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Aim

Our work focuses on the functional linear model with scalar
response given by

Y = 〈θ,X〉 + ǫ,

where Y and ǫ are real r.v., X is a r.v. valued in a Hilbert space H,
and θ ∈ H is the fixed model parameter.

From an initial sample {(Xi, Yi)}n
i=1, a bootstrap resampling is

proposed
Y ∗

i = 〈θ̂, Xi〉 + ǫ̂∗i , i = 1, . . . , n

where θ̂ is a pilot estimator, and ǫ̂∗i is a bootstrap error.

This procedure allows us to calibrate some interesting distributions
and to test different hypotheses related with θ.
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Bootstrap in finite dimensional case: first applications

Since its introduction by Efron (1979), the bootstrap method
resulted in a new distribution approximation applicable to a large
number of situations as the calibration of pivotal quantities in the
finite dimensional context (see Bickel and Freedman (1981) and
Singh (1981)).

BICKEL, P.J. and FREEDMAN, D.A. (1981): Some asymptotic theory for the
bootstrap. Annals of Statistics 9, 1196-1217.

EFRON, B. (1979): Bootstrap methods: another look at the jackknife. Annals of
Statistics 7, 1-26.

SINGH, K. (1981): On the asymptotic accuracy of Efron’s bootstrap. Annals of
Statistics 9, 1187-1195.
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Bootstrap in finite dimensional case: linear regression

Y = Xtθ + ǫ,

where Y and ǫ are univariate r.v., X is a p-dimensional r.v. (p ≤ n), and
θ is a p-vector of unknow parameters.

Theorem (Freedman (1981); θ̂: least squares estimator)

Let us assume that E(ǫ2i |Xi) = σ2 where σ2 = E(ǫ2i ).

n1/2(θ̂ − θ) is asymptotically N (0, σ2
[

E(XtX)
]−1

).

The conditional law of n1/2(θ̂∗ − θ̂) goes weakly to N (0, σ2
[

E(XtX)
]−1

).

FREEDMAN, D.A. (1981): Bootstrapping regression models. Annals of
Statistics 9, 1218-1228.
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Bootstrap in finite dimensional case: nonparametric
regression

Y = m(X) + ǫ,

where Y and ǫ are univariate r.v., X is a p-dimensional r.v., and m is a
unknown regression function.

Theorem (Cao-Abad (1991); m̂h(·): kernel estimator)

sup
y∈R

∣

∣

∣
PXY((nhp)1/2(m̂∗

h(x) − m̂g(x)) ≤ y) − PX((nhp)1/2(m̂h(x) − m(x)) ≤ y)
∣

∣

∣

P
→ 0

where PXY denotes the probability measure under the bootstrap resampling plan, and
PX denotes the probability conditionally on {Xi}n

i=1.

CAO-ABAD, R. (1991): Rate of convergence for the wild bootstrap in
nonparametric regression. Annals of Statistics 19, 2226-2231.
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Bootstrap in functional case: first applications I

Cuevas et al. (2004) developed a sort of parametric bootstrap to
obtain quantiles for an anova test.

Cuevas et al. (2006) proposed bootstrap confidence bands for
several functional estimators as the sample functional mean or the
trimmed functional mean.

Hall and Vial (2006) studied the finite dimensionality of functional
data using a bootstrap approximation.

Bathia et al. (2010) used bootstrap to identify the dimensionality of
curve time series.
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Bootstrap in functional case: first applications II

BATHIA, N., YAO, Q. and ZIEGELMANN, F. (2010): Identifying the finite
dimensionality of curve time series. Annals of Statistics (to appear).

CUEVAS, A., FEBRERO, M. and FRAIMAN, R. (2004): An Anova test for
functional data. Computational Statistics & Data Analysis 47, 111-122.

CUEVAS, A., FEBRERO, M. and FRAIMAN, R. (2006): On the use of the
bootstrap for estimating functions with functional data. Computational Statistics
& Data Analysis 51, 1063-1074.

HALL, P. and VIAL, C. (2006): Assessing the finite dimensionality of functional
data. Journal of the Royal Statistical Society Series B 68, 689-705.
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Bootstrap in functional case: linear regression

Y = 〈θ,X〉 + ǫ,

where Y and ǫ are univariate r.v., X is a functional r.v. valued in a
Hilbert space H, and θ ∈ H is a functional unknown parameter.

Theorem (González-Manteiga and Mart́ınez-Calvo (2010); θ̂c: FPCA-type estimator)

sup
y∈R

∣

∣

∣PXY(n1/2(〈θ̂∗c,d, x〉 − 〈θ̂d, x〉) ≤ y) − PX(n1/2(〈θ̂c, x〉 − 〈Π̂kc
n

θ, x〉) ≤ y)
∣

∣

∣

P
→ 0,

where Π̂kc
n

is the projection on the first kc
n eigenfunctions of Γn, PXY denotes the

probability conditionally on {(Xi, Yi)}n
i=1, and PX denotes the probability

conditionally on {Xi}n
i=1.

GONZÁLEZ-MANTEIGA, W. and MART́INEZ-CALVO, A. (2010): Bootstrap in
functional linear regression. Journal of Statistical Planning and Inference (to
appear).
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Bootstrap in functional case: nonparametric regression

Y = m(X) + ǫ,

where Y and ǫ are univariate r.v., X is a functional r.v., and m is a
unknown regression function.

Theorem (Ferraty et al. (2010); m̂h(·): kernel estimator for functional case)

sup
y∈R

∣

∣

∣PXY((nFx(h))1/2(m̂∗
h(x) − m̂g(x)) ≤ y)

−P ((nFx(h))1/2(m̂h(x) − m(x)) ≤ y)
∣

∣

∣

a.s.
→ 0

where PXY denotes the probability conditionally on {Xi, Yi}n
i=1, and Fx(·) is the

small ball probability given by Fx(t) = P (X ∈ B(x, t)).

