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Monotone Graphical MMCs

Multivariate Markov chains

Graphical models for Markov chains

The idea of graphical models is to represent the dependence
structure of a multivariate random vector by a graph, where the nodes
correspond to the variables and the edges between nodes describe

the association structure among the variables

We apply a graphical approach to analyze the dynamic
relationships among the marginal processes of

a multivariate Markov chain
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Multivariate Markov chains

Graphical models for Markov chains

We apply a graphical approach to analyze the dynamic
relationships among the marginal processes of

a multivariate Markov chain

Our graphical approach offers:

I a graphical representation that allows a direct and intuitive
understanding of the dynamic associations which can exist
among the processes of an MMC

I the possibility to investigate potential causal, monotone
dependence and contemporaneous relationships by testing
simple hypotheses on parameters
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Multivariate Markov chains

Multivariate Markov chain: basic notation

AV = {Aj(t) : t = 0, 1, 2..., j ∈ V} V = {1, ..., q}

I an univariate process Aj(t) takes values on Aj = {1, 2, ..., sj} j ∈ V

I for S ⊂ V, a marginal process is AS = {Aj(t) : t = 0, 1, 2..., j ∈ S}

I AV(t − 1) = {AV(r) : r ≤ t − 1} is the past history up to t − 1 of AV

I ×j∈VAj is the joint state space

AV is a first order multivariate Markov chain (with q components)

AV(t) ⊥⊥ AV(t − 2)|AV(t − 1) ∀t = 1, 2, ...
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Multivariate Markov chains

Dynamic relations among marginal processes

In general, different types of dependence relations are relevant when
the time dimension of the variables is taken into account:

I the effect of the past of a process on the present of another

↪→ Granger non-causality

↪→ monotone dependence coherent with a stochastic ordering

I the relation among processes at the same time

↪→ contemporaneous dependence
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Multivariate Markov chains

Dynamic relations among marginal processes

Dynamic relations

Given 2 disjoint marginal processes AT and AS
of an MMC AV

I i) Granger non-causality condition

AT is not Granger caused by AS with respect to AV

⇔ AT (t) ⊥⊥ AS(t − 1)|AV\S(t − 1) ∀t = 1, 2, ...

the past of AS does not contain additional information on the
present of AT , given the past of AV\S
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Multivariate Markov chains

Dynamic relations among marginal processes

Dynamic relations

Given 2 disjoint marginal processes AT and AS
of an MMC AV

I ii) Contemporaneous independence condition

AT and AS are contemporaneously conditionally independent
with respect to AV

⇔ AT (t) ⊥⊥ AS(t)|AV(t − 1) ∀t = 1, 2, ...

two marginal processes are independent at each time point,
given past information on all processes of the chain
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Multi edge graphs

ME graphs

a Multi Edge graph
encodes the G-noncausal and contemporaneous independence

relations among the marginal processes of an MMC

in an ME graph G = (V, E), the nodes in the set V represent the
univariate components of an MMC and directed and bi-directed

edges in the set E describe the dependence structure among them
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Multi edge graphs

In a multi edge graph
I there exists a one-to-one correspondence between the nodes

j ∈ V and the univariate processes Aj, j ∈ V, of the MMC AV

I any pair of nodes, i, k ∈ V, may be joined by directed edges
i→ k, i← k, and by bi-directed edge i↔ k

I each pair of distinct nodes can be connected by up to all the 3
types of edges

I sets of G-noncausality and contemporaneous independence
restrictions are associated with missing directed and bi-directed
edges, respectively

I Example V = {1, 2, 3} E = {2→ 1, 2→ 3, 1↔ 2}

22 3311
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Multi edge graphs

Graph terminology

♦ if there is i→ j, then i is a parent of j,
Pa(S) = {i ∈ V : i→ j ∈ E , j ∈ S} is the set of parents of S ⊂ V

♦ if there is i↔ j, the nodes i, j are neighbors,

Nb(S) = {i ∈ V : i↔ j ∈ E , j ∈ S} is the set of neighbors of S ⊂ V

22 3311

X in the example: Pa(1) = {1, 2}, Pa(2) = {2}, Pa(3) = {2, 3};
Nb(1) = {1, 2}, Nb(2) = {1, 2}, Nb(3) = {3}
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Multi edge graphs

Graphical models

Graphical models associate missing edges of a graph with some
conditional independence restrictions imposed on a multivariate

probability distribution

In the multi edge graphical models for MMC
missing edges have a direct significance in terms of

G-noncausal and contemporaneous independence restrictions
imposed on the transition probabilities
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Multi edge graphs

Markov properties of ME graphs

Graphical MMC

An MMC is graphical with respect to an ME graph G = (V, E) iff its
transition probabilities satisfy the following conditional

independencies for all t = 1, 2, ...

