzuno</td>
<td>1.649</td>
<td>1.606</td>
<td>1.649</td>
<td>1.650</td>
<td>1.649</td>
<td>1.663</td>
</tr>
<tr>
<td></td>
<td>Est. prob.</td>
<td>1.405</td>
<td>0.886</td>
<td>1.401</td>
<td>1.425</td>
<td>1.408</td>
<td>1.571</td>
</tr>
</tbody>
</table>
19th International Conference on Computational Statistics

Giancarlo Diana, Pier Francesco Perri

Theoretical results
Auxiliary information
A class of estimators
The best estimator

Simulation results
Simulated πi and πij
Accuracy of πi and πij

Conclusions

MSE under exact and simulated πi and πij - Midzuno UPS

UPS: units are selected according to Midzuno scheme:

\[\pi_i = p_i + (1 - p_i) \frac{n - 1}{N - 1} \text{ and } \pi_{ij} = \frac{n - 1}{N - 1} \left[\frac{N - n}{N - 2} (p_i + p_j) + \frac{n - 2}{N - 2} \right] \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>Method</th>
<th>(\hat{Y}_r)</th>
<th>(\hat{Y}_{lr})</th>
<th>(\hat{Y}_{SD})</th>
<th>(\hat{Y}_{SK})</th>
<th>(\hat{Y}_{US1})</th>
<th>(\hat{Y}_{US2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Midzuno</td>
<td>5.978</td>
<td>5.498</td>
<td>5.976</td>
<td>5.988</td>
<td>5.980</td>
<td>6.064</td>
</tr>
<tr>
<td></td>
<td>Est. prob.</td>
<td>5.813</td>
<td>4.945</td>
<td>5.796</td>
<td>5.917</td>
<td>5.832</td>
<td>6.665</td>
</tr>
<tr>
<td>15</td>
<td>Midzuno</td>
<td>3.102</td>
<td>2.963</td>
<td>3.102</td>
<td>3.106</td>
<td>3.103</td>
<td>3.134</td>
</tr>
<tr>
<td></td>
<td>Est. prob.</td>
<td>2.877</td>
<td>2.065</td>
<td>2.870</td>
<td>2.925</td>
<td>2.886</td>
<td>3.267</td>
</tr>
<tr>
<td>20</td>
<td>Midzuno</td>
<td>1.649</td>
<td>1.606</td>
<td>1.649</td>
<td>1.650</td>
<td>1.649</td>
<td>1.663</td>
</tr>
<tr>
<td></td>
<td>Est. prob.</td>
<td>1.405</td>
<td>0.886</td>
<td>1.401</td>
<td>1.425</td>
<td>1.408</td>
<td>1.571</td>
</tr>
</tbody>
</table>

♣ UPS with \(\hat{\pi}_i \) and \(\hat{\pi}_{ij} \) offers the best solution if compared with the Midzuno scheme (and SRSWOR)

♣ \(\hat{Y}_{lr} \) outperforms all the other estimators whatever \(n \)

♣ the gain in efficiency rises as \(n \uparrow \)
MSE under exact and simulated π_i and π_{ij} - Midzuno UPS

- **UPS**: units are selected according to Midzuno scheme:

$$\pi_i = p_i + (1 - p_i) \frac{n-1}{N-1} \quad \text{and} \quad \pi_{ij} = \frac{n-1}{N-1} \left[\frac{N-n}{N-2} (p_i + p_j) + \frac{n-2}{N-2} \right]$$

<table>
<thead>
<tr>
<th>n</th>
<th>Method</th>
<th>\hat{Y}_r</th>
<th>\hat{Y}_{lr}</th>
<th>\hat{Y}_{SD}</th>
<th>\hat{Y}_{SK}</th>
<th>\hat{Y}_{US1}</th>
<th>\hat{Y}_{US2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Midzuno</td>
<td>5.978</td>
<td>5.498</td>
<td>5.976</td>
<td>5.988</td>
<td>5.980</td>
<td>6.064</td>
</tr>
<tr>
<td></td>
<td>Est. prob.</td>
<td>5.813</td>
<td>4.945</td>
<td>5.796</td>
<td>5.917</td>
<td>5.832</td>
<td>6.665</td>
</tr>
<tr>
<td>15</td>
<td>Midzuno</td>
<td>3.102</td>
<td>2.963</td>
<td>3.102</td>
<td>3.106</td>
<td>3.103</td>
<td>3.134</td>
</tr>
<tr>
<td></td>
<td>Est. prob.</td>
<td>2.877</td>
<td>2.065</td>
<td>2.870</td>
<td>2.925</td>
<td>2.886</td>
<td>3.267</td>
</tr>
<tr>
<td>20</td>
<td>Midzuno</td>
<td>1.649</td>
<td>1.606</td>
<td>1.649</td>
<td>1.650</td>
<td>1.649</td>
<td>1.663</td>
</tr>
<tr>
<td></td>
<td>Est. prob.</td>
<td>1.405</td>
<td>0.886</td>
<td>1.401</td>
<td>1.425</td>
<td>1.408</td>
<td>1.571</td>
</tr>
</tbody>
</table>