FERRATY, F., VAN KEILEGOM, I. and VIEU, P (2010): On the validity of the
bootstrap in non-parametric functional regression. Scandinavian Journal of
Statistics 37, 286-306.
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Bootstrap validity for regression models

X Linear regression model
p-dimensional Y = Xtθ + ǫ

n1/2(θ̂∗ − θ̂) ↔ n1/2(θ̂ − θ)
functional Y = 〈θ, X〉 + ǫ

n1/2(〈θ̂∗c,d, x〉 − 〈θ̂d, x〉) ↔ n1/2(〈θ̂c, x〉 − 〈Π̂kc
n

θ, x〉)

X Nonparametric regression model
p-dimensional Y = m(X) + ǫ

(nhp)1/2(m̂∗
h(x) − m̂g(x)) ↔ (nhp)1/2(m̂h(x) − m(x))

functional Y = m(X) + ǫ

(nFx(h))1/2(m̂∗
h(x) − m̂g(x)) ↔ (nFx(h))1/2(m̂h(x) − m(x))
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Functional linear model with scalar response

We have considered the functional linear regression model with scalar
response given by

Y = 〈θ,X〉 + ǫ,

where

Y is a real r.v.,

X is a zero-mean r.v. valued in a real separable Hilbert space
(H, 〈·, ·〉) such that E(‖X‖4) < +∞ (being ‖ · ‖ = 〈·, ·〉1/2),

θ ∈ H is the model parameter which verifies ‖θ‖2 < +∞ , and

ǫ is a real r.v. satisfying that E(ǫ) = 0, E(ǫ2) = σ2 < +∞, and
E(ǫX) = 0.
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FPCA-type estimates: construction of the estimator I

Let us define the second moment operator Γ and the cross
second moment operator ∆

Γ(x) = E(〈X,x〉X), ∆(x) = E(〈X,x〉Y ), ∀x ∈ H.

Moreover, {(λj , vj)}j will denote the eigenvalues and eigenfunctions
of Γ, assuming that λ1 > λ2 > . . . > 0.

From a sample {(Xi, Yi)}n
i=1, we can derive their empirical

counterparts

Γn(x) = n−1
n
∑

i=1

〈Xi, x〉Xi, ∆n(x) = n−1
n
∑

i=1

〈Xi, x〉Yi, ∀x ∈ H,

being {(λ̂j , v̂j)}∞j=1 the eigenelements of Γn (λ̂1 > λ̂2 > . . .).
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FPCA-type estimates: construction of the estimator II

If
∑∞

j=1 (∆(vj)/λj)
2 < +∞ and Ker(Γ) = {0}, then

min
β∈H

E[(Y − 〈β,X〉)2]

has an unique solution: θ =
∑∞

j=1
∆(vj)

λj
vj .

Cardot et al. (2007) proposed the next estimators family

θ̂c =
n
∑

j=1

fc
n(λ̂j)∆n(v̂j)v̂j ,

where c = cn satisfies that c → 0 and 0 < c < λ1, and
{fc

n : [c,+∞) → R}n is a sequence of positive functions.

CARDOT, H., MAS, A. and SARDA, P. (2007): CLT in functional linear
regression models. Probability Theory and Related Fields 138, 325-361.

W. González-Manteiga (USC, Spain) Bootstrap Calibration in Functional Linear Regression Models



Introduction
Bootstrap calibration in functional linear models

Simulation study and real data application
Conclusions

FPCA-type estimates
Confidence intervals for prediction
Test for lack of dependence
Test for equality of linear models

FPCA-type estimates: examples I

Example 1. When fn(x) = x−11{x≥c}, the estimator θ̂c is
asymptotically equivalent to the standard FPCA estimator

θ̂kn
=

kn
∑

j=1

∆n(v̂j)

λ̂j

v̂j .

CAI, T.T. and HALL, P. (2006): Prediction in functional linear regression.
Annals of Statistics 34, 2159-2179.

CARDOT, H., FERRATY, F. and SARDA, P. (2003b): Spline estimators for the
functional linear model. Statistica Sinica 13, 571-591.

HALL, P. and HOROWITZ, J.L. (2007): Methodology and convergence rates for
functional linear regression. Annals of Statistics 35, 70-91.

HALL, P. and HOSSEINI-NASAB, M. (2006): On properties of functional
principal components analysis. Journal of the Royal Statistical Society Series B
68, 109-126.
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FPCA-type estimates: examples II

Example 2. If fn(x) = (x + αn)−11{x≥c} for αn a sequence of positive

parameters, the estimator θ̂c is asymptotically equivalent to the
ridge-type estimator proposed by Mart́ınez-Calvo (2008)

θ̂αn

kn
=

kn
∑

j=1

∆n(v̂j)

λ̂j + αn

v̂j .

MART́INEZ-CALVO, A. (2008): Presmoothing in functional linear regression. In:
S. Dabo-Niang and F. Ferray (Eds.): Functional and Operatorial Statistics.
Physica-Verlag, Heidelberg, 223-229.
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Confidence intervals for prediction

OBJECTIVE. We want to obtain pointwise confidence intervals for a
certain confidence level α, that is, Ix,α ⊂ R such that

P (〈θ, x〉 ∈ Ix,α) = 1 − α

for a fixed x ∈ H.

W. González-Manteiga (USC, Spain) Bootstrap Calibration in Functional Linear Regression Models



Introduction
Bootstrap calibration in functional linear models

Simulation study and real data application
Conclusions

FPCA-type estimates
Confidence intervals for prediction
Test for lack of dependence
Test for equality of linear models

Asymptotic confidence intervals

When θ (or x) is very well approximated by the projection on the
subspace spanned by the first kc

n eigenfunctions of Γn, the Central Limit
Theorem shown by Cardot et al. (2007) allows us to evaluate the
following approximated asymptotic confidence intervals for 〈θ, x〉

Iasy
x,α =

[

〈θ̂c, x〉 −
t̂cn,xσ̂√

n
z1−α/2, 〈θ̂c, x〉 +

t̂cn,xσ̂√
n

z1−α/2

]

,

with t̂cn,x =
√

∑kc
n

j=1 λ̂j [fc
n(λ̂j)]2〈x, v̂j〉2, σ̂2 a consistent estimate of σ2,

and zα the quantile of order α of Z ∼ N (0, 1). 1

CARDOT, H., MAS, A. and SARDA, P. (2007): CLT in functional linear
regression models. Probability Theory and Related Fields 138, 325-361.