C1) AS(t) ⊥⊥ AV\Pa(S)(t − 1)|APa(S)(t − 1) ∀S ∈ P(V)

C2) AS(t) ⊥⊥ AV\Nb(S)(t)|AV(t − 1) ∀S ∈ P(V)
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Multi edge graphs

Graphical MMC

An MMC is graphical with respect to an ME graph G = (V, E) iff its
transition probabilities satisfy the following conditional

independencies for all t = 1, 2, ...
C1) AS(t) ⊥⊥ AV\Pa(S)(t − 1)|APa(S)(t − 1) ∀S ∈ P(V)
C2) AS(t) ⊥⊥ AV\Nb(S)(t)|AV(t − 1) ∀S ∈ P(V)

Condition C1)
I the past of AV\Pa(S) is not informative for the present of AS as

long as we know the past of Pa(S)
I is a G-noncausality condition
I AV\Pa(S) 9 AS , i.e. AS is not G-caused by AV\Pa(S) wrt AV

I corresponds to missing directed edges
I refers to processes at two consecutive time-points
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Multi edge graphs

Graphical MMC

An MMC is graphical with respect to an ME graph G = (V, E) iff its
transition probabilities satisfy the following conditional

independencies for all t = 1, 2, ...
C1) AS(t) ⊥⊥ AV\Pa(S)(t − 1)|APa(S)(t − 1) ∀S ∈ P(V)
C2) AS(t) ⊥⊥ AV\Nb(S)(t)|AV(t − 1) ∀S ∈ P(V)

Condition C2)
I AS and AV\Nb(S) are independent of each other at any point in

time as long as we know the past of AV

I is a contemporaneous independence condition
I AS = AV\Nb(S), i.e. AS and AV\Nb(S) are contemporaneously

independent wrt AV

I corresponds to missing bi-directed edges
I refers to processes at the same time-points



Monotone Graphical MMCs

Multi edge graphs

Example: Reading G-noncausal and CI restrictions C1) and C2) off
an ME graph

22 3311

I the G-noncausality conditions associated to the missing directed
edges in the graph are:

A{1,3} 9 A2; A1 9 A{2,3}; A3 9 A{1,2}

I the contemporaneous independence condition associated to the
missing bi-directed edges in the graph is:

A3 = A{1,2}
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Multi edge graphs

Monotone dependence

Given 2 variables Aj and Ak

with ordered categories in the sets Aj and Ak

if a monotone dependence of Aj on Ak exists:

the conditional distributions of Aj given Ak

become stochastically greater in a coherent way with the order of the
categories of Ak in Ak
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Monotone dependence

Given 2 variables Aj and Ak

with ordered categories in the sets Aj and Ak

if a monotone dependence of Aj on Ak exists:

the conditional distributions of Aj given Ak

become stochastically greater in a coherent way with the order of the
categories of Ak in Ak

Stochastic orderings
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Multi edge graphs

Monotone dependence

Given 2 variables Aj and Ak

with ordered categories in the sets Aj and Ak

if a monotone dependence of Aj on Ak exists:

the conditional distributions of Aj given Ak

become stochastically greater in a coherent way with the order of the
categories of Ak in Ak

Stochastic orderings

Simple
(Aj|Ak = k) �s (Aj|Ak = k + 1) ! P [Aj ≤ j|Ak = k] ≥ P [Aj ≤ j|Ak = k + 1]
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Multi edge graphs

Monotone dependence

Given 2 variables Aj and Ak

with ordered categories in the sets Aj and Ak

if a monotone dependence of Aj on Ak exists:

the conditional distributions of Aj given Ak

become stochastically greater in a coherent way with the order of the
categories of Ak in Ak

Stochastic orderings

Uniform
(Aj|Ak = k) �u (Aj|Ak = k + 1) ! P [Aj > j|Aj ≥ j,Ak = k] ≤ P [Aj > j|Aj ≥ j,Ak = k + 1]
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Multi edge graphs

Monotone dependence

Given 2 variables Aj and Ak

with ordered categories in the sets Aj and Ak

if a monotone dependence of Aj on Ak exists:

the conditional distributions of Aj given Ak

become stochastically greater in a coherent way with the order of the
categories of Ak in Ak

Stochastic orderings

Likelihood ratio
(Aj|Ak = k) �lr (Aj|Ak = k + 1) ! P[Aj=j|Ak=k]

P[Aj=j+1|Ak=k] ≤
P[Aj=j|Ak=k+1]

P[Aj=j+1|Ak=k+1]
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Multi edge graphs

