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Correlated Component Regression (CCR)

New methods are presented that extend traditional regression modeling to apply to 
high dimensional data where the number of predictors P exceeds the number of 
cases N (P >> N). The general approach yields K correlated components, weights 
associated with the first component providing direct effects for the predictors, and 
each additional component providing improved prediction by including suppressor 
variables and otherwise updating effect estimates. The proposed approach, called 
Correlated Component Regression (CCR), involves sequential application of the 
Naïve Bayes rule. 

With high dimensional data (small samples and many predictors) it has been shown 
that use of the Naïve Bayes Rule:

“greatly outperforms the Fisher linear discriminant rule (LDA) under 
broad conditions when the number of variables grows faster than the 
number of observations”, Bickel and Levina (2004) 

even when the true model is that of LDA! Results from simulated and real data 
suggest that CCR outperforms other sparse regression methods, with generally good 
outside-the-sample prediction attainable with K=2, 3, or 4. 

When P is very large, an initial CCR-based variable selection step is also proposed. 
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Outline of Presentation
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• The P > N Problem in Regression Modeling

• Important Consideration: Inclusion of Suppressor Variables

• Sparse Regression Methods

 Penalty approaches -- lasso, Elastic Net (GLMNET)

 PLS Regression (PLSGENOMICS, SPLS)

 Correlated Component Regression (CORExpress™)

• Results from Simulations and Analyses of Real Data

• Initial Pre-screening Step for Ultra-High Dimensional Data

• Planned Correlated Component Regression (CCR) Extensions



COMPSTAT – August 2010

The P > N Problem in Regression Modeling
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Problem 1:
When the number of predictor variables P approaches or exceeds sample size N, coefficients 
estimated using traditional regression techniques become unstable or cannot be uniquely 
estimated due to multicolinearity (singularity of the covariance matrix), and in logistic 
regression, perfect separation of groups occurs in the analysis sample.  The apparent good 
performance often is due to overfitting, and will not generalize to the population, performing 
worse than more parsimonious models when applied to new cases outside the sample.

Approaches for obtaining more parsimonious (or regularized) models include:
• Penalty methods – impose explicit penalty 
• Component approaches – exclude higher dimensions

In this presentation we focus on linear discriminant analysis, and on linear, logistic  and Cox 
regression modeling in the presence of high-dimensional data.
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Example: Logistic Regression with More Features than Cases: P > N
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Logistic Regression model for dichotomous dependent variable Z and P predictors:

• As P approaches the sample size N, overfitting tends to dominate and estimates for 
the regression coefficients become unstable

• Complete separation always attainable for P = N - 1

• Traditional algorithms do not work for P > N as coefficients are not identifiable
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Important Consideration: Inclusion of Suppressor Variables
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Problem 2:
Suppressor variables , called “proxy genes” in genomics (Magidson, et. al., 2010), have no 
direct effects, but improve prediction by enhancing the effects of genes that do have direct 
effects “prime genes”. Based on experience with gene expression and other high dimensional 
data, suppressor variables often turn out to be among the most important predictors:  

 6-gene model for prostate cancer (single most important gene, SP1, is a proxy gene)
 Survival model for prostate cancer (3 prime and 3 proxy genes supported in blind validation)
 Survival model for melanoma (2 proxy genes in 4-gene model supported in blind validation)

Despite the extensive literature documenting the strong enhancement effects of suppressor 
variables (e.g., Horst, 1941, Lynn, 2003, Friedman and Wall, 2005), most pre-screening  
methods omit proxy genes prior to model development, resulting  in suboptimal models. 

This is akin to:          “throwing out the baby with the bath water”.

Because of their sizable correlations with associated prime genes, proxy genes can also provide 
structural information useful in assuring that these associated prime genes are selected with 
the proxy gene(s), improving over non-structural penalty approaches.
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Concentration Ellipses based on Validation DataConcentration Ellipses based on Training Data

Prime/Proxy 
CD97/SP1

Prime/Proxy 
CD97/SP1

Example of Prime/Proxy Gene Pair in 2-Gene Model Providing Good Separation of                             
Prostate Cancer (CaP) vs. Normals, Confirmed by Validation Data

CaP Subjects  have 
elevated CD97 ct 
level as compared to 
Normals – Red ellipse 
lies above blue ellipse.

