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Introduction

trap in finite dimensional case
tstrap in functional case

@ Our work focuses on the functional linear model with scalar
response given by
Y =(0,X)+e,

where Y and € are real r.v., X is a r.v. valued in a Hilbert space H,
and 0 € 'H is the fixed model parameter.

@ From an initial sample {(X;,Y;)}",, a bootstrap resampling is
proposed .
Y =(0,X;)+€, i=1,...,n

where 0 is a pilot estimator, and € is a bootstrap error.

@ This procedure allows us to calibrate some interesting distributions
and to test different hypotheses related with 6.
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Bootstrap in finite dimensional case

Bootstrap in functional case

Bootstrap in finite dimensional case: first applications

@ Since its introduction by Efron (1979), the bootstrap method
resulted in a new distribution approximation applicable to a large
number of situations as the calibration of pivotal quantities in the
finite dimensional context (see Bickel and Freedman (1981) and

Singh (1981)).

BICKEL, P.J. and FREEDMAN, D.A. (1981): Some asymptotic theory for the
bootstrap. Annals of Statistics 9, 1196-1217.

@ EFRON, B. (1979): Bootstrap methods: another look at the jackknife. Annals of
Statistics 7, 1-26.

@ SINGH, K. (1981): On the asymptotic accuracy of Efron’s bootstrap. Annals of
Statistics 9, 1187-1195.
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Bootstrap in finite dimensional case: linear regression

Y = X0 + ¢,

where Y and € are univariate r.v., X is a p-dimensional r.v. (p <n), and
0 is a p-vector of unknow parameters.

Theorem (Freedman (1981); 0: least squares estimator)

Let us assume that E(e?|X;) = o2 where 02 = E(e2).
® nl/2( — 0) is asymptotically N'(0, 0% [E(X!X)] ).

@ The conditional law of n1/2(* — 0) goes weakly to N'(0, o [E(XX)] 71).

B FREEDMAN, D.A. (1981): Bootstrapping regression models. Annals of
Statistics 9, 1218-1228.
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Bootstrap in functional case

Bootstrap in finite dimensional case: nonparametric
regression

Y =m(X) +e,

where Y and € are univariate r.v., X is a p-dimensional r.v., and m is a
unknown regression function.

Theorem (Cao-Abad (1991); m,(+): kernel estimator)

yeR Pxy((nhP)Y/2 (1}, () — g (@) < y) — Px((nh?)Y2 (1, (z) — m(z)) < y)| &0

where Pxy denotes the probability measure under the bootstrap resampling plan, and
Px denotes the probability conditionally on {X;}7 ;.

D CAO-ABAD, R. (1991): Rate of convergence for the wild bootstrap in
nonparametric regression. Annals of Statistics 19, 2226-2231.
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Bootstrap in functional case

Bootstrap in functional case: first applications |

@ Cuevas et al. (2004) developed a sort of parametric bootstrap to
obtain quantiles for an anova test.

@ Cuevas et al. (2006) proposed bootstrap confidence bands for
several functional estimators as the sample functional mean or the
trimmed functional mean.

@ Hall and Vial (2006) studied the finite dimensionality of functional
data using a bootstrap approximation.

@ Bathia et al. (2010) used bootstrap to identify the dimensionality of
curve time series.
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Bootstrap in functional case: first applications |l

BATHIA, N., YAO, Q. and ZIEGELMANN, F. (2010): Identifying the finite
dimensionality of curve time series. Annals of Statistics (to appear).

CUEVAS, A., FEBRERO, M. and FRAIMAN, R. (2004): An Anova test for
functional data. Computational Statistics & Data Analysis 47, 111-122.

CUEVAS, A., FEBRERO, M. and FRAIMAN, R. (2006): On the use of the
bootstrap for estimating functions with functional data. Computational Statistics
& Data Analysis 51, 1063-1074.

D HALL, P. and VIAL, C. (2006): Assessing the finite dimensionality of functional
data. Journal of the Royal Statistical Society Series B 68, 689-705.
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Bootstrap in functional case: linear regression

Y=(0,X)+e¢,

where Y and € are univariate r.v., X is a functional r.v. valued in a
Hilbert space H, and 6 € H is a functional unknown parameter.

Theorem (Gonzélez-Manteiga and Martinez-Calvo (2010); 6.: FPCA-type estimator)

sup Pxy(n'/2((05 4, 7) — (0, 7)) < y) — Px(n/2((fe, z) — (MTxg 0,2)) < )| 50,
ye

where ﬁk% is the projection on the first k, eigenfunctions of I',, Pxy denotes the
probability conditionally on {(X;,Y;)}_,, and Px denotes the probability
conditionally on {X;}1 ;.

D GONZALEZ-MANTEIGA, W. and MARTINEZ-CALVO, A. (2010): Bootstrap in
functional linear regression. Journal of Statistical Planning and Inference (to
appear).
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Bootstrap in functional case: nonparametric regression

Y =m(X) +e,

where Y and € are univariate r.v., X is a functional r.v., and m is a
unknown regression function.

Theorem (Ferraty et al. (2010); 715 (+): kernel estimator for functional case)

sup | Pxy((nFa (h))"/? (mj, (z) — g ()) < y)
yEeR

—P((nFy (k)2 (1 (z) — m(z)) < y)| 30

where Pxy denotes the probability conditionally on {X;,Y;}?_,, and Fx(-) is the
small ball probability given by Fy(t) = P(X € B(z,t)).