- **UPS** with $\hat{\pi}_i$ and $\hat{\pi}_{ij}$ offers the best solution if compared with the Midzuno scheme (and SRSWOR)

- \hat{Y}_{lr} outperforms all the other estimators whatever n

- the gain in efficiency rises as $n \uparrow$
MSE under exact and simulated \(\pi_i \) and \(\pi_{ij} \) - Midzuno UPS

- **UPS**: units are selected according to Midzuno scheme:
 \[
 \pi_i = p_i + (1 - p_i) \frac{n-1}{N-1} \quad \text{and} \quad \pi_{ij} = \frac{n-1}{N-1} \left[\frac{N-n}{N-2} (p_i + p_j) + \frac{n-2}{N-2} \right]
 \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>Method</th>
<th>(\hat{Y}_r)</th>
<th>(\hat{Y}_{lr})</th>
<th>(\hat{Y}_{SD})</th>
<th>(\hat{Y}_{SK})</th>
<th>(\hat{Y}_{US1})</th>
<th>(\hat{Y}_{US2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Midzuno</td>
<td>5.978</td>
<td>5.498</td>
<td>5.976</td>
<td>5.988</td>
<td>5.980</td>
<td>6.064</td>
</tr>
<tr>
<td></td>
<td>Est. prob.</td>
<td>5.813</td>
<td>4.945</td>
<td>5.796</td>
<td>5.917</td>
<td>5.832</td>
<td>6.665</td>
</tr>
<tr>
<td>15</td>
<td>Midzuno</td>
<td>3.102</td>
<td>2.963</td>
<td>3.102</td>
<td>3.106</td>
<td>3.103</td>
<td>3.134</td>
</tr>
<tr>
<td></td>
<td>Est. prob.</td>
<td>2.877</td>
<td>2.065</td>
<td>2.870</td>
<td>2.925</td>
<td>2.886</td>
<td>3.267</td>
</tr>
<tr>
<td>20</td>
<td>Midzuno</td>
<td>1.649</td>
<td>1.606</td>
<td>1.649</td>
<td>1.650</td>
<td>1.649</td>
<td>1.663</td>
</tr>
<tr>
<td></td>
<td>Est. prob.</td>
<td>1.405</td>
<td>0.886</td>
<td>1.401</td>
<td>1.425</td>
<td>1.408</td>
<td>1.571</td>
</tr>
</tbody>
</table>

- **UPS** with \(\hat{\pi}_i \) and \(\hat{\pi}_{ij} \) offers the best solution if compared with the Midzuno scheme (and SRSWOR)
- \(\hat{Y}_{lr} \) outperforms all the other estimators whatever \(n \)
- the gain in efficiency rises as \(n \uparrow \)
Final remarks

- Numerical comparisons based on the first order MSE seem to be not affected by n
- When using auxiliary information at the estimation stage, the optimal estimator is the regression estimator. No improvement upon it can be achieved, at least up to the first order of approximation.
- The awareness of this aspect should avoid the proliferation of estimators that appear different each others but whose efficiency is known in advance.
- When using UPS, the cumbersome problem of the explicit derivation of π_i and π_{ij} can be reduced by their estimation over a limited number of samples.
Final remarks

- Numerical comparisons based on the first order MSE seem to be not affected by n

- When using auxiliary information at the estimation stage, the optimal estimator is the regression estimator. No improvement upon it can be achieved, at least up to the first order of approximation

- The awareness of this aspect should avoid the proliferation of estimators that appear different each others but whose efficiency is known in advance

- When using UPS, the cumbersome problem of the explicit derivation of π_i and π_{ij} can be reduced by their estimation over a limited number of samples
Final remarks

- Numerical comparisons based on the first order MSE seem to be not affected by n.
- When using auxiliary information at the estimation stage, the optimal estimator is the regression estimator. No improvement upon it can be achieved, at least up to the first order of approximation.
- The awareness of this aspect should avoid the proliferation of estimators that appear different each others but whose efficiency is known in advance.
- When using UPS, the cumbersome problem of the explicit derivation of π_i and π_{ij} can be reduced by their estimation over a limited number of samples.
Final remarks

- Numerical comparisons based on the first order MSE seem to be not affected by n

- When using auxiliary information at the estimation stage, the optimal estimator is the regression estimator. No improvement upon it can be achieved, at least up to the first order of approximation.

- The awareness of this aspect should avoid the proliferation of estimators that appear different each others but whose efficiency is known in advance.

- When using UPS, the cumbersome problem of the explicit derivation of π_i and π_{ij} can be reduced by their estimation over a limited number of samples.

Thanks for your attention
References

SINGH, H.P., KAKRAN, M.S.(1993): A modified ratio estimator using known coefficient of kurtosis of an auxiliary character. *Unpublished manuscript*