1
kc

n = sup {j : λj + δj/2 ≥ c} (δ1 = λ1 − λ2 and δj = min(λj−1 − λj , λj − λj+1) if j 6= 1).
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Bootstrap confidence intervals I

Step 1. Obtain a pilot estimator θ̂d =
∑n

j=1 fd
n(λ̂j)∆n(v̂j)v̂j , and

calculate the residuals ǫ̂i = Yi − 〈θ̂d,Xi〉 for i = 1, . . . , n.

Step 2. (Naive) Draw ǫ̂∗1, . . . , ǫ̂
∗
n i.i.d. r.v. from the cumulative

distribution of {ǫ̂i − ¯̂ǫ}n
i=1, where ¯̂ǫ = n−1

∑n
i=1 ǫ̂i.

(Wild) For i = 1, . . . , n, define ǫ̂∗i = ǫ̂iVi, where {Vi}n
i=1 are

i.i.d. r.v., independent of {(Xi, Yi)}n
i=1, such that E(V1) = 0

and E(V 2
1 ) = 1.

Step 3. Construct Y ∗
i = 〈θ̂d,Xi〉 + ǫ̂∗i , for i = 1, . . . , n.

Step 4. Build θ̂∗c,d =
∑n

j=1 fc
n(λ̂j)∆

∗
n(v̂j)v̂j , where ∆∗

n is defined as

∆∗
n(·) = n−1

∑n
i=1 〈Xi, ·〉Y ∗

i .

Remark. For consistency results, we need that c ≤ d, so the no of PC used for
θ̂
∗
c,d is larger than the no of PC used for θ̂d. In some way, we should

oversmooth when we calculate the pilot estimator.
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Bootstrap confidence intervals II

Theorem (González-Manteiga and Mart́ınez-Calvo (2010))

Let Π̂kc
n

be the projection on the first kc
n eigenfunctions of Γn. Under certain

hypotheses, for both the naive and the wild bootstrap,

sup
y∈R

∣

∣

∣PXY(n1/2(〈θ̂∗c,d, x〉 − 〈θ̂d, x〉) ≤ y) − PX(n1/2(〈θ̂c, x〉 − 〈Π̂kc
n

θ, x〉) ≤ y)
∣

∣

∣

P
→ 0,

where PXY denotes the probability conditionally on {(Xi, Yi)}n
i=1, and PX denotes

the probability conditionally on {Xi}n
i=1.

GONZÁLEZ-MANTEIGA, W. and MART́INEZ-CALVO, A. (2010): Bootstrap in
functional linear regression. Journal of Statistical Planning and Inference (to
appear).
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Bootstrap confidence intervals III

The theorem before ensures that the α-quantiles qα(x) of the distribution

of the true error (〈θ̂c, x〉 − 〈θ, x〉) can be aproximated by the bootstrap

α-quantiles q∗α(x) of (〈θ̂∗c,d, x〉 − 〈θ̂d, x〉).
Then we can build the next bootstrap confidence intervals for 〈θ, x〉

I∗x,α =
[

〈θ̂c, x〉 − q∗1−α/2(x), 〈θ̂c, x〉 − q∗α/2(x)
]

.
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Test for lack of dependence

OBJECTIVE. We want to test the null hypothesis

H0 : θ = 0,

being the alternative H1 : θ 6= 0.
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Test for lack of dependence: asymptotic approach I

Cardot et al. (2003a) deduced that testing H0 is equivalent to test

H ′
0 : ∆ = 0.

They proposed as test statistic

T1,n = k−1/2
n

(

σ̂−2||√n∆nÂn||2 − kn

)

,

where Ân(·) =
∑kn

j=1 λ̂
−1/2
j 〈·, v̂j〉v̂j and σ̂2 is an estimator of σ2.

Let us remark that

T1,n =
1√
kn





n

σ̂2

kn
∑

j=1

(∆n(v̂j))
2

λ̂j

− kn
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Test for lack of dependence: asymptotic approach II

Under H ′
0, T1,n

d→ N (0, 2).

Hence, H ′
0 is rejected if |T1,n| >

√
2z1−α/2 (zα the α-quantile of a

N (0, 1)), and accepted otherwise.

Remark. For functional response Y , see Kokoszka et al. (2008).

CARDOT, H., FERRATY, F., MAS, A. and SARDA, P (2003a): Testing
hypothesis in the functional linear model. Scandinavian Journal of Statistics 30,
241-255.

KOKOSZKA, P., MASLOVA, I., SOJKA, J. and ZHU, L. (2008): Testing for
lack of dependence in the functional linear model. Canadian Journal of Statistics
36, 1-16.
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Test for lack of dependence: bootstrap approach I

The null hypothesis H0 is equivalent to

H ′′
0 : ||θ|| = 0.

We know that

||θ||2 =

∥

∥

∥

∥

∥

∥

∞
∑

j=1

〈θ, vj〉vj

∥

∥

∥

∥

∥

∥

2

=

∞
∑

j=1

〈θ, vj〉2 =

∞
∑

j=1

(

∆(vj)

λj

)2

.

Therefore, we can use the statistic

T2,n =

kn
∑

j=1

(

∆n(v̂j)

λ̂j

)2

.
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Test for lack of dependence: bootstrap approach II

Step 1. (Naive) Draw Ŷ ∗
1 , . . . , Ŷ ∗

n i.i.d. random variables from the
cumulative distribution of {Yi − Ȳ }n

i=1, where
Ȳ = n−1

∑n
i=1 Yi.

(Wild) For i = 1, . . . , n, define Ŷ ∗
i = YiVi, where {Vi}n

i=1 are
i.i.d. r.v., independent of {(Xi, Yi)}n

i=1, such that E(V1) = 0
and E(V 2

1 ) = 1.