D FERRATY, F., VAN KEILEGOM, I. and VIEU, P (2010): On the validity of the
bootstrap in non-parametric functional regression. Scandinavian Journal of
Statistics 37, 286-306.
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Bootstrap validity for regression models

X Linear regression model

p-dimensional Y =X%0+¢
nl/2(0* — 6) & nl/2(0 — 0)
functional Y={0,X)+e¢

n2((02 4 @) — (B, z)) < n'/2((0e, 3) — (e 0,2))

Nonparametric regression model

p-dimensional Y=m(X)+e
(nhP)!/2 (1 (x) — 1ng (x)) < (nhP)'/2 (inn () — m(x))
functional Y=m(X)+e

(nFx (h)'/? (1, (x) — 1ing () = (nFz(h)'/? (i (x) — m(x))
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9 Bootstrap calibration in functional linear models
@ FPCA-type estimates
@ Confidence intervals for prediction
@ Test for lack of dependence
@ Test for equality of linear models
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Bootstrap calibration in functional linear models > intervals for prediction
of depend
Test for equality of linear models

Functional linear model with scalar response

We have considered the functional linear regression model with scalar
response given by
Y =(0,X) +e,

where
@ Yisarealrv,,

@ X is a zero-mean r.v. valued in a real separable Hilbert space
(H, (-,-)) such that E(||X[|*) < 4o (being || - || = (-,-)'/?),

® 0 € H is the model parameter which verifies ||0]|?> < +oo , and

® cis a real r.v. satisfying that E(¢) = 0, E(e?) = 02 < +00, and
E(eX) = 0.
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FPCA-type estimates: construction of the estimator |

@ Let us define the second moment operator I" and the cross
second moment operator A

I'z) =E((X,z)X), Az)=E(X,z)Y), VzeH.
Moreover, {(A;,v;)}; will denote the eigenvalues and eigenfunctions
of I', assuming that \y > Ao > ... > 0.

@ From a sample {(X;,Y;)}?_, we can derive their empirical
counterparts

n

To(z) =n"t Z (Xi, )X, An(r)=n"! Z (X;,2)Y;, VreH,

i=1 =1

being {(Xj,@j)};?‘;l the eigenelements of I’ (A; > Ag > ...).
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Bootstrap calibration in functional linear models Confidence intervals for prediction

Test for equality of linear models

FPCA-type estimates: construction of the estimator Il
o If 372, (A(vj)/2j)* < 400 and Ker(T) = {0}, then

min E[(Y — (8, X))

has an unique solution: § = >°2 /(\U_J)vj.
- J

@ Cardot et al. (2007) proposed the next estimators family
0. = Fo(0)An(B))1;,
j=1

where ¢ = ¢,, satisfies that ¢ — 0 and 0 < ¢ < A1, and
{f¢: [e,+0) — R}, is a sequence of positive functions.

@ CARDOT, H., MAS, A. and SARDA, P. (2007): CLT in functional linear
regression models. Probability Theory and Related Fields 138, 325-361.

Bootstrap Calibration in Functional Linear Regression Models
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FPCA-type estimates
Bootstrap calibration in functional linear models Confidenc e for prediction

Example 1. When f,(z) = xill{xzc}, the estimator 0, is
asymptotically equivalent to the standard FPCA estimator

CAl, T.T. and HALL, P. (2006): Prediction in functional linear regression.
Annals of Statistics 34, 2159-2179.

CARDOT, H., FERRATY, F. and SARDA, P. (2003b): Spline estimators for the
functional linear model. Statistica Sinica 13, 571-591.

HALL, P. and HOROWITZ, J.L. (2007): Methodology and convergence rates for
functional linear regression. Annals of Statistics 35, 70-91.

) ) )

HALL, P. and HOSSEINI-NASAB, M. (2006): On properties of functional
principal components analysis. Journal of the Royal Statistical Society Series B
68, 109-126.
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Bootstrap calibration in functional linear models

Test for equality of linear models

FPCA-type estimates: examples |l

Example 2. If f,(z) = (z + an) ' 1> for a;, a sequence of positive
parameters, the estimator . is asymptotically equivalent to the
ridge-type estimator proposed by Martinez-Calvo (2008)

kn

an }: n”]
)\—l—an

B MARTINEZ-CALVO, A. (2008): Presmoothing in functional linear regression. In:
S. Dabo-Niang and F. Ferray (Eds.): Functional and Operatorial Statistics.
Physica-Verlag, Heidelberg, 223-229.
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Confidence intervals for prediction

OBJECTIVE. We want to obtain pointwise confidence intervals for a
certain confidence level o, that is, I, o C R such that

P((,x)elo)=1—«

for a fixed x € H.
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Asymptotic confidence intervals

When 6 (or x) is very well approximated by the projection on the
subspace spanned by the first k¢ eigenfunctions of I',,, the Central Limit
Theorem shown by Cardot et al. (2007) allows us to evaluate the
following approximated asymptotic confidence intervals for (0, x)

fc A YGRS
t, .0 A ty .0

Ig(;L:ij = <éc>$> — \7/’5 Zlfa/2,<90,l‘> + T\L;% Zlfa/Q ,

with £5 , = \/Zfil Aj[fe(Aj)]2(x, 0;)2, 6% a consistent estimate of o
and z, the quantile of order o of Z ~ N(0,1). !