Monotone Graphical MMC

A graphical MMC is monotone with respect to an ME graph
G = (V, E) iff there exists at least one Aj, j ⊆ V, whose dependence

on its parents is monotone

I the dependence of Aj(t) on Ak(t − 1), ∀k ∈ Pa(j), is monotone ∀t

I the distributions of Aj(t) conditioned by APa(j)(t − 1) can be partially
ordered coherently with the orderings on the sets Ak, k ∈ Pa(j)
according to a stochastic dominance criterion (simple, uniform, LR)

I NB. the dominance criterion concerns only the marginal processes in an
MMC and does not refer to their joint behavior
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Parametric models for transition probabilities

A multivariate logistic model for transition probabilities

G-noncausality, CI and monotone dependence conditions are
equivalent to equality and inequality constraints on interactions

of a multivariate logistic model
which parameterize the transition probabilities

I I = ×j∈VAj is the joint state space

I i = (i1, i2, ..., iq)′ ∈ I is a state

I for a pair of states i ∈ I, i’ ∈ I, p(i |i’) are the joint transition
probabilities
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Parametric models for transition probabilities

A multivariate logistic model for transition probabilities

Given i’ ∈ I,

for p(i |i’), i ∈ I, we adopt a Gloneck-McCullagh multivariate logistic
model whose marginal interaction parameters

ηP(iP|i’) P ⊆ V,P 6= ∅, iP ∈ ×j∈PAj

are contrasts of logarithms of marginal transition probabilities p(iP |i’)

I G-noncausality and CI relations correspond to equality
constraints on the ηP(iP|i′) while hypotheses of monotone
dependence impose inequality constraints on ηP(iP|i’)
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Parametric models for transition probabilities

Testing equality and inequality constraints

Testing dynamic relations

For an MMC with p(i |i’)> 0 it holds that, for iP ∈ ×j∈PAj

I G-noncausality condition C1) ⇔ ηP(iP|i′) = ηP(iP|i′Pa(P)), P ⊆ V,P 6= ∅

I CI condition C2) ⇔ ηP(iP|i’) = 0 P is not a bi-connected set



Monotone Graphical MMCs

Parametric models for transition probabilities

Testing equality and inequality constraints

Testing dynamic relations

For an MMC with p(i |i’)> 0 it holds that, for iP ∈ ×j∈PAj

I G-noncausality condition C1) ⇔ ηP(iP|i′) = ηP(iP|i′Pa(P)), P ⊆ V,P 6= ∅

I CI condition C2) ⇔ ηP(iP|i’) = 0 P is not a bi-connected set

I the requirements C1),C2) for a graphical MMC correspond to
simple linear constraints on the ηP(iP|i’) parameters

I testing the hypotheses C1),C2) is a standard parametric problem

I the restrictions under C1),C2) can be rewritten as C ln(Mπ) = 0
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Parametric models for transition probabilities

Testing equality and inequality constraints

Testing dynamic relations

For an MMC with p(i |i’)> 0 it holds that, for iP ∈ ×j∈PAj
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Parametric models for transition probabilities

Testing equality and inequality constraints

Testing monotone dependence

For a graphical MMC with p(i |i’)> 0 it holds that

I positive (negative) monotone dependence

⇔

ηj(ij|i′Pa(j)\k, i′k) ≤ (≥) ηj(ij|i′Pa(j)\k, i′k + 1),

k ∈ Pa(j), j ∈M,M⊆ V,M 6= ∅
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Parametric models for transition probabilities

Testing equality and inequality constraints

Testing monotone dependence

For a graphical MMC with p(i |i’)> 0 it holds that

I positive (negative) monotone dependence

⇔

ηj(ij|i′Pa(j)\k, i′k) ≤ (≥) ηj(ij|i′Pa(j)\k, i′k + 1),

k ∈ Pa(j), j ∈M,M⊆ V,M 6= ∅

I The simple, uniform and likelihood ratio orderings are obtained
when the logits ηj(ij|i′Pa(j)) subjected to inequality constraints are
of global, continuation and local types

I the inequality constraints for monotone dependence have a
compact expression given by K ln(Mπ) ≥ 0
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Parametric models for transition probabilities

Testing equality and inequality constraints

Testing monotone dependence

For a graphical MMC with p(i |i’)> 0 it holds that

I positive (negative) monotone dependence

⇔

ηj(ij|i′Pa(j)\k, i′k) ≤ (≥) ηj(ij|i′Pa(j)\k, i′k + 1),

k ∈ Pa(j), j ∈M,M⊆ V,M 6= ∅

I The simple, uniform and likelihood ratio orderings are obtained
when the logits ηj(ij|i′Pa(j)) subjected to inequality constraints are
of global, continuation and local types