CaP and Normals do 
not differ on SP1, 
despite its high 
correlation with CD97. 
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Inclusion of SP1 significantly improves prediction of in CaP vs. Normals over 
CD97 alone: AUC = .87 vs. .70 (training data), and .84 vs. .73 (validation data) .
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Some Sparse Regression Approaches
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Sparse means method involves simultaneous regularization and variable reduction

A) Sparse Penalty Approaches – dimensionality reduced by setting some coefficients to 0

• LARS/Lasso (L1- regularization): GLMNET (R package)
• Elastic Net (Average of L1 and L2 regularization): GLMNET (R package)
• Non-convex penalty: e.g., TLP (Shen, et. al, 2010); SCAD, MCP -- NCVREG (R package)

B)    PLS Regression – dimensionality reduced by excluding higher order components
P predictors replaced by K < P  orthogonal components each defined as a linear 
combination of the P predictors; orthogonality requirement yields extra components

• e.g., Sparse Generalized Partial Least Squares (SGPLS): SPLS R package
-- Chun and Keles (2009)

C) CCR: Correlated Component Regression – designed to include suppressor variables
P predictors replaced by K < P  correlated components each defined as a linear 
combination of the P (or a subset of the P) predictors: CORExpress™ program

-- Magidson (2010)
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Correlated Component Regression Approach*
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Correlated Component Regression (CCR) utilizes K correlated components, each 
a linear combination of the predictors, to predict an outcome variable. 

• The first component S1 captures the effects of prime predictors which have 
direct effects on the outcome. It is a weighted average of all 1-predictor effects.

• The second component S2, correlated with S1, captures the effects of 
suppressor variables (proxy predictors) that improve prediction by removing 
extraneous variation from one or more prime predictors. 

• Additional components are included if they improve prediction significantly. 

Prime predictors are identified as those having significant loadings on S1, and 
proxy predictors as those having significant loadings on S2, and non-significant 
loadings on component #1. 

• Simultaneous variable reduction is achieved using a step-down algorithm 
where at each step the least important predictor is removed, importance 
defined by the absolute value of the standardized coefficient.  K-fold cross-
validation is used to determine the number of components and predictors. 

*Multiple patent applications are pending regarding this technology
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Example: Correlated Component Regression Estimation Algorithm
as Applied to Predictors in Logistic Regression: CCR-Logistic
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Step 1: Form 1st component S1 as average of P 1-predictor models (ignoring g)

g=1,2,…,P;

1-component model:

Step 2: Form 2nd component S2 as average of 
Where each              is estimated from the following 2-predictor logit model:

g=1,2,…,P;

Step 3: Estimate the 2-component model using S1 and S2 as predictors:

Continue for K = 3,4,…,K*-component model.  For example, for K=3, step 2 becomes:
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Other CCR Variants
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1) Linear Discriminant Analysis: CCR-LDA
Utilize the random X normality assumption to speed up algorithm.
In step K, regress each predictor on Z, controlling for S1,…,SK-1 in fast linear regressions:

e.g., for K=1:
g=1,2,…,P;'
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2) Ordinal Logistic Regression: CCR-Logist, CCR-LDA (extended to ordinal dependent)
For ordinal, Z categories takes on numeric scores (Magidson, 1996)

3) Survival Analysis: CCR-Cox – Model expressed as Poisson Regressions (Vermunt, 2009)

4) Linear Regression: CCR-LM – for improved efficiency, in step K each predictor is regressed on Z 
(single application of multivariate linear regression, controlling for S1,…,SK-1)

where g is maximum likelihood estimate for log-odds ratio  
in simple logistic regression model (Lyles et. al., 2009)
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Correlated Component Regression Step-down Variable Reduction Step
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Step Down: For a given K-component model, eliminate the variable that is the least important, 
where importance is quantified by the absolute value of the variable’s standardized coefficient, 
where the standardized coefficient is defined as:  

For example, suppose that the loadings associated with the 1st and 2nd components are 
statistically significant, but those associated with the 3rd component are not. Then K = 2. 