@ CARDOT, H., MAS, A. and SARDA, P. (2007): CLT in functional linear
regression models. Probability Theory and Related Fields 138, 325-361.

lkC =sup{j:A; +68;/2>c} (61 = A1 — A2 and §; = min(Ajoy — Xf, Aj —Aj41)H0f 5 # I).

n
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Bootstrap confidence intervals |

Step 1. Obtain a pilot estimator f; = i FHN) AL (D)0, and
calculate the residuals ¢, =Y; — (04, X;) fori=1,...,n.
Step 2. (Naive) Draw ¢7,..., € i.i.d. r.v. from the cumulative
distribution of {¢&; — é}?"_,, where e =n~1 3" | &.
(Wild) For i =1,...,n, define & = ¢V;, where {V;}_; are

iid. rv., mdependent of {(XZ,Y;)}% 1, such that E(V}) =0
and E(V?) =

Step 3. Construct Y;* = (04, X;) + ¢, fori=1,...,n
Step 4. Build 07, = 37, fS(A;) A% (0;);, where A% is defined as
AL =nTt 300 (X, )Y

Remark. For consistency results, we need that ¢ < d, so the no of PC used for
Qc 4 is larger than the no of PC used for 4. In some way, we should
oversmooth when we calculate the pilot estimator.
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Bootstrap confidence intervals |l

Theorem (Gonzalez-Manteiga and Martinez-Calvo (2010))

Let f[k% be the projection on the first kS, eigenfunctions of I'y,. Under certain
hypotheses, for both the naive and the wild bootstrap,

sup Py (n'/2((85 4:3) — (0a,2)) < ) = Px(n'/?((Be, @) — ({145 0,2)) < )| 50,
Y

where Pxy denotes the probability conditionally on {(X;,Y;)}? |, and Px denotes
the probability conditionally on {X;}7 ;.

@ GONZALEZ-MANTEIGA, W. and MARTINEZ-CALVO, A. (2010): Bootstrap in
functional linear regression. Journal of Statistical Planning and Inference (to
appear).
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Bootstrap confidence intervals Il

The theorem before ensures that the a-quantiles ¢, () of the distribution
of the true error ((f,, ) — (0, z)) can be aproximated by the bootstrap
a-quantiles ¢ (z) of ((A:d,@ — (04, ).

Then we can build the next bootstrap confidence intervals for (0, x)

Lo = [0es2) = 67 o jo(@), Oes) = 420 (@)]
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Test for lack of dependence

OBJECTIVE. We want to test the null hypothesis
HO ;0= O,

being the alternative Hy : 6 # 0.
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Test for lack of dependence: asymptotic approach |

@ Cardot et al. (2003a) deduced that testing Hy is equivalent to test
Hj: A=0.
@ They proposed as test statistic

Tyn =k 12 (&-2WﬁAnAn\|2 - kn) ,

where A, (-) = Z?;l 5\;1/2<-, ;) and 62 is an estimator of 0.

@ Let us remark that

N 2

kn
1 v
Tnzi ~ _kn
o= (F R
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Test for lack of dependence: asymptotic approach Il

o Under Hj, Ty, 5 N(0,2).

@ Hence, Hj) is rejected if |T1 | > V221 _4/2 (2o the a-quantile of a
N(0,1)), and accepted otherwise.

Remark. For functional response Y, see Kokoszka et al. (2008).

@ CARDOT, H., FERRATY, F., MAS, A. and SARDA, P (2003a): Testing
hypothesis in the functional linear model. Scandinavian Journal of Statistics 30,
241-255.

@ KOKOSZKA, P., MASLOVA, |., SOJKA, J. and ZHU, L. (2008): Testing for
lack of dependence in the functional linear model. Canadian Journal of Statistics
36, 1-16.
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Test for lack of dependence: bootstrap approach |

@ The null hypothesis Hy is equivalent to
H{ : ||6]| = 0.

@ We know that

ST T C O

Therefore, we can use the statistic
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Test for lack of dependence: bootstrap approach Il

Step 1. (Naive) Draw Y;*,...,Y* i.i.d. random variables from the
cumulative distribution of {Y; — Y}, where
V=n"'3,Y
(Wild) For i = 1,...,n, define Y;* = Y;V;, where {V;}7_, are
i.i.d. r.v., independent of {(Xi,Yi)}Z’:l, such that E(V;) =0
and E(V?) =

Step 2. Build A% () =n"t 3" (X;, )Y fori=1,...,n

@ The distribution of 15 ,, can be approximated by the distribution of

k 2
» Z" A7 (95)
] J

® Hy is accepted when T} ,, < ¢7_,, being ¢}, the a-quantile of T3 ..
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Test for equality of linear models

OBJECTIVE. Let us assume that we have two samples

Yig =, X15) e, 1<i<nq,
Yo, = (02, Xo4y) + €245, 1 < iz <ng,

We also suppose that X, and X5 have the same covariance operator I'
({(A\j,v;)}; denote the eigenvalues and eigenfunctions of ") and
Var(e') = Var(e?) = o2.
The aim is to test

H() c |\91 — 92” S O7

against Hy : |61 — 0]| # 0.
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Test for equality: asymptotic approach |

@ Horvath et al. (2009) proposed the following test statistic

1
~ n R N A R "
Al,kn =N (1 + n;) (fr1 — Mz)t(zk:)(ﬂl — fi2),
where f; = ((X;)'X;)~1(X;)"Y, being X;(4,7) = (X, v;) for
e {1,2}, and 3, = 62diag(\[*, ..., A\ ).

@ Let us note that

N (Aa(dy) = Do)’

o b

oo, 1) 4 i
O—(n1+n2)J:1 J

where Ay, (z) = n; ' S0 (X0, 1)V L and {(\;,0;)}; are the
eigenelements of ' (z) = (n1 + na)~ Zz oo (X ) Xy

" 1
Mg, =
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Test for lack of dependence

Test for equality of linear models

Bootstrap calibration in functional linear models

Test for equality: asymptotic approach I

@ Under Hy, Al,kn 4, X%n-

@ Hj is rejected if /A\Lkn > ¢1—q, With g, the a-quantile of Xin, and
accepted otherwise.