I the inequality constraints for monotone dependence have a
compact expression given by K ln(Mπ) ≥ 0
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Parametric models for transition probabilities

Testing equality and inequality constraints

Likelihood ratio tests

I HG: C ln(Mπ) = 0 (graphical MMC)
HM: C ln(Mπ) = 0, K ln(Mπ) ≥ 0 (monotone graphical MMC)
HU : unrestricted model

I LG, LM, LU denote the max log-likelihood functions under HG, HM, HU
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Parametric models for transition probabilities

Testing equality and inequality constraints

Likelihood ratio tests

I HG: C ln(Mπ) = 0 (graphical MMC)
HM: C ln(Mπ) = 0, K ln(Mπ) ≥ 0 (monotone graphical MMC)
HU : unrestricted model

I LG, LM, LU denote the max log-likelihood functions under HG, HM, HU

Testing equality constraints: HG vs HU

under suitable assumptions (Fahrmeir and Kaufmann, 1987 )

V the null asymptotic distribution of the statistic

LRT = 2(LU − LG) is χ2
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Parametric models for transition probabilities

Testing equality and inequality constraints

Likelihood ratio tests

I HG: C ln(Mπ) = 0 (graphical MMC)
HM: C ln(Mπ) = 0, K ln(Mπ) ≥ 0 (monotone graphical MMC)
HU : unrestricted model

I LG, LM, LU denote the max log-likelihood functions under HG, HM, HU

Testing inequality constraints: HM vs HG and HM vs HU

I under suitable assumptions (Fahrmeir and Kaufmann, 1987 )
I the parametric space under HM is defined by linear inequality constraints

V the statistics LRT = 2(LG − LM) and LRT = 2(LU − LM)

are asymptotically chi-bar-squared χ2 distributed
(χ2 is a mixture of χ2’s, Silvapulle and Sen, 2005)
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Parametric models for transition probabilities

Testing equality and inequality constraints

Computational procedures:

I ML estimation methods for multinomial data under equality and
inequality constraints are adapted to the MMC context

I Monte Carlo methods to simulate the asymptotic p-values of the
LRT statistics 2(LG − LM) and 2(LU − LM)

I procedures for computing ML estimates and p-values are
implemented in the R-package hmmm by Colombi
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Parametric models for transition probabilities

Testing equality and inequality constraints

In summary, our approach provides

missing directed and bi-directed edges in ME graph
⇔

G-noncausality and CI conditions
⇔

linear constraints on interactions which parameterize
the transition probabilities

monotone dependence

⇔

inequality constraints on interactions which parameterize
the transition probabilities
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Example

I Example: ME graph for pasta spaghetti data

DATA:
I binary data collected on 365 days (Dec. 2006 - Jan. 2009) by an

Italian wholesale dealer
I a 3-dimensional binary time series of sales levels of 3 Italian

brands (Amato A1, Barilla A2, Divella A3) of pasta (spaghetti)
I 3-variate Markov chain of spaghetti data {A1,A2,A3} with

categories: low and high level
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Example

I Example: ME graph for pasta spaghetti data

DATA:
I binary data collected on 365 days (Dec. 2006 - Jan. 2009) by an

Italian wholesale dealer
I a 3-dimensional binary time series of sales levels of 3 Italian

brands (Amato A1, Barilla A2, Divella A3) of pasta (spaghetti)
I 3-variate Markov chain of spaghetti data {A1,A2,A3} with

categories: low and high level

the MC of spaghetti data is monotone graphical wrt the ME graph

21

3

I test for CI: LRT = 44.81, p = 0.44
I test for G-noncausality and monotone dep. LRT = 0, p = 1
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Example

I Example: ME graph for pasta spaghetti data

the graph encodes:

the G-noncausality and CI
relations:

A{2,3} 9 A1, A1 = A2 = A3

21

3

I the current sales level of Amato does not depend on previous sales of
Divella or Barilla

I there is no influence between the contemporaneous sales of all 3 brands
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Example

I Example: ME graph for pasta spaghetti data

the graph encodes:

+ monotone dependence
for 1→ 1, 2→ 2, 3→ 3,

1→ 2, 1→ 3

- monotone dependence
for 2→ 3 and 3→ 2

21
+

+ -+ -

3

I sales of all brands depend positively on their own previous sales levels
I a high level of sales of Barilla and Divella on one day is more probable

when the quantity which Amato previously sold was high
I given previous high sales level of Divella, a low level of Barilla sales is

more probable, and vice versa
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THANKS FOR

YOUR ATTENTION!!
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