Step 2. Build ∆∗
n(·) = n−1

∑n
i=1 〈Xi, ·〉Y ∗

i , for i = 1, . . . , n.

The distribution of T2,n can be approximated by the distribution of

T ∗
2,n =

kn
∑

j=1

(

∆∗
n(v̂j)

λ̂j

)2

.

H ′′
0 is accepted when T2,n < q∗1−α being q∗α the α-quantile of T ∗

2,n.
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Test for equality of linear models

OBJECTIVE. Let us assume that we have two samples

Y1,i1 = 〈θ1,X1,i1〉 + ǫ1,i1 , 1 ≤ i1 ≤ n1,
Y2,i2 = 〈θ2,X2,i2〉 + ǫ2,i2 , 1 ≤ i2 ≤ n2,

We also suppose that X1 and X2 have the same covariance operator Γ
({(λj , vj)}j denote the eigenvalues and eigenfunctions of Γ) and
V ar(ǫ1) = V ar(ǫ2) = σ2.
The aim is to test

H0 : ||θ1 − θ2|| = 0,

against H1 : ||θ1 − θ2|| 6= 0.
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Test for equality: asymptotic approach I

Horváth et al. (2009) proposed the following test statistic

Λ̂1,kn
= n1

(

1 +
n1

n2

)−1

(µ̂1 − µ̂2)
t(Σ̂−1

kn
)(µ̂1 − µ̂2),

where µ̂l = ((Xl)
t
Xl)

−1(Xl)
t
Yl being Xl(i, j) = 〈Xl,i, vj〉 for

l ∈ {1, 2}, and Σ̂kn
= σ̂2diag(λ̂−1

1 , . . . , λ̂−1
kn

).

Let us note that

Λ̂1,kn
=

1

σ̂2
(

1
n1

+ 1
n2

)

kn
∑

j=1

(∆1,n(v̂j) − ∆2,n(v̂j))
2

λ̂j

,

where ∆l,n(x) = n−1
l

∑nl

i=1 〈Xl,i, x〉Yl,i, and {(λ̂j , v̂j)}j are the

eigenelements of Γn(x) = (n1 + n2)
−1
∑2

l=1

∑nl

i=1 〈Xl,i, x〉Xl,i.
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Test for equality: asymptotic approach II

Under H0, Λ̂1,kn

d→ χ2
kn

.

H0 is rejected if Λ̂1,kn
> q1−α, with qα the α-quantile of χ2

kn
, and

accepted otherwise.

HORVÁTH, L., KOKOSZKA, P. and REIMHERR, M. (2009): Two sample
inference in functional linear models. Canadian Journal of Statistics 37, 571-591.

W. González-Manteiga (USC, Spain) Bootstrap Calibration in Functional Linear Regression Models



Introduction
Bootstrap calibration in functional linear models

Simulation study and real data application
Conclusions

FPCA-type estimates
Confidence intervals for prediction
Test for lack of dependence
Test for equality of linear models

Testing for equality: bootstrap approach I

Let us remark that

‖θ1 − θ2‖2 =
∞
∑

j=1

(

(∆1 − ∆2)(vj)

λj

)2

.

We are going to consider the next test statistic

Λ̂2,kn
=

kn
∑

j=1

(

(∆1,n − ∆2,n)(v̂j)

λ̂j

)2

.
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Testing for equality: bootstrap approach II

Step 1. Obtain θ̂d =
∑n1+n2

j=1 fd
n(λ̂j)∆n(v̂j)v̂j where

∆n(x) = (n1 + n2)
−1
∑2

l=1

∑nl

i=1 〈Xl,i, x〉Yl,i.

Calculate the residuals ǫ̂l,i = Yl,i − 〈θ̂d,Xl,i〉 for all
i = 1, . . . , nl, for l ∈ {1, 2}.

Step 2. (Naive) Draw ǫ̂∗l,1, . . . , ǫ̂
∗
l,nl

i.i.d. random variables from the

cumulative distribution of {ǫ̂l,i − ¯̂ǫl}nl

i=1, where
¯̂ǫl = nl

−1
∑nl

i=1 ǫ̂l,i, for l ∈ {1, 2}.
(Wild) For i = 1, . . . , nl, define ǫ̂∗l,i = ǫ̂l,iVi, where {Vi}nl

i=1 are
i.i.d. r.v., independent of {(Xl,i, Yl,i)}nl

i=1, such that E(V1) = 0
and E(V 2

1 ) = 1, for l ∈ {1, 2}.
Step 3. Build ∆∗

l,n(x) = nl
−1
∑nl

i=1 〈Xl,i, x〉Y ∗
l,i, where

Y ∗
l,i = 〈θ̂d,Xl,i〉 + ǫ̂∗l,i, for all i = 1, . . . , nl, for l ∈ {1, 2}.

W. González-Manteiga (USC, Spain) Bootstrap Calibration in Functional Linear Regression Models



Introduction
Bootstrap calibration in functional linear models

Simulation study and real data application
Conclusions

FPCA-type estimates
Confidence intervals for prediction
Test for lack of dependence
Test for equality of linear models

Testing for equality: bootstrap approach III

H0 is accepted when Λ̂2,kn
< q∗1−α with q∗α the α-quantile of

Λ̂∗
2,kn

=

kn
∑

j=1

(

(∆∗
1,n − ∆∗

2,n)(v̂j)

λ̂j

)2

.

Otherwise, H0 is rejected.
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Confidence intervals: simulation study I

We have simulated ns = 500 samples, each being composed of
n ∈ {50, 100} observations from a functional linear model

Y = 〈θ,X〉 + ǫ,

being X a Brownian motion and ǫ ∼ N (0, σ2) with signal-to-noise
ratio r = σ/

√

E(〈X, θ〉2) = 0.2.

The model parameter is

θ(t) = sin(4πt), t ∈ [0, 1],

and both X and θ were discretized to 100 design points.