B HORVATH, L., KOKOSZKA, P. and REIMHERR, M. (2009): Two sample
inference in functional linear models. Canadian Journal of Statistics 37, 571-591.
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Testing for equality: bootstrap approach |

@ Let us remark that

o —eaff = 3 (45 _sz)(m)Q

Jj=1

We are going to consider the next test statistic

Aoy,

Bootstrap Calibration in Functional Linear Regression Models
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Testing for equality: bootstrap approach Il

Step 1. Obtain 6 = Z"1+"2 FHN) AL (D)0 where

An(@) = (n1 +n2) "t Y0, YL 1 (X, )Y
Calculate the residuals &; =Y ; — (Gd,Xu) for all

i=1,...,ny, forl e {1,2}.

Step 2. (Naive) Draw ¢/ y,...,¢/,, i.i.d. random variables from the
cumulative distribution of {&.; — &}",, where
€ =mn; ! o e for e {1,2}.
(Wild) Fori=1,...,n, define ¢, = &V, where {V;}L, are
iid. rv. mdependent of {(X, Y )iy, such that E(V1) =0
and IE(V1 ) =1, forl € {1,2}.

Step 3. Build A}, (z) = n ' Y01, (Xp4, )Y}, where

1,31

Vi = (0a, X03) + ¢, foralli=1,... ny, for € {1,2}.
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Testing for equality: bootstrap approach Il

@ Hj is accepted when AQ,kn < ¢i_, with ¢} the a-quantile of

Otherwise, Hy is rejected.
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e Simulation study and real data application
@ Confidence intervals for prediction
@ Test for lack of dependence
@ Test for equality of linear models
@ Real data application
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Confidence intervals: simulation study |

@ We have simulated ns = 500 samples, each being composed of
n € {50,100} observations from a functional linear model

Y =(0,X)+e,

being X a Brownian motion and € ~ A(0,0?) with signal-to-noise

ratio 7 = o /+/E((X, 0)2) = 0.2.
@ The model parameter is

0(t) = sin(4nt), t€]0,1],

and both X and 0 were discretized to 100 design points.

@ We have fixed six deterministic curves z
21 = sin(7wt/2), xo = sin(3wt/2), 3 = t,

xy =12, x5 = 2|t — 0.5, 6 = 2L;>0.5.
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Real data application

Confidence intervals: simulation study |l

q [/ A te .6 A te .6 ]
Asymptotic ISR RS S Z1-a/2) O, z) + S 21—a/2

Bootstrap  [EIES (O, ) — A CIR (B, ) — q;/z(:p)}

To select k,,, we have used GCV technique. a € {0.05,0.10}.

For asymptotic intervals the estimation for the true variance o2 is
the residual sum of squares where k,, is chosen by GC'V.

For the bootstrap intervals, we have considered different pilot values
{IAcn — 5, ky + 2}, where ki, is the number of principal
components selected by GCV. Moreover, 1000 bootstrap iterations
were done and wild bootstrap was considered.
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Simulation study and real data application Test for lity of linear models
Real d plication

Confidence intervals: n

ok —3 6(178) 5.8 (5.35) 6(159) 8.0 (1.78) 10.8(5.92) 136 (8 93
Sk —4 6(221) 4.6 (6.55) 4(196) 5.6(218)  80(7.03) 10.0(10.97
Ik =5 8 (2.51) )

i
I
Ik —2 104(141) 10.8 (4.22) 100(126) 124 (141) 14.8 (4.86
I
I

@ Cl T3 5 Tg
5% I3V (1 15) (3 44 10.6 (1.02) 132 (1 15 19.8 (3.83)  23.0 (5.46)
I3 o ko +2 10 6 (1.14) 10 8(3.38) 11.4(1.01) 13.4(1.14) 14.4 (4.53) 17.0 (6.33)
I by +1  104(115) 104 (341) 120(102) 132 (1.14) 156 (445) 19.6 (6.27)
I; s 10 6(1.15) 11.6 (3.43) 11.6(1.02) 13.6 (1.15) 14.4 (4.41) 18.8 (6.23)
I i -1 4 (1.36) 8.8 (4.04) 8.0 (1.21) 10.2(1.37) 11.2 (4.97) 15.2 (7.11)
I; Ql% -2 5 4 (1.67) 5.4 (4.99) 5.8 (1.48) 7.4 (1.67) 7.6 (5.95) 10.8 (8.69)
I k-3 4 (2.11) 3 2 (6.33) 4.6 (1.88) 5.8 (2.11) 6.4 (7.33) 9.8(10.97)
I ]} -4 .2 (2.62) 2 (7.74) .8(2.32) 4.2(2.59) 5.0 (8.75) 7.2(13.59)
IL k=5 2 (2.96) 8 (8.80) 8(2.63) 2.4(292) 4.2(9.69) 5.4(15.63)
10% I3y 17 4 (0.97) 15 2 (2.89) 18 0(0.86) 19.2(0.96) 26.0 (3.21)  29.8 (4.58)
I; k,+2 17.2(096) 18.0 (2.87) 18.2(0.86) 19.6 (0.97) 21.0(3.77)  26.8 (5.29)
If ok, +1 17.2(0.97) 18.0(2.88) 18.8(0.86) 19.4 (0.97) 20.6 (3.70)  26.2 (5.21)
e 17.4 (0.97) 17.6 (2.89) 18.4 (0.86) 19.2 (0.97) 21.8 (3.66)  27.6 (5.16)
“ho—1 126(L15) 120 (342) 13.8(1.03) 144 (L16) 186 (408) 208 (5.87)
k ) 182 (7.13)
)
)
)

