An Exploratory Segmentation Method for Time Series

Christian Derquenne

EDF R&D

Outline

Issues and motivations

- The proposed method
- Application : a simulated case
- Contributions, applications and further researches

Decomposition of times series

 \rightarrow Trend, seasonality, volatility and noise

More less regular with respect application case

Evolution of electric consumption for 50 years

 \Rightarrow Regular phenomena \Rightarrow forecasting model at short term (MAPE < 1,5%)

Evolution of financial series (CAC40, S&P 500, ...)

- \Rightarrow Trend and seasonality occur less regularly and less frequently
- \Rightarrow Volatility and irregularly
- ⇒ Behaviors breaks could characterize series (peaks, level breaks, trend changes, volatility)
- \Rightarrow The data modeling is very delicate, to forecast these series can be close to an utopian view

Interest to detect behavior breakpoints

- \rightarrow Building contiguous segments (segmentation)
- \rightarrow Interesting to detect behavior breakpoints
- \rightarrow Achieving stationarity of time series with a segmentation model
- \rightarrow Building symbolic curves to cluster series
- \rightarrow Modeling multivariate time series

Potential applications

 \rightarrow Economics, finance, human sequence, meteorology, energy management, etc.

Some examples of methods

- → Exploring the segmentation space for the assessment of multiple change-point models [Guédon, Y. (2008)]
- → Inference on the models with multiple breakpoints in multivariate time series, notably to select optimal number of breakpoints [Lavielle, M. et al. (2006)]
- → Sequential change-point detection when the pre- and post-change parameters are unknown [Lai, TL. et al. (2009)]

Common point of these methods

- \rightarrow Using of dynamic programming to decrease computation complexity of segmentations (total number = 2^{T-1})
- → Complexity is generally in $O(ST^2)$ for the time and in O(ST) for the linear clustered space, but also: $O(T^2)$ and $O(MT^2)$ where T = length of series ; S = number of segments ; M = number of de series

Three problems studied by these methods

- (i) Change mean with a constant variance
- (ii) Change of variance with a constant mean
- (iii) Change for overall distribution of time series without change of level, in dispersion and on the distribution of errors

The proposed method

- \rightarrow Detection of increasing or decreasing trend [Perron & al., 2008]
- \rightarrow To reduce the computation complexity in O(KT), where K is the smoothing degree, which is generally less than to \sqrt{T}
- → Proposition of some solutions of segmentation containing segments with increasing or decreasing trend, constant level and different standard-deviations

Outline

Issues and motivations

The proposed method

Application : a simulated case

Contributions, applications and further researches

Let's $(Y_t)_{t=1,T}$ be a time series, we suppose that it is decomposed in accordance with an heteroskedastic linear model (or variance components) [Rao & al., 1988, Searle & al., 1992]:

$$Y_t = \sum_{s=1}^{S} \left(\beta_0^{(s)} + \beta_1^{(s)} t + \sigma_s \varepsilon_t \right) \mathbf{1}_{[t \in \tau_s]}$$
(1)

where $\beta_0^{(s)}, \beta_1^{(s)}$ and $\sigma_s > 0$, are respectively the level, trend and standarddeviation parameters for the segment τ_s , and ε_t is a $\mathcal{N}(0,1)$

 $T_s = \operatorname{card}(\tau_s)$ and $\sum_{s=1}^{S} T_s = T$ then there are 3S parameters to estimate and the number S of segments

Inference: OLS; ML; REML

- \rightarrow same solutions for $\beta_0^{(s)}$ and $\beta_1^{(s)}$ with the three estimators
- \rightarrow ML and REML estimate directly σ_s^2
- \rightarrow Only **REML** provides an unbiased estimator of σ_s^2

Detailed process: preparing data

Step of smoothing: To keep only the « strong » trends
→ Using moving median:

$$m_j(t) = \underset{t \in [a_j(t), b_j(t)]}{med} (y_t)$$
(2)

where for *j* (smoothing degree) fixed: $a_j(t) = t$ et $b_j(t) = t + j - 1$ où t = 1 à T - j + 1

Remark: The more *j* increases, the less irregularity of data is taken into account

A little example:

 $Y_t \sim \mathcal{N}(5; 0,01) \text{ pour } t = 1,40$ $Y_t \sim \mathcal{N}(6; 0,01) \text{ pour } t = 41,100$

Detailed process: preparing data

Step of smoothing: *To keep only the « strong » trends* → Using moving median:

$$m_j(t) = \underset{t \in [a_j(t), b_j(t)]}{med} (y_t)$$
(2)

where for *j* (smoothing degree) fixed: $a_j(t) = t$ et $b_j(t) = t + j - 1$ où t = 1 à T - j + 1