We have fixed six deterministic curves x

x1 = sin(πt/2), x2 = sin(3πt/2), x3 = t,

x4 = t2, x5 = 2|t − 0.5|, x6 = 2It>0.5.
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Confidence intervals: simulation study II

Asymptotic Iasy
x,α =

[

〈θ̂c, x〉 − t̂c
n,xσ̂√

n
z1−α/2, 〈θ̂c, x〉 +

t̂c
n,xσ̂√

n
z1−α/2

]

Bootstrap I∗x,α =
[

〈θ̂c, x〉 − q∗1−α/2(x), 〈θ̂c, x〉 − q∗α/2(x)
]

To select kn, we have used GCV technique. α ∈ {0.05, 0.10}.
For asymptotic intervals the estimation for the true variance σ2 is
the residual sum of squares where kn is chosen by GCV .

For the bootstrap intervals, we have considered different pilot values
{k̂n − 5, . . . , k̂n + 2}, where k̂n is the number of principal
components selected by GCV . Moreover, 1000 bootstrap iterations
were done and wild bootstrap was considered.
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Confidence intervals: n = 50

α CI x1 x2 x3 x4 x5 x6

5% Iasy
x,α 8.8 (1.15) 9.0 (3.44) 10.6 (1.02) 13.2 (1.15) 19.8 (3.83) 23.0 (5.46)

I∗x,α k̂n + 2 10.6 (1.14) 10.8 (3.38) 11.4 (1.01) 13.4 (1.14) 14.4 (4.53) 17.0 (6.33)

I∗x,α k̂n + 1 10.4 (1.15) 10.4 (3.41) 12.0 (1.02) 13.2 (1.14) 15.6 (4.45) 19.6 (6.27)

I∗x,α k̂n 10.6 (1.15) 11.6 (3.43) 11.6 (1.02) 13.6 (1.15) 14.4 (4.41) 18.8 (6.23)

I∗x,α k̂n − 1 6.4 (1.36) 8.8 (4.04) 8.0 (1.21) 10.2 (1.37) 11.2 (4.97) 15.2 (7.11)

I∗x,α k̂n − 2 5.4 (1.67) 5.4 (4.99) 5.8 (1.48) 7.4 (1.67) 7.6 (5.95) 10.8 (8.69)

I∗x,α k̂n − 3 4.4 (2.11) 3.2 (6.33) 4.6 (1.88) 5.8 (2.11) 6.4 (7.33) 9.8(10.97)

I∗x,α k̂n − 4 3.2 (2.62) 2.2 (7.74) 3.8 (2.32) 4.2 (2.59) 5.0 (8.75) 7.2(13.59)

I∗x,α k̂n − 5 2.2 (2.96) 1.8 (8.80) 2.8 (2.63) 2.4 (2.92) 4.2 (9.69) 5.4(15.63)

10% Iasy
x,α 17.4 (0.97) 15.2 (2.89) 18.0 (0.86) 19.2 (0.96) 26.0 (3.21) 29.8 (4.58)

I∗x,α k̂n + 2 17.2 (0.96) 18.0 (2.87) 18.2 (0.86) 19.6 (0.97) 21.0 (3.77) 26.8 (5.29)

I∗x,α k̂n + 1 17.2 (0.97) 18.0 (2.88) 18.8 (0.86) 19.4 (0.97) 20.6 (3.70) 26.2 (5.21)

I∗x,α k̂n 17.4 (0.97) 17.6 (2.89) 18.4 (0.86) 19.2 (0.97) 21.8 (3.66) 27.6 (5.16)

I∗x,α k̂n − 1 12.6 (1.15) 12.0 (3.42) 13.8 (1.03) 14.4 (1.16) 18.6 (4.08) 20.8 (5.87)

I∗x,α k̂n − 2 10.4 (1.41) 10.8 (4.22) 10.0 (1.26) 12.4 (1.41) 14.8 (4.86) 18.2 (7.13)

I∗x,α k̂n − 3 6.6 (1.78) 5.8 (5.35) 6.6 (1.59) 8.0 (1.78) 10.8 (5.92) 13.6 (8.93)

I∗x,α k̂n − 4 5.6 (2.21) 4.6 (6.55) 5.4 (1.96) 5.6 (2.18) 8.0 (7.03) 10.0(10.97)

I∗x,α k̂n − 5 3.8 (2.51) 2.6 (7.44) 4.0 (2.22) 4.8 (2.46) 7.0 (7.71) 7.2(12.58)

Table: Empirical coverage rate (lenght×102) for n = 50.
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Confidence intervals: n = 100

α CI x1 x2 x3 x4 x5 x6

5% Iasy
x,α 6.0 (0.83) 6.8 (2.47) 6.0 (0.74) 6.6 (0.83) 14.6 (2.89) 14.2 (4.13)

I∗x,α k̂n + 2 7.0 (0.82) 7.8 (2.44) 7.6 (0.73) 8.0 (0.84) 8.4 (3.42) 7.4 (4.84)

I∗x,α k̂n + 1 7.4 (0.83) 7.2 (2.44) 8.2 (0.74) 7.8 (0.83) 9.2 (3.37) 8.6 (4.77)

I∗x,α k̂n 7.2 (0.83) 7.6 (2.44) 7.8 (0.74) 8.0 (0.84) 9.0 (3.32) 9.4 (4.72)

I∗x,α k̂n − 1 6.0 (0.90) 6.8 (2.66) 6.2 (0.80) 6.2 (0.91) 8.2 (3.46) 8.8 (4.93)

I∗x,α k̂n − 2 4.2 (1.09) 5.0 (3.20) 4.2 (0.97) 4.8 (1.09) 7.4 (4.03) 7.8 (5.82)

I∗x,α k̂n − 3 1.8 (1.37) 3.0 (4.08) 2.8 (1.22) 3.6 (1.38) 5.8 (5.01) 5.4 (7.41)

I∗x,α k̂n − 4 2.2 (1.69) 2.6 (5.04) 1.6 (1.50) 2.4 (1.69) 4.4 (5.96) 4.4 (9.31)

I∗x,α k̂n − 5 1.4 (1.97) 2.2 (5.87) 1.2 (1.75) 1.4 (1.96) 3.4 (6.69) 3.0(10.94)