Comparing the absolute value of the standardized coefficients for the K*=2-component 
model determines that predictor g* is the least important.  Then that predictor would be 
excluded and the steps of the CCR estimation algorithm are repeated on the reduced set 
of predictors.

*
g g g  
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CCR-LDA Simulation Results with Many Continuous Predictors
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Design: Data simulated according to assumptions of Linear Discriminant Analysis

G1 = 28 predictors (including 15 weak predictors) plus G2 = 28 irrelevant predictors
2 Groups: N1 = N2 = 25;    100 simulated samples

Method M select G*(M) < 56 predictors for final model; Each method tuned using validation data 
with N1 = N2 = 25. Final models from each method evaluated based on large independent ‘test’ file.

Results favor CCR over the other approaches (Magidson and Yuan, 2010)
Lowest misclassification error rate: 
CCR (17.4%), sparse PLS (19.3%), Elastic Net (21.1%), lasso (21.6%)

Fewest irrelevant variables: 
CCR (3.4, 23%), lasso (4.3, 31%), Elastic Net (6.6, 34%), sparse PLS (6.9, 34%)

Most likely to include suppressor variable (% of simulations):
CCR (91%), sparse PLS (78%), Elastic Net (61%), lasso (51%)

Average # predictors in model:
lasso (13.6), CCR (14.5), Elastic Net (19.2), sparse PLS (20.4)

Sparse Regression Methods:
Correlated Component Regression (CCR), Elastic Net (L1 + L2 regularization, Zou and Hastie, 2005), 
Lasso (L1 regularization), and sparse PLS regression (sgpls, Chun and Keles, 2009)
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CCR-LM Simulation Results with Many Continuous Predictors
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Design: Data simulated according to assumptions of Linear Regression

G1 = 14 preds + G2 = 14 irrelevant preds correlated with true + G3 = 28 irrelevant predictors uncorrelated with true;
Continuous dependent variable, N = 50, population R2 = .9;    100 simulated samples

Method M select G*(M) < 56 predictors for final model; Each method tuned using N=50 validation file. 
Final models from each method evaluated based on large independent ‘test’ file.

Results favor CCR over the other approaches (Magidson and Yuan, 2010)

Number of ‘True’ Predictors included, Percentage of included that were ‘True’:
CCR (9.7, 78%), TLP (10.3, 50%), sparse PLS (9.5, 48%), Elastic Net (12, 35%)

Fewest irrelevant uncorrelated variables: 
CCR (1.0, 8%), TLP (6.4, 31%), sparse PLS (6.4, 33%), Elastic Net (14.1, 41%)

Fewest irrelevant correlated variables: 
CCR (1.8, 15%), sparse PLS (4.4, 22%), Elastic Net (8.0, 23%), TLP (4.0, 27%)

Lowest mean squared error: 
CCR (3.13), sparse PLS (3.34), Elastic Net (3.50), TLP (3.55)

# tuning parameters: CCR (3x50), sparse PLS (3x50), TLP (5x100), Elastic Net (10x50)

TLP = nonconvex (truncated L1) penalty (Shen, et. al., 2010)
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Need for Variable Pre-Screening with Ultra-High Dimensional Data
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Problem and solution:
For ultra-high dimensional data with many irrelevant predictors, typical with gene expression 
data, by chance some large loadings for the many irrelevant predictors may dominate the first 
component, leading to unreliable results. To avoid this, an initial variable selection ‘screening’ 
step may be performed to reduce # genes to a manageable number prior to model estimation.  

Most current screening methods should be avoided because they typically exclude the 
important proxy genes 
– e.g., supervised principle components analysis/SPCA: Bair, et. al. , 2006; SIS: Fan and Lv, 2008.

