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Basic idea of this talk

Idea: Having got 10,000 euros, we want to find an
optimal way of investing this money into a set (say N ) of
given shares in an optimal way as to maximize our
expected returns and minimize risks after a fixed
investment period.

This investment should be:

robust to estimation errors,
stable over time.
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Definitions

Let Pt = (P1t, . . . , PNt) be the closing price of N stocks on
time t.

Let yt = log(Pt/Pt−1) be 1-period returns of stocks. We
assume that the period return yt ∼ N(µ,Σ).

Let x = (x1, ..., xN ) denote the share of our wealth in
stocks (vector of weights), such that

∑N
i=1 xi = 1.

Let µp = x′µ and σ2p = x′
Σx the expected return and

variance of the portfolio, respectively.
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Mean-variance optimization procedure
In traditional mean variance optimization of a portfolio with
N assets, expected utility is maximized using the following
Lagrangian function

L = µ′x−
1

2
γx′

Σx− λ(x′
1− 1)

where
γ: is the parameter of relative risk aversion,
λ: is a Lagrange multiplier.

R1: (x′
1− 1) is the constraint requiring that the optimal

weight vector’s elements sum up to 1. Sometimes no
short selling constraint is imposed, that is xi ≥ 0, ∀i.

R2: µ and Σ are estimated by ML.

R3: Sensitivity to “outliers”.
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The problem

Traditional Mean-Variance optimization (Markowitz)
assumes known expected returns µ and covariance
matrix Σ

In practice, µ and Σ must be estimated and therefore
contain estimation error.

Outline
simulation to show the impact of estimation error on
optimal asset allocation.
new robust estimators of portfolio mean-variance
and comparison with other robust estimators
(basically MCD).
application to real data.
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Simulation experiment

N = 6, with true given parameters µ and Σ. T = 120,
10-years time series.

Uncontaminated series

yt ∼ N(µ,Σ)

Contaminated series

y∗

t = yt + θδt

where θ > 0 is the magnitude of the Additive Outlier and δt
is a stochastic contamination process.
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True, actual and estimated frontiers

Efficient frontier is obtained linking points on the
mean-variance plot. Different types of frontiers can be
drawn to compare estimators.

True efficient frontier

µp = x′µ σ2p = x′
Σx

Estimated frontier

µp = x̂′µ̂ σ2p = x̂′
Σ̂x̂

Actual frontier

µp = x̂′µ σ2p = x̂′
Σx̂

– p. 7/24



True, actual and estimated frontiers
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Uncontaminated data
True and actual frontiers with MLE.
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Contaminated data
True and actual frontiers with MLE.
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Assessing estimation errors
Quantitative measure of the estimation error using a given
estimator.

∆µ(γ) =

√

√

√

√

1

S

S
∑

i=1

[µp(γ)− µ̃sp(γ)]
2 ⇒ RMSE for µp

∆σ(γ) =

√

√

√

√

1

S

S
∑

i=1

[σp(γ)− σ̃sp(γ)]
2 ⇒ RMSE for σp

where s = 1, . . . , S; S=number of simulations; (µsp(γ), σ
s
p(γ))

is the target point on the true frontier (given λ) maximizing
the function µp − γσp.
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RMSE for MLE
RMSE for µ and for σ as γ increases. 1000 simulations.
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A new robust estimator

Target: to get a new robust version of the covariance matrix
where observations are weighted according to their degree
of outlyingness.

Method: distance of the Mahalanobis trajectories during the
forward search and a distribution percentile

d2t = (yt − µ̂)′Σ̂−1(yt − µ̂)

where µ̂ and Σ̂ are MLE obtained using T observations ⇒

sensitivity to extreme observations. Multiple outliers could
be masked.
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Forward search Mahalanobis distances

d∗2(t) = (yt − µ̂∗

m)′(Σ̂∗

m)
−1(yt − µ̂∗

m)

where µ̂∗

m and Σ̂
∗

m are the mean and covariance matrix
estimated on a m-sized subset with m < T

R1: observations belonging to the subset S(m)
∗ are selected

according to the forward search criteria.

R2: extreme multivariate observations are added to the
subset in the very last steps of the procedure.

R3: inclusion of extreme observations are pointed out by
sudden increase/descrease of forward search
trajectories. Influential observations show large values
of d∗2(t) during the forward search.
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Assessing the degree of outlyingness

Distribution of Mahalanobis distance when m = T (Riani,
Atkinson and Cerioli, 2009):

d∗2(t) ∼ [T/(T − 1)][N(m− 1)/(m−N)]FN,T−N

Target: to get weights wt ∈ [0, 1] for t = 1, . . . , T to compute
a weighted covariance matrix, such that the most outlying
observations are down-weighted. In practice, a series of
weighted returns are obtained, that is:

y⋆it = yitw
1/2
t .

The weighted covariance matrix will be simply the
covariance matrix based on the weighted observations,
which is denoted as W̃ .
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Weighted covariance matrix
The procedure:

measuring the distance between d∗2(t) and the quantile

±Fδ, as follows:

π
(t)
m =

{

0 if d∗2(t) ∈ [0, Fδ],

(d∗2(t) − Fδ)
2 if d∗2(t) > Fδ,

getting the overall distance of the t-th obervation

πt =

∑T
m=m0

π
(t)
m

T −m0
.

mapping the distance

wt = exp(−πt) ∈ [0, 1].
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Back to the example on simulated data
RMSE (µ and σ) for MCD, MLE and FWD with contaminated data. Single outliers.
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Back to the example on simulated data
RMSE (µ and σ) for MCD, MLE and FWD with contaminated data. Patches of outliers.
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US market stocks
Monthly returns of six stocks (Boeing, General Electric, General Motors, IBM, Procter and

Gamble, Walt Disney) of the US market with data from January 1973 to March 2009
included. Data come from Datastream.
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Mahalanobis distances trajectories
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Example - Efficient frontiers
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Gray line: MLE Markowitz frontier. Black dashed line: estimated frontier using MCD robust
estimator of the covariance matrix. Black solid line: estimated frontier through the forward
weighted covariance matrix.
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Example - Portfolio returns
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Portfolio performance using rolling windows in 2006. That is:

estimate weights (MLE, MCD and FWD) using data for t = 1, ..., T − 1 and get the
average portfolio return in T .

estimate weights (MLE, MCD and FWD) using data for t = 2, ..., T and get the
average portfolio return in T + 1.

...

estimate weights (MLE, MCD and FWD) using data for t = d, ..., T − d and get the
average portfolio return in T − d+ 1.
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Final remarks and open issues

robust estimator based on forward search performs well
with simulated data;

simulations with more general distributional
assumptions;

theoretical problems should be fixed (distribution of
Mahalanobis distances during the search);

new indexes to assess the superiority of robust
methods in real applications.
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