10% Iasy
x,α 13.4 (0.69) 12.8 (2.08) 13.0 (0.62) 15.0 (0.70) 22.0 (2.43) 22.6 (3.47)

I∗x,α k̂n + 2 14.2 (0.70) 13.4 (2.06) 14.4 (0.62) 15.2 (0.70) 14.2 (2.85) 16.0 (4.04)

I∗x,α k̂n + 1 14.6 (0.70) 14.0 (2.06) 14.8 (0.62) 15.8 (0.70) 16.4 (2.80) 18.2 (3.96)

I∗x,α k̂n 13.8 (0.70) 14.0 (2.06) 14.8 (0.62) 15.8 (0.70) 17.0 (2.76) 18.2 (3.91)

I∗x,α k̂n − 1 10.8 (0.76) 12.2 (2.25) 11.8 (0.68) 12.0 (0.76) 16.4 (2.86) 17.4 (4.06)

I∗x,α k̂n − 2 8.6 (0.92) 10.0 (2.70) 8.4 (0.82) 9.0 (0.92) 13.6 (3.31) 14.0 (4.78)

I∗x,α k̂n − 3 6.8 (1.16) 5.8 (3.45) 5.8 (1.03) 6.8 (1.16) 10.6 (4.09) 10.2 (6.04)

I∗x,α k̂n − 4 5.4 (1.43) 4.4 (4.25) 4.2 (1.27) 5.2 (1.42) 8.6 (4.82) 7.4 (7.50)

I∗x,α k̂n − 5 3.6 (1.66) 3.2 (4.96) 3.2 (1.47) 3.6 (1.65) 5.6 (5.38) 4.8 (8.76)

Table: Empirical coverage rate (lenght×102) for n = 100.
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Lack of dependence: simulation study I

We have simulated ns = 500 samples, each being composed of
n ∈ {50, 100} observations from a functional linear model

Y = 〈θ,X〉 + ǫ,

being X a Brownian motion and ǫ ∼ N (0, σ2) with signal-to-noise
ratio r = σ/

√

E(〈X, θ〉2) ∈ {0.5, 1, 2} (under H0, σ = 1).

We have considered two model parameters

θ0(t) = 0, t ∈ [0, 1],

θ1(t) = sin(2πt3)3, t ∈ [0, 1].

Both X and θ were discretized to 100 design points.
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Lack of dependence: simulation study II

Statistical test Distribution

T1,n = 1√
kn

(

n
σ̂2

∑kn

j=1
(∆n(v̂j))

2

λ̂j

− kn

)

N (0, 2)

T
∗(a)
1,n = 1√

kn

(

n
(σ̂∗)2

∑kn

j=1
(∆∗

n(v̂j))
2

λ̂j

− kn

)

T
∗(b)
1,n = 1√

kn

(

n
σ̂2

∑kn

j=1
(∆∗

n(v̂j))
2

λ̂j

− kn

)

T2,n =
∑kn

j=1

(

∆n(v̂j)

λ̂j

)2

T ∗
2,n =

∑kn

j=1

(

∆∗

n(v̂j)

λ̂j

)2

kn ∈ {1, . . . , 20}; α ∈ {0.2, 0.1, 0.05, 0.01}
For asymptotic test σ̂2 = 1

tr(In−S)

∑n
i=1 (Yi − SYi)

2, where S is

the hat matrix for the penalized B-splines estimator (B-splines with
degree 4 and 20 equispaced knots; second derivative for the penalty;
ρ selected by GCV).

For bootstrap test, the wild bootstrap was considered, and 1000
bootstrap iterations were done.
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Lack of dependence: level (θ0(t) = 0) I
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Figure: Estimated levels using the distribution of N (0, 2) (solid line), T
∗(a)
1,n (square,

dashed line), T
∗(b)
1,n (diamond, dotted line) and T ∗

2,n (triangle, dash-dotted line), for

α = 0.2 (red), 0.1 (green), 0.05 (blue) and 0.01 (light blue).

W. González-Manteiga (USC, Spain) Bootstrap Calibration in Functional Linear Regression Models



Introduction
Bootstrap calibration in functional linear models

Simulation study and real data application
Conclusions

Confidence intervals for prediction
Test for lack of dependence
Test for equality of linear models
Real data application

Lack of dependence: level (θ0(t) = 0) II

N (0, 2) T
∗(a)
1,n T

∗(b)
1,n T ∗

2,n

n α kn = 5 kn = 10 kn = 20 kn = 5 kn = 10 kn = 20 kn = 5 kn = 10 kn = 20 kn = 5 kn = 10 kn = 20
50 20% 19.4 17.6 16.0 21.4 21.6 20.0 21.6 19.0 15.2 19.8 20.8 18.4

10% 10.8 10.4 8.2 9.0 10.8 10.6 8.0 7.2 3.2 8.6 7.2 7.2
5% 8.2 7.0 4.4 5.0 4.0 4.6 5.0 2.4 0.0 4.0 3.2 3.0
1% 4.8 4.2 2.2 1.2 0.4 0.0 0.6 0.0 0.0 0.2 0.6 0.4

100 20% 15.0 19.4 20.0 20.8 21.0 19.0 21.0 20.8 18.0 21.4 19.4 17.6
10% 8.6 9.6 9.0 11.8 10.8 10.4 10.4 9.6 6.2 9.8 8.8 7.0
5% 5.6 5.2 4.0 4.4 4.6 3.6 3.6 3.4 2.2 4.6 5.2 2.8
1% 2.6 2.4 1.2 1.4 1.2 0.8 1.2 0.6 0.2 1.0 0.6 0.8

Table: Comparison of the estimated levels (as percentage) for different values of kn.
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Lack of dependence: power (θ1(t) = sin(2πt
3)3) I

r=0.5, n=50
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Figure: For r = 0.5, empirical power using the distribution of N (0, 2) (solid line),