2.6 (7.44) 0(222) 48(246) 70(7.71)  7.2(1258

Table: Empirical coverage rate (lenghtx102) for n = 50.
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Confidence intervals for prediction
Test for lack of dependence

Simulation study and real data application Test for lity of linear models
Real d plication

Confidence intervals:

« Cl T, o T3 5 T
5% I‘L": 6.0 (0.83) 6.8 (2.47) 6.0 (0.74) (0 83) 14 6 (2 89) 14.2 (4.13)
It kn+2 70(082) 7.8(244) 7.6 (0.73) 0 (0.84) 4(342) 7.4 (484)
k1 7.4 (0.83) 7.2 (2.44) 82(0.74) 8 (0.83) 2 (3.37) 8.6 (4.77)
1 e 7.2 (0.83) 7.6 (2.44) 7.8(0.74) 0 (0.84) 0 (3.32) 9.4 (4.72)
Iz l; 1 6.0 (0.90) 6.8 (2.66) 6.2 (0.80) 6.2 (0.91) 2 (3.46) 8.8 (4.93)
I l; -2 42(1.09) 5.0(3.20) 4.2 (0.97) 4.8 (1.09) 7.4 (4 03) 7.8 (5.82)
Iy al; -3 1.8 (1.37) 3 0 (4.08) 2 8 (1.22) 3 6 (1.38) 8 (5.01) 5.4 (7.41)
IJ al: —4 2.2 (1.69) .6 (5.04) .6 (1.50) 4 (1.69) 4 4 (5.96) 4.4 (9.31)
I, kn—5 1.4 (1.97) 2 (5.87) 2 (1.75) 4 (1.96) 4 (6.69) 3.0(10.94)
10% I‘L"(’( 13.4 (0.69) 12 8 (2.08) 13 0 (0.62) 15 0 (0.70) 22 0(2.43) 226 (3.47)
wkn+2 142(070) 134 (206) 144 (0.62) 152 (0.70) 142 (2.85) 16.0 (4.04)
; afc +1 146 (0.70) 14.0(2.06) 14.8(0.62) 15.8(0.70) 16.4 (2.80) 18.2 (3.96)
Iz e 13.8 (0.70)  14.0 (2.06) 14.8 (0.62) 15.8 (0.70)  17.0 (2.76)  18.2(3.91)
Iz l% 1 10.8 (0.76) 12.2(2.25) 11.8(0.68) 12.0 (0.76) 16.4 (2.86)  17.4 (4.06)
Iy l: -2 8.6 (0.92) 10.0 (2.70) 8 4 (0.82) 9.0 (0.92) 13.6(3.31) 14.0 (4.78)
I l; -3 8 (1.16) 5.8 (3.45) .8 (1.03) 6.8 (1.16) 10 6 (4.09) 10.2 (6.04)
I 12 —4 4(143) 44 (425) 42(127) 52(142) (4 82) 7.4 (7.50)
. 01; -5 6 (1.66) 3.2 (4.96) 2 (1.47) 3.6 (1.65) 6 (5.38) 4.8 (8.76)

Table: Empirical coverage rate (lenghtx102) for n = 100.
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Confidence intervals for prediction
Test for lack of d

Simulation study and real data application
Real data application

Lack of dependence: simulation study |

@ We have simulated ns = 500 samples, each being composed of
n € {50,100} observations from a functional linear model

Y=00,X)+e¢,

being X a Brownian motion and ¢ ~ A'(0,02) with signal-to-noise
ratio r = 0/\/E((X, 0)2) € {0.5,1,2} (under Hy, o = 1).

@ We have considered two model parameters

ao(t) =0, te [07 1}7
0,(t) = sin(27t®)3, t€0,1].

Both X and 6 were discretized to 100 design points.
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Confidence intervals for prediction

Test for lack of dependence
Simulation study and real data application Test for equality of linear models
Real data application

Lack of dependence: simulation study Il

Statistical test Distribution
T =1 (n 5kn (An(95)% _ k N(0,2
1,n \/E 52 Z]'=1 3\] n ( )
T3 = = (p Thny L8 i)
*(b n kn D,
Tl,(n) = \/% (? Zj:l 5\]”) kn)
P 2
kn [ An(® " kn (AL
TZ,n = 2171 (%) T2,n - Z]’:l (#)

o k,e{l,...,20}; a € {0.2,0.1,0.05,0.01}

@ For asymptotic test 62 = m S, (Y — SY;)?, where S is
the hat matrix for the penalized B-splines estimator (B-splines with

degree 4 and 20 equispaced knots; second derivative for the penalty;
p selected by GCV).

