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Introduction
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● Context:
Complex genetic diseases 

= multifactorial genetic diseases caused by a combination of 
genetic factors (eg genes) and environmental factors (eg sex, 
age...).

Examples: diabetes, asthma, hypertension, some cancers...
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● Dissect the genetic basis of these diseases:
Genome-wide association studies (GWAS)

→ identification of genetic markers associated with common, 
complex diseases.

Chromosome

Markers

 The human genome variability is covered by hundreds of thousands of 
markers.
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Fondamental concept of 
association genetics
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LD

Marker

LD

Marker
Causal 

mutation

LD between markers and their surrounding area on the chromosome.

● Linkage disequilibrium (LD):
→ dependences generally observed between close SNPs on the 
chromosome,

→ at the basis of GWAS.

Chromosome
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Presentation of genetic data
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DNA
> 100k SNP

Ternary variables

Phenotype
1 binary variable:

- 1000 non-affected individuals
- 1000 affected individuals

● Characteristics:
→ large number of genetic variables (SNP): combinatorial 
explosion

→ strong dependences among genetic variables
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Our approach
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LV

Cliques of highly 
dependent SNPs

Latent variables (LV) 
synthetizing the 

information of SNP cliques

Data dimension 
reduction

SNP SNP

SNPSNP

SNP SNP

SNP

LV

● Reduce the data dimension by synthetizing the information 
of highly dependent SNPs, due to LD.
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● Provide a flexible and adapted probabilistic model to reduce 
dimension for genetic data.

Characteristics of data: dependences 
by blocs of SNPs

Proposed modelling

Forest of Hierarchical Latent Class 
models (FHLCMs)

Genome sequence

Latent variables

Observed variables 
(SNPs)
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● Advantages of this modelling:
→ hierarchical, thus : 

- various degrees of dimension reduction,
- various degrees of LD strength,

→ each latent variable can reveal multiple-SNP patterns, 
potentially relevant to explain the disease,

→ contrary to Hierarchical Latent Class model, SNPs are not 
constrained to be dependent upon one another,

→ high-order interactions between SNPs can be taken into 
account.
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● Proposed algorithm to learn both parameters 
and structure of FHLCMs from data:
CFHLC (Construction of Forests of Hierarchical 
Latent Class models).

→ based on an agglomerative hierarchical procedure to ensure 
scalability,

→ uses clique partitioning methods for an efficient discovery of 
non-overlapping cliques of dependent SNPs,

→ not restricted to binary variables and binary trees, as Hwang 
et al.'s algorithm.
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Schema of the 
algorithm:



 COMPSTAT 2010 16

Mourad R. et al  : Learning Hierarchical Bayesian Networks for GWAS

Results and discussion
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● Protocol testing:
→ C++ implementation,

→ run on a standard pc (3.8 GHz, 3.3 Go RAM),

→ tested on simulated unphased genotypic data consisting of 
2000 individuals and 1k, 10k or 100k SNPs, generated with the 
software Hapsimu.
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Scalability
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Visual display of a FHLCM: 
100 snp sequence

Latent variables

Observed variables 
(SNPs)

High dependence 
regions

Low dependence 
regions

High-order 
dependences
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Conclusion and outlooks
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Conclusion:
● CFHLC algorithm have been shown to be efficient on 

genome-scaled data,
● Can provide a data dimension reduction of 80%.

Perspectives:
● Application on the detection of genetic associations 

thanks to FHLCM's latent variables,
● Visualization of LD structure through the FHLCM's 

graph.
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Thanks for your attention
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Questions
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Impact of window size on 
running time
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Impact of window size on 
dimension reduction
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General on GWASs:
- Balding D. (2006): a tutorial on statistical methods for 
population association studies.

     Specific to probabilistic graphical models:
- Verzilli (2007): Bayesian graphical models for genome-wide 
association studies. 
- Hwang (2006): learning hierarchical Bayesian networks for 
large-scale data analysis.
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