T
∗(a)
1,n (square, dashed line), T

∗(b)
1,n (diamond, dotted line) and T ∗

2,n (triangle,

dash-dotted line), for α = 0.2 (red), 0.1 (green), 0.05 (blue) and 0.01 (light blue).
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Lack of dependence: power (θ1(t) = sin(2πt
3)3) II

r=1, n=50
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Figure: For r = 1, empirical power using the distribution of N (0, 2) (solid line),

T
∗(a)
1,n (square, dashed line), T

∗(b)
1,n (diamond, dotted line) and T ∗

2,n (triangle,

dash-dotted line), for α = 0.2 (red), 0.1 (green), 0.05 (blue) and 0.01 (light blue).
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Lack of dependence: power (θ1(t) = sin(2πt
3)3) III
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Figure: For r = 2, empirical power using the distribution of N (0, 2) (solid line),

T
∗(a)
1,n (square, dashed line), T

∗(b)
1,n (diamond, dotted line) and T ∗

2,n (triangle,

dash-dotted line), for α = 0.2 (red), 0.1 (green), 0.05 (blue) and 0.01 (light blue).
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Lack of dependence: power (θ1(t) = sin(2πt
3)3) IV

N (0, 2) T
∗(a)
1,n T

∗(b)
1,n T ∗

2,n

r n α kn = 5 kn = 10 kn = 20 kn = 5 kn = 10 kn = 20 kn = 5 kn = 10 kn = 20 kn = 5 kn = 10 kn = 20
0.5 50 20% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 88.8 0.0 0.0

10% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 60.8 0.0 0.0
5% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.0 32.2 0.0 0.0
1% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.4 51.4 3.4 0.0 0.0

100 20% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1.0 0.0
10% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0
5% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.4 0.0 0.0
1% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 70.0 0.0 0.0

1 50 20% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.2 66.6 3.6 0.2
10% 100.0 100.0 100.0 100.0 100.0 99.8 100.0 99.8 89.6 33.6 0.8 0.0
5% 100.0 100.0 99.8 100.0 100.0 99.6 100.0 99.0 59.6 16.6 0.2 0.0
1% 100.0 100.0 99.6 99.6 97.6 94.6 95.2 67.6 2.6 2.2 0.0 0.0

100 20% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 97.0 7.8 0.0
10% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 86.4 2.2 0.0
5% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 67.8 1.0 0.0
1% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 21.6 0.2 0.0

2 50 20% 85.4 75.6 66.8 89.0 81.2 77.2 89.0 76.8 51.4 34.0 11.8 7.2
10% 80.0 68.6 56.4 79.4 68.6 59.4 76.4 57.4 20.2 16.6 4.0 2.4
5% 74.4 62.2 48.4 67.4 51.6 43.6 60.8 37.8 6.2 10.4 1.0 0.4
1% 67.4 51.4 35.6 40.0 26.4 20.2 25.4 6.0 0.0 0.8 0.0 0.0

100 20% 99.8 98.8 94.6 100.0 99.8 98.0 100.0 99.2 94.2 60.0 14.6 7.6
10% 99.6 96.6 91.2 99.6 97.2 93.6 99.6 96.0 82.4 34.2 6.2 2.0
5% 99.6 95.6 85.8 97.8 94.0 85.8 97.2 90.4 64.6 18.0 2.8 0.4
1% 97.6 91.4 75.4 88.2 76.4 64.0 85.2 63.4 26.2 2.2 0.8 0.0

Table: Comparison of the empirical power (as percentage) for different values of kn

and sample sizes.
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Equality of linear models: simulation study I

We have simulated ns = 500 pairs of samples, each being composed
of n1, n2 ∈ {50, 100} observations from the functional linear models

Y1,i1 = 〈θ1,X1,i1〉 + ǫ1,i1 , 1 ≤ i1 ≤ n1,
Y2,i2 = 〈θ2,X2,i2〉 + ǫ2,i2 , 1 ≤ i2 ≤ n2,

being X a Brownian motion and ǫ ∼ N (0, σ2) with signal-to-noise
ratio r = σ/

√

E(〈X, θ〉2) ∈ {0.2}.
We have considered the following model parameters

θ1(t) = 2 sin(0.5πt) + 4 sin(1.5πt) + 5 sin(2.5πt), t ∈ [0, 1],

θ2(t) = c (2 sin(0.5πt) + 4 sin(1.5πt) + 5 sin(2.5πt)) , t ∈ [0, 1],

with c ∈ {1, 2}. Both X and θ were discretized to 100 points.
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Equality of linear models: simulation study II

Statistical test Distribution

Λ̂1,kn
= 1

σ̂2

(

1
n1

+ 1
n2

)

∑kn

j=1
(∆1,n(v̂j)−∆2,n(v̂j))

2

λ̂j

χ2
kn

Λ̂
∗(a)
1,kn

= 1

(σ̂∗)2
(

1
n1

+ 1
n2

)

∑kn

j=1
(∆∗

1,n(v̂j)−∆∗

2,n(v̂j))
2

λ̂j

Λ̂
∗(b)
1,kn

= 1

σ̂2

(

1
n1

+ 1
n2

)

∑kn

j=1
(∆∗

1,n(v̂j)−∆∗

2,n(v̂j))
2

λ̂j

Λ̂2,kn
=
∑kn

j=1

(

(∆1,n−∆2,n)(v̂j)

λ̂j

)2

Λ̂∗
2,kn

=
∑kn

j=1

(

(∆∗

1,n−∆∗

2,n)(v̂j)

λ̂j

)2

kn ∈ {1, . . . , 10}; α ∈ {0.2, 0.1, 0.05, 0.01}
For asymptotic test, σ̂2 is the residual standard deviation.