Detailed process: preparing data

Differencing step: to detect the trends of smoothed data

 \rightarrow Using a relative deviation:

$$d_{j}(t) = \left(m_{j}(t) - m_{j}(t-k) \right) / m_{j}(t-k)$$
(3)

where k = t - j/2 if j is even and k = t - (j+1)/2 if j is odd

This differencing must be sufficiently high to reveal trend deviations, but not too much otherwise it could be skipped

Remark: it is only a visual choice and not a theoretical choice

Detailed process: preparing data

Step of counting: number and size of initial segments

$$T_{j,1}^{(0)} = \operatorname{card}(\tau_{j,1}^{(0)}) = \sum_{t \ge 2} \mathbb{1}_{[\operatorname{sign}(d_j(t)) = \operatorname{sign}(d_j(t-1))]}$$
(4)

 $S \text{ segments: } \left(\tau_{j,1}^{(0)}, ..., \tau_{j,s}^{(0)}, ..., \tau_{j,S}^{(0)}\right) \text{ with size } \left(T_{j,1}^{(0)}, ..., T_{j,s}^{(0)}, ..., T_{j,S}^{(0)}\right) \text{ and } \sum_{s=1}^{S} T_{j,s}^{(0)} = T$

Justification:

(i) the nb of values with the same sign is reasonably linked to the smoothing deg.(ii) The smaller smoothing degrees is, the smaller size of series of differences with same sign is

Detailed process: preparing data

Step of counting: number and size of initial segments

$$T_{j,1}^{(0)} = \operatorname{card}(\tau_{j,1}^{(0)}) = \sum_{t \ge 2} \mathbb{1}_{[\operatorname{sign}(d_j(t)) = \operatorname{sign}(d_j(t-1))]}$$
(4)

 $S \text{ segments: } \left(\tau_{j,1}^{(0)}, ..., \tau_{j,s}^{(0)}, ..., \tau_{j,S}^{(0)}\right) \text{ with size } \left(T_{j,1}^{(0)}, ..., T_{j,s}^{(0)}, ..., T_{j,S}^{(0)}\right) \text{ and } \sum_{s=1}^{S} T_{j,s}^{(0)} = T$

Justification:

(i) the nb of values with the same sign is reasonably linked to the smoothing deg.(ii) The smaller smoothing degrees is, the smaller size of series of differences with same sign is

Detailed process: modeling data

Initial step: To reduce the number of initial segments

$$Y_{t} = \sum_{s=1}^{S} \left(\beta_{0}^{(j,s)} + \beta_{1}^{(j,s)} t + \sigma_{j,s} \varepsilon_{t} \right) \mathbf{1}_{\left[t \in \tau_{j,s}^{(0)} \right]}$$
(5)

Inference :

(i) Estimation of parameters with REML

(ii) Homogeneity test of variance (homoskedasticty) $\Rightarrow \text{If } H_0 \text{ is kept:} \qquad Y_t = \sum_{i=1}^{S} \left(\beta_0^{(j,s)} + \beta_1^{(j,s)}t\right) \mathbb{1}_{\left[t \in \tau_{j,s}^{(0)}\right]} + \sigma_j \mathcal{E}_t$

(iii) *Test of the coefficients:* $\beta_1^{(j,s)} = 0$ for each segment with respect to (ii)

$$\Rightarrow \text{New model:} \qquad Y_t = \sum_{s=1}^{S} \left(\beta_0^{(j,s)} + \beta_1^{(j,s)} t \mathbf{1}_{\left[\beta_1^{(j,s)} \neq 0\right]} + \sigma_{j,s} \varepsilon_t \right) \mathbf{1}_{\left[t \in \tau_{j,s}^{(0)}\right]}$$
(7)

24th September 2010 COMPSTAT 2010

(6)

Detailed process: modeling data

(iv) Aggregation of consecutive segments (2 by 2)

(a) Test of equal variances on:

$$Y_{t} = \left(\beta_{0}^{(j,s)} + \beta_{1}^{(j,s)}t + \sigma_{j,s}\varepsilon_{t}\right) \mathbf{1}_{\left[t \in \tau_{j,s}^{(0)}\right]} + \left(\beta_{0}^{(j,s+1)} + \beta_{1}^{(j,s+1)}t + \sigma_{j,s+1}\varepsilon_{t}\right) \mathbf{1}_{\left[t \in \tau_{j,s+1}^{(0)}\right]}$$
(8)

 \Rightarrow If H_0 is rejected then the both segments are not regrouped

(b) Otherwise, a test of equal coefficients is applied: $\beta_1^{(j,s)} = \beta_1^{(j,s+1)}$ \Rightarrow If H_0 is rejected then the both segments are not regrouped

(c) Otherwise, a test of equal intercepts is applied: $\beta_0^{(j,s)} = \beta_0^{(j,s+1)}$