Fan. et. al (2008, 2009) propose ISIS, an iterative screening method designed to remedy the 
omission of such predictors by SIS, and shows the improvement over SIS with simulated data. 
However, ISIS has been criticized for having too many tuning parameters. We are developing a 
CCR-based screening procedure, CCR/Select, that has a single parameter M, or the desired 
number of predictors to be selected (Magidson and Yuan, 2010).  

The next slides introduce CCR/Select and compare its performance with ISIS based on Fan et. al. 
(2009) simulated data.
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CCR/Select vs. ISIS for Pre-Screening in Ultra-High Dimensional Data
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Fan and Lv (2008) distinguish between high and ultra-high dimensional data, and propose ISIS to    
pre-screen predictors in ultra-high dimensional data where suppressor variables are present. Fan 
et. al. (2009) present ISIS simulation results based on 3 prime predictors and one proxy predictor.

For comparison,  we consider the following CCR-based 3-component prescreening  step, called 
CCR/Select, to select the best M predictors, where M is pre-specified:

For Component 1: Apply Inverse normal transformation to Comp. #1 p-vals > .5 to get Zval1,  and 
use 2-class truncated normal mixture (latent class) model on -Zval1 to identify the G1 most 
significant predictors (G1 predictors whose posterior prob >.5 of being in class with lowest p-vals). 
Set component #1 loadings to 0  for all but G*1 predictors,  where G*1 = min{max{ G1, 2}, 10}. 

For Component 2: Compute Zval2= Inverse normal of Comp #2 p-vals > .5  (excluding the G*1 

predictors identified above), and estimate latent class model on -Zval2 to identify G2 predictors 
assigned to lowest component #2 p-val class. Set the loading to 0  for all but the G*2 predictors 
with lowest p-values (excluding the G*1 predictors), where  G*2 = min{max{ G2, 1}, G1}. 

For Component 3:  Set the loading to 0  for all but the M predictors with lowest p-values. 
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Results: CCR/Select more often selects all true predictors than ISIS
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We simulated 100 data sets according to specifications of Fan et. al. (2009) with N=200:
Logistic Regression with 0 = 0, effects of primes 1 = 2 = 3 = 4; effect of suppressor
and predictors X5 - X1000 are irrelevant: 5 = 6 = … = 1000 = 0.

where X follows a multivariate normal distribution with means 0, variances 1 and all        
correlations = .5 except for                                                for i  4.

4 6 2  

1000
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( ) g g
g

Logit Z X 
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CCR/Select includes X4 among 10 top predictors 91% of the time compared to only 80% for ISIS.
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Conclusions
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When suppressor variables exist in data, they should be included in predictive 
models because they can improve prediction substantially.

CCR has outperformed various penalty approaches as well as PLS regression 
algorithms in our analyses conducted on high-dimensional simulated and real data 
based on linear, logistic, and Cox-type survival models, as well as linear 
discriminant-type models to date. All data sets we have used contain at least one 
suppressor variable.

In the case of ultra-high dimensional data, a variable pre-screening step may be 
needed.  Many current variable selection algorithms should be avoided as they are 
designed to select only predictor variables that are correlated with the dependent 
variable and thus exclude suppressor variables.  We are currently exploring the use 
of a CCR- based screening method, and comparing its performance with ISIS. 
Preliminary results suggest that a CCR-based screening method may improve over 
ISIS in certain settings.

Correlated Component Regression (CCR) is a Promising New Regression Method
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CCR Variants and Planned Extensions in CORExpress™
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CCR-LM: Linear Regression -- Extension to multiple outcome variables planned

CCR-LDA: 2-group Linear Discriminant Analysis -- Extension beyond 2 groups planned

CCR-Logist: Dichotomous and Ordinal Logistic Regression Models – CCR Models for 
multiple dichotomous/ordinal outcome variables under development

CCR-Cox: Survival Models – Extensions with Latent Class modeling being explored

Researchers interested in beta testing CORExpress™ should email:

will@statisticalinnovations.com 
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