@ For bootstrap test, the wild bootstrap was considered, and 1000
bootstrap iterations were done.
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Confidence intervals for prediction
Test for lack of dependence

Simulation study and real data application Test for equality of linear models
Real data application

Lack of dependence: level (6y(t) = 0) |

n=50 n=100

a

PN

o o 8789 87 0 Tgn 82 g- 2 0}
@ @
EE =
]
3° 3°
5 =
2 2
T g
Eq Eg
22 gs
i il
3 Py T A

T 23 35675 0 hnnhnbihibha T 33 25675 0 hninhiibiebha

Figure: Estimated levels using the distribution of A(0,2) (solid line), Tl*(:) (square,

dashed line), Tl*’(f) (diamond, dotted line) and T, (triangle, dash-dotted line), for
a = 0.2 (red), 0.1 (green), 0.05 (blue) and 0.01 (light blue).
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Confidence intervals for prediction
Test for lack of dependence

Simulation study and real data application Test for equality of linear models
Real data application

Lack of dependence: level (6y(t) = 0) Il

NO.2) @ 0

1n
n a k=5 k,=10 k, =20 k,=5 kn =20 kn=5 kn=10 k,=20 k=5

50 20% 19.4 17.6 16.0 214 200 216 19.0 15.2 19.8 20.8 18.4
10% 10.8 10.4 8.2 9.0 10.6 8.0 7.2 32 8.6 72 72

5% 8.2 7.0 4.4 5.0 4.6 5.0 2.4 0.0 4.0 3.2 3.0

1% 4.8 4.2 22 12 5 0.0 0.6 0.0 0.0 0.2 0.6 0.4

100 20% 15.0 19.4 20.0 20.8 19.0 21.0 20.8 18.0 21.4 19.4 17.6
10% 8.6 9.6 9.0 11.8 10.4 10.4 9.6 6.2 9.8 8.8 7.0

5% 5.6 5.2 4.0 4.4 3.6 3.6 3.4 22 4.6 5.2 2.8

1% 2.6 24 12 14 0.8 12 0.6 0.2 10 0.6 0.8

Table: Comparison of the estimated levels (as percentage) for different values of k..
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Confidence intervals for prediction
Test for lack of dependence

Simulation study and real data application Test for equal of linear models
Real data application

Lack of dependence: power (0 (t) = sin(27t3)?) |

r=0.5, n=50 r=0.5, n=100
AR 2T
Vst A
i PN
B
gs gs
g° g°
3 3 23
] 3 A
g S e
g-« §< L
i I |
o o P
v A
Ay o
2 28812000808 c8 b b bieb b obibich 2 .S N TSN SN S S S SN
T2 5 3 56 7 6 6 10 {12151 151 17 819 2 T2 35 4 56 7 6 6 211151 17 819 2

Figure: For r = 0.5, empirical power using the distribution of A/(0,2) (solid line),
779 (square, dashed line), T} " (diamond, dotted line) and T3, (triangle,
dash-dotted line), for « = 0.2 (red), 0.1 (green), 0.05 (blue) and 0.01 (light blue).

W. Gonzélez-Manteiga (USC, Spain) Bootstrap Calibration in Functional Linear Regression Models



Confi

ence intervals prediction
Test for lack of dependence
Test for equality of linear model

Simulation study and real data application

Real data application

Lack of dependence: power (0 (t) = sin(27t3)?) Il

r=1, n=50 r=1, n=100
L ] E Arbr=a
Lo Sreno.g a8
oo N
o. ° A
°. s
VA
3 ° 3 it
o Vi
o A
5. VA 5. R
g3 o| 2: L
2 Y 3 s
= AL = L
o [ ° [
5., (R 5. (R
ES [ Eg ! \
w o v
AN
Vo4
. va
S 5 S \ .
ety WA
\ a 5 .
N A a
. \ -a
s ~A«AﬁA~AAa-AvAAxA B A;Af\_faﬁ 828200028004
T2 3 3 56 7 6 6 {1211 1515 17 515 2 T2 35 3 56 7 6 6 fif21 15151761 2

Figure: For r = 1, empirical power using the distribution of A'(0,2) (solid line)
Tl*,(:) (square, dashed line), T

*( ) (diamond, dotted line) and T3 (triangle,
dash-dotted line), for o = 0.2 (red), 0.1 (green), 0.05 (blue) and 0 01 (light blue).

W. Gonzélez-Manteiga (USC, Spai

Bootstrap Calibration in Functional Linear Regression Models



Confidence intervals for prediction
Test for lack of dependence

Test for equality of linear models
Real data application

Lack of dependence: power (6, (t in(27t%)3) 1l

Simulation study and real data application

r=2, n=50
EE EE (RIS
H H A
g = oA
T B ! \
153 e v
B g, L8
E3 £3 P
w w VoA .
LN a
) N A\ °. °. ° ) a A\ a--a
a o, \ Sa-an,
N4 A B-aoap © SN ~a--a
a B SA-Biiaiaipp O s, a. Sa-Aip-a oA
el SN a Saaabas s
a. TB-Bepip-A_p -4 -, ~a a8, Ta--a.
s R = S e B e N TR Y~ = Ty Y
T 23155673 neButnibha
kn

T 2 3 4 5 6 7 & 6 1011 12 13 14 15 16 17 18 15 20

Figure: For r = 2, empirical power using the distribution of A/(0,2) (solid line)
T;(:) (square, dashed line), T} *( ) (diamond, dotted line) and T3 (triangle,
dash-dotted line), for o = 0.2 (red), 0.1 (green), 0.05 (blue) and 0 01 (light blue).
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Confidence intervals for prediction
Test for lack of dependence

Simulation study and real data application Test for equality of linear models
Real data application

dependence: power (6 (%)