For bootstrap test, the wild bootstrap was considered, and 1000
bootstrap iterations were done.
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Equality of linear models: level (c = 1) I
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Figure: Estimated levels using the distribution of χ2
kn

(solid line), T
∗(a)
1,n (square,

dashed line), T
∗(b)
1,n (diamond, dotted line) and T ∗

2,n (triangle, dash-dotted line), for

α = 0.2 (red), 0.1 (green), 0.05 (blue) and 0.01 (light blue).
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Equality of linear models: level (c = 1) II

χ2
kn

T
∗(a)
1,n T

∗(b)
1,n T ∗

2,n

n α kn = 1 kn = 5 kn = 10 kn = 1 kn = 5 kn = 10 kn = 1 kn = 5 kn = 10 kn = 1 kn = 5 kn = 10
50 20% 21.5 22.3 27.4 20.2 20.5 17.1 20.5 20.5 21.7 18.7 21.2 17.1

10% 11.3 11.5 17.1 10.2 7.2 8.4 9.7 9.2 10.5 8.4 10.7 7.2
5% 4.9 6.1 10.2 6.4 3.1 3.8 5.4 3.6 4.1 4.6 5.6 3.6
1% 0.3 1.3 3.6 0.5 0.8 0.8 0.3 0.8 0.0 0.8 1.0 1.0

100 20% 21.7 22.0 23.0 22.3 19.7 17.4 23.5 21.2 17.9 22.3 19.9 19.9
10% 11.3 10.2 12.8 11.5 9.5 8.4 11.5 10.5 9.5 10.2 9.5 9.0
5% 6.4 5.6 6.9 4.3 4.9 6.4 4.3 4.9 6.4 3.6 4.9 4.3
1% 1.3 1.5 2.6 1.8 1.3 1.5 1.8 1.3 1.3 1.3 1.8 0.8

Table: Comparison of the estimated levels (as percentage) for different values of kn.
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Equality of linear models: power (c = 2) I
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Figure: Empirical power using the distribution of χ2
kn

(solid line), T
∗(a)
1,n (square,

dashed line), T
∗(b)
1,n (diamond, dotted line) and T ∗

2,n (triangle, dash-dotted line), for

α = 0.2 (red), 0.1 (green), 0.05 (blue) and 0.01 (light blue).
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Equality of linear models: power (c = 2) II

χ2
kn

T
∗(a)
1,n T

∗(b)
1,n T ∗

2,n

n α kn = 1 kn = 5 kn = 10 kn = 1 kn = 5 kn = 10 kn = 1 kn = 5 kn = 10 kn = 1 kn = 5 kn = 10
50 20.0 99.2 100.0 100.0 95.7 100.0 100.0 96.2 100.0 100.0 82.6 47.6 1.8

10% 98.5 100.0 100.0 93.9 100.0 100.0 94.1 100.0 100.0 80.6 27.9 0.3
5% 97.2 100.0 100.0 92.1 100.0 100.0 93.1 100.0 100.0 78.8 18.2 0.0
1% 88.5 100.0 100.0 89.0 100.0 100.0 89.8 100.0 100.0 76.7 5.9 0.0

100 20% 100.0 100.0 100.0 99.2 100.0 100.0 99.2 100.0 100.0 89.3 66.8 4.3
10% 100.0 100.0 100.0 99.0 100.0 100.0 99.0 100.0 100.0 88.7 57.5 0.3
5% 99.7 100.0 100.0 98.5 100.0 100.0 98.5 100.0 100.0 87.5 49.1 0.0
1% 99.5 100.0 100.0 96.9 100.0 100.0 97.4 100.0 100.0 85.2 29.7 0.0

Table: Comparison of the empirical power (as percentage) for different values of kn

and sample sizes.
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Real data application: atmospheric pollution data I

We are going to apply the tests exposed before to an environmental
example.

We have obtained concentrations of hourly averaged NOx in the
neighbourhood of a power station belongs to ENDESA, located in
As Pontes in the Northwest of Spain. During unfavorable
meteorological conditions, NOx levels can quickly rise and cause an
air-quality episode.

The aim is to forecast NOx with half an hour horizon to allow the
power plant staff to avoid NOx concentrations reaching the limit
values fixed by the current environmental legislation.

We have built a sample where each curve X corresponds to 240
consecutive minutal values of hourly averaged NOx concentration,
and the response Y corresponds to the NOx value half an hour
ahead (from Jan 2007 to Dec 2009).
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Real data application: atmospheric pollution data II
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Real data application: atmospheric pollution data III
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Figure: The curves X correspond to 240 consecutive minutal values of hourly
averaged NOx concentration (left), and the response Y corresponds to the NOx

value half an hour ahead (right). The data are classified in 3 bins depending on
X[240] value: < 10 (red), 10 − 20 (green), and > 20 (blue).
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Real data application: atmospheric pollution data IV

Testing lack of dependence: H0 : θ = 0.

χ2
kn

T
∗(a)
1,n T

∗(b)
1,n T ∗

2,n

kn = 5 0 0 0 0.000
kn = 10 0 0 0 0.002
kn = 20 0 0 0 0.011

Table: P-values for testing the lack of dependence.
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Real data application: atmospheric pollution data V

Testing for equality of linear models: H0 : ||θ1 − θ2|| = 0.

Bin 1 & 2 Bin 1 & 3 Bin 2 & 3

χ2
kn

T
∗(a)
1,n T

∗(b)
1,n T ∗

2,n χ2
kn

T
∗(a)
1,n T

∗(b)
1,n T ∗

2,n χ2
kn

T
∗(a)
1,n T

∗(b)
1,n T ∗

2,n

kn = 5 0.000 0.069 0.044 0.285 0 0.011 0.021 0.366 0.018 0.902 0.917 0.934
kn = 10 0.001 0.954 0.931 0.461 0 0.012 0.009 0.807 0.000 0.458 0.302 0.748
kn = 20 0.000 0.228 0.114 0.294 0 0.178 0.132 0.138 0.000 0.015 0.013 0.644

Table: P-values for testing equality between the bin 1 and the bin 2 (left), the
bin 1 and the bin 3 (center), and the bin 2 and the bin 3(right).
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Conclusions

The proposed bootstrap methods seems to give test levels closer
nominal ones than the tests based on the asymptotic distributions.

In terms of the power of the tests, the statistic tests which include
the error variance σ2 are powerful that the tests which don’t take it
into account.

In all the cases, the adequate kn choice is quite important. This is
still an open question.

Further research: extension to functional response.
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