 \Rightarrow If H_0 is rejected then the both segments are not regrouped

Detailed process: *modeling data*

First model:

$$Y_{t} = \sum_{s=1}^{S_{1}} \left(\beta_{0}^{(j,s)} + \beta_{1}^{(j,s)} t + \sigma_{j,s} \varepsilon_{t} \right) \mathbb{1}_{\left[t \in \tau_{j,s}^{(1)} \right]}$$
(9)

with $S_1 \leq S$

where S_1 is the new number of segments

Phase de modelisation segmentee regroupee : Lag = 2 nb = 14

Detailed process: modeling data

Further steps of modeling: until the number of segments is satisfactory

Inference :

- (i) The model (9) is submitted to the same process of successive tests as presented previously until the number of segments is satisfactory
- (ii) In state of the work, the precise convergence criteria (cf. further researches)

Phase de modelisation finale apres elimination (apres interpolation) : Lag = 1 nb final = 4

Models assessment

- (i) A number K of smoothing degrees is fixed and K segmentations are obtained
- (ii) The final model for some segmentations will allow to reconstitute well data and will have a higher probability to provide a good segmentation
- (iii) Remark: Even if the T smoothing degrees are tried, the optimal segmentation is not guaranteed with a probability equal to one, but the goal of this method is not this one
- (iv) Goal: to propose some interesting segmentations, in terms of decision aid
- (v) To evaluate each final model and to offer some possible segmentations, REML and MAPE are used. Then the smaller values of these last ones are preferred to decide the quality level of the segmentation
- (vi) Remark: These measures are heuristic choices because they can have an impact in the process of segmentation, notably to select one or several uninteresting segmentations

Models assessment

COMPSTAT 2010

Phase de modelisation finale apres elimination (apres interpolation) : Lag = 48 nb final = 3

Cede

Solution for Fixed Effects						
Effect	cls_final	Estimate	Standard Error	DF	t Value	Pr > t
t*drap_fin*cls_fimal	1	0	-	-	-	-
t*drap_fin*cls_final	2	0	-	-	-	-
ds_fimel	1	4.9904	0.01542	98	323.68	<.0001
cls_fimel	2	5.9950	0.01349	98	444,45	<.0001

Outline

- Issues and motivations
- The proposed method
- Application : a simulated case
- Contributions, applications and further researches

Application: a simulated case

MAPE = 7,1%; %BCL = 85,3%

Comparaison des segments reels et estimes

Distribution des pourcentages d'erreurs relatives

COMPSTAT 2010

Application: a simulated case

Application: a simulated case

An interest to achieve stationarity a time series

Outline

- Issues and motivations
- The proposed method
- Application : a simulated case

Contributions, applications and further researches

Contributions, applications and further researches

The proposed method allows to segment a time series

- \rightarrow It offers an original process containing a stage of preparing data which is essential to build the most adequate structure to initialize stage of modelling
- \rightarrow The modeling step is in accordance with an heteroskedastic linear model including the different trends, levels and variances
- \rightarrow The goal of this method is not to provide the optimal segmentation as the majority of the methods discussed in introduction, but to provide a decision aid. Indeed, even if the minimum complexity of the other methods is in $O(T^2)$, it stays high, however
- \rightarrow The method introduced in this paper uses only assessment criteria, such as values of REML, MAPE and percentage of relative errors less than 10%

Contributions, applications and further researches

- \rightarrow Complexity is in O(T) for each smoothing degree and the number of this last one is rarely greater than \sqrt{T} . Indeed, for high smoothing degree, the quality of segmentations decreases rapidly, because they move away optimality, even if this one is empirical
- →This method can be used in a lot of domains of application and for a lot of objectives: searching of segments, achieving stationarity, building of different models on a same time series having different behaviors, simplifying (symbolic approach) of several time series to make clustering of curves, etc
- \rightarrow This method is rather preliminary and we work to improve some steps of this method, particularly on the detection of volatility in data and on the evaluation and the validation tools of segmentations to obtain a better means to have a hierarchy of these last ones

Bibliography

Bartlett, M.S. (1937): Properties of sufficiency and statistical tests. *Proceedings of the Royal Society of London*, Series A **160**, 268-282.

Guédon, Y. (2008): Exploring the segmentation space for the assessment of multiple change-point models. Institut National de Recherche en Informatique et en Automatique, *Cahier de recherche 6619*.

Harville, DA. (1977): Maximum likelihood approaches to variance Component estimation and to related problems. *J Amer Stat Assoc* 72, 320-340.

Lai, TL. and Xing, H. (2009): Sequential Change-point Detection when the pre- and post-change parameters are unknown. *Technical report 2009-5*, Stanford University, Department of Statistics.

Lavielle, M. and Teyssière, G. (2006): Détection de ruptures multiples dans des séries temporelles multivariées. *Lietuvos Matematikos Rinikinys*, Vol **46**.

Perron, P. and Kejriwal, M. (2006): Testing for Multiple Structural Changes in Cointegrated Regression Models. Boston University, *C22*.