N(0,2) 7y Y T,
I3 n a kn=5 Fkn=10 k=20 kn=5 Fkn=10 k=20 kn=5 Fkn=10 k,=20 kn=5 Fkn=10 k,=20
0.5 50 20% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 88.8 0.0 0.0
10% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 60.8 0.0 0.0
5% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.0 322 0.0 0.0
1% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.4 51.4 3.4 0.0 0.0
100 20% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1.0 0.0
10% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0
5% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.4 0.0 0.0
1% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 70.0 0.0 0.0
1 50 20% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.2 66.6 3.6 0.2
10% 100.0 100.0 100.0 100.0 100.0 99.8 100.0 99.8 89.6 33.6 0.8 0.0
5% 100.0 100.0 99.8 100.0 100.0 99.6 100.0 99.0 59.6 16.6 0.2 0.0
1% 100.0 100.0 99.6 99.6 97.6 94.6 95.2 67.6 2.6 2.2 0.0 0.0
100 20% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 97.0 7.8 0.0
10% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 86.4 22 0.0
5% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 67.8 1.0 0.0
1% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 21.6 0.2 0.0
2 50 20% 85.4 75.6 66.8 89.0 81.2 77.2 89.0 76.8 51.4 34.0 11.8 7.2
10% 80.0 68.6 56.4 79.4 68.6 59.4 76.4 57.4 20.2 16.6 4.0 2.4
5% 74.4 62.2 48.4 67.4 51.6 43.6 60.8 37.8 6.2 10.4 1.0 0.4
1% 67.4 51.4 35.6 40.0 26.4 20.2 25.4 6.0 0.0 0.8 0.0 0.0
100 20% 99.8 98.8 94.6 100.0 99.8 98.0 100.0 99.2 94.2 60.0 14.6 7.6
10% 99.6 96.6 91.2 99.6 97.2 93.6 99.6 96.0 82.4 342 6.2 2.0
5% 99.6 95.6 85.8 97.8 94.0 85.8 97.2 90.4 64.6 18.0 28 0.4
1% 97.6 91.4 75.4 88.2 76.4 64.0 85.2 63.4 26.2 22 0.8 0.0

Table: Comparison of the empirical power (as percentage) for different values of k,
and sample sizes.
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Confidence intervals f

Test for lack of depe
Simulation study and real data application Test for equality

Real data application

Equality of linear models: simulation study |

@ We have simulated ns = 500 pairs of samples, each being composed
of n1,ng € {50,100} observations from the functional linear models

Yii = (01, X1,6,) e, 1<i <ng,
5/2,1'2 = <02)X2,i2> + €2iq, 1 S 7;2 S na,

being X a Brownian motion and ¢ ~ N(0,0?) with signal-to-noise
ratio 7 = o /+/E({X, 0)2) € {0.2}.

@ We have considered the following model parameters

01(t) = 2sin(0.57t) + 4sin(1.57t) + 5sin(2.57t), t € [0,1],
02(t) = ¢ (2sin(0.57t) + 4sin(1.57t) + 5sin(2.57t)), ¢ € [0,1],

with ¢ € {1,2}. Both X and 6 were discretized to 100 points.
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Confidence intervals for p

Test for la f dependence
Simulation study and real data application Test for equality of linear models

Real data application

Equality of linear models: simulation study Il

Statistical test Distribution
R kn (ALn (b)) —ADo.n (b :
Ay, = 52(¢1+¢) S [ES) (“J)A] 2, (95)) Xin
ar T ag
* - * o 2
A — 1 T (D10 (05)=85,,(5)
L (6*)2(ﬁ+%> ZJ:I A 2
A0 _ 1 ko (AL (0))=AF,(85))
Ay, = 02(%+%) Z]:1 5,
i ko ((Bra—82.)(0) ) Ax ko ((B1,=85,00,)\2
Aoy, = Zj:l (( 1 L. )(u)) Ay = szI ( i ;\;, 0; )

® k,e{l,...,10}; « € {0.2,0.1,0.05,0.01}
@ For asymptotic test, 52 is the residual standard deviation.

@ For bootstrap test, the wild bootstrap was considered, and 1000
bootstrap iterations were done.
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Confidence inter

Test for lack de| ce
Simulation study and real data application Test for equality of linear models

Real data application

Equality of linear models: level (¢ = 1) |

n=50 n=100

025
025

015

Estimated levels
Estimated levels

000
000

Figure: Estimated levels using the distribution of X%n (solid line), T;,(:) (square,

dashed line), Tl*(rlz) (diamond, dotted line) and T, (triangle, dash-dotted line), for
a = 0.2 (red), 0.1 (green), 0.05 (blue) and 0.01 (light blue).
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Confidence intervals for prediction
Test for lack of dependence

Simulation study and real data application Test for equality of linear models
Real data application

Equality of linear models: level (¢ = 1) I

V: T I
n a k=1 kn=5 ko=10 k,=1 kn =10 kn= kn=5 kn=10 k,=1 kn =10
50 20% 215 223 27.4 20.2 17.1 20.5 205 21.7 18.7 17.1
10% 113 L 107,11 10.2 8.4 9.7 9.2 10.5 8.4 7.2
5% 4.9 6.1 10.2 6.4 3.8 5.4 3.6 4.1 4.6 3.6
1% 0.3 L3 3.6 0.5 0.8 0.3 0.8 0.0 0.8 1.0
100 20% 2N 220 23.0 223 17.4 235 21.2 17.9 223 19.9
10% 13 10.2 12.8 115 8.4 115 10.5 9.5 10.2 9.0
5% 6.4 5.6 6.9 4.3 6.4 43 4.9 6.4 3.6 4.9 43
1% i i3 2.6 18 15 18 i3 iLg 13 18 0.8

Table: Comparison of the estimated levels (as percentage) for different values of k.
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Confidence inter

Test for lack de| ce
Simulation study and real data application Test for equality of linear models

Real data application

Equality of linear models: power (

n=50 n=100
S e
Rixl
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-
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Figure: Empirical power using the distribution of Xin (solid line), T;,(;:) (square,

dashed line), Tf(ﬁ) (diamond, dotted line) and T, (triangle, dash-dotted line), for
a = 0.2 (red), 0.1 (green), 0.05 (blue) and 0.01 (light blue).
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Confidence intervals for prediction
Test for lack of dependence

Simulation study and real data application Test for equality of linear models
Real data application

Equality of linear models: power (c = 2)

X T [ n
n a k=1 kn=5 kn=10 kn=1 kn=5 kn=10 kn=1 kn=5 kn=10 k=1 k=5 k,=10
50 20.0 99.2 100.0 100.0 95.7 100.0 100.0 96.2 100.0 100.0 82.6 47.6 18
10% 98.5 100.0 100.0 93.9 100.0 100.0 94.1 100.0 100.0 80.6 279 03
5% 97.2 100.0 100.0 92.1 100.0 100.0 931 100.0 100.0 78.8 18.2 0.0
1% 88.5 100.0 100.0 89.0 100.0 100.0 89.8 100.0 100.0 76.7 5.9 0.0
100 20% 100.0 100.0 100.0 99.2 100.0 100.0 99.2 100.0 100.0 89.3 66.8 43
10% 100.0 100.0 100.0 99.0 100.0 100.0 99.0 100.0 100.0 88.7 57.5 03
5% 99.7 100.0 100.0 98.5 100.0 100.0 98.5 100.0 100.0 87.5 49.1 0.0
1% 99.5 100.0 100.0 96.9 100.0 100.0 97.4 100.0 100.0 85.2 29.7 0.0

Table: Comparison of the empirical power (as percentage) for different values of ky,
and sample sizes.
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Simulation study and real data application Test for equalit inear models
Real data application

Real data application: atmospheric pollution data |

We are going to apply the tests exposed before to an environmental
example.

@ We have obtained concentrations of hourly averaged NO,, in the
neighbourhood of a power station belongs to ENDESA, located in
As Pontes in the Northwest of Spain. During unfavorable
meteorological conditions, NO,, levels can quickly rise and cause an
air-quality episode.

@ The aim is to forecast NO, with half an hour horizon to allow the
power plant staff to avoid NO, concentrations reaching the limit
values fixed by the current environmental legislation.

@ We have built a sample where each curve X corresponds to 240
consecutive minutal values of hourly averaged NO, concentration,
and the response Y corresponds to the NO, value half an hour
ahead (from Jan 2007 to Dec 2009).
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Simulation study and real data application
Real data application

Real data application: atmospheric pollution data Il

Google
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Simulation study and real data application

X(-239) X(179) X(-119) X(59) X0 1 H 3

Figure: The curves X correspond to 240 consecutive minutal values of hourly
averaged NO, concentration (left), and the response Y corresponds to the NO,
value half an hour ahead (right). The data are classified in 3 bins depending on
X [240] value: < 10 (red), 10 — 20 (green), and > 20 (blue).
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Simulation study and real data application of linear models

Jua
Real data application

Real data application: atmospheric pollution data IV
@ Testing lack of dependence: Hy: 6 = 0.

* *(D
X% . Tl 7?) T % TQ*m,

n 1,n

kn =05 0 0 0 0.000
kn =10 0 0 0 0.002
kn=20 0 0 0 0011

Table: P-values for testing the lack of dependence.
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Confidence interva prediction

Simulation study and real data application y of linear models

Real data application

Real data application: atmospheric pollution data V

@ Testing for equality of linear models: Hy : ||6; — 62]| = 0.

Bin1&2 Bin1&3 Bin2&3
B, hE oY T, 3, Y T T, o, Ty T o,

1n Ln Ln
k, =5 0.000 0.069 0.044 0.285 0.011 0.021 0.366 0.018 0.902 0.917 0.934
k, =10 0.001 0.954 0.931 0.461

0.012 0.009 0.807 0.000 0.458 0.302 0.748
k, =20 0.000 0.228 0.114 0.294 0.178 0.132 0.138 0.000 0.015 0.013 0.644

o

o o of

Table: P-values for testing equality between the bin 1 and the bin 2 (left), the
bin 1 and the bin 3 (center), and the bin 2 and the bin 3(right).
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Outline

@ Conclusions
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Conclusions

Conclusions

@ The proposed bootstrap methods seems to give test levels closer
nominal ones than the tests based on the asymptotic distributions.

@ In terms of the power of the tests, the statistic tests which include
the error variance o2 are powerful that the tests which don't take it
into account.

@ In all the cases, the adequate k,, choice is quite important. This is
still an open question.

@ Further research: extension to functional response.

W. Gonzélez-Manteiga (USC, Spain) Bootstrap Calibration in Functional Linear Regression Models



Conclusions

Bootstrap Calibration in Functional Linear

Regression Models with Applications

Wenceslao Gonzalez-Manteiga
(jointly with Adela Martinez-Calvo)

Departamento de Estadistica e 1.0.
Universidad de Santiago de Compostela (Spain)

DEPARTAMENTOQ DE ESTATISTICA
E INVESTIGACION OPERATIVA

COMPSTAT’2010, Paris (France)
August 23, 2010

W. Gonzilez-Manteiga (USC, Spain) Bootstrap Calibration in Functional Linear Regression Models



	Introduction
	Bootstrap in finite dimensional case
	Bootstrap in functional case

	Bootstrap calibration in functional linear models
	FPCA-type estimates
	Confidence intervals for prediction
	Test for lack of dependence
	Test for equality of linear models

	Simulation study and real data application
	Confidence intervals for prediction
	Test for lack of dependence
	Test for equality of linear models
	Real data application

	Conclusions

