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Introduction to VGLMs and VGAMs |

The VGAM package for R implements several large classes of regression
models of which vector generalized linear and additive models
(VGLMs/VGAMs) are most commonly used.

The primary key words are

iteratively reweighted least squares (IRLS),
maximum likelihood estimation,
Fisher scoring,

additive models.

Other concepts are

reduced-rank regression,
constrained ordination,

vector smoothing.
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Introduction to VGLMs and VGAMs

Introduction to VGLMs and VGAMs ||
Basically ...

VGLMs model each parameter, transformed if necessary, as a linear
combination of the explanatory variables. That is,

gi(t)) = mj = Bx = Bypxa+-+Bupxe (1)
where gj is a parameter link function.

VGAMs extend (1) to

g(0j) = nj = fipalxa) + -+ fjjp(xo) ()

i.e., an additive model for each parameter. Estimated by smoothers, this is
a data-driven approach.
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Introduction to VGLMs and VGAMs I

Example: negative binomial

Y has a probability function that can be written as

P(Y =yiu k) = (y+§_l> (ﬁ)y (ﬁ)k

where y = 0,1,2,.... Parameters x > 0 and k > 0.

VGAM can fit

g p = m = Bix
logk = m = BJx, with

vglm(y ~ x2 + x3 + ... + xp, negbinomial(zero = NULL))
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Introduction to VGLMs and VGAMs IV

The framework extends GLMs and GAMs in three main ways:

(i) y not restricted to the exponential family,

(ii) multivariate responses y and/or linear/additive predictors n are
handled,

(iii) m; need not be a function of a mean p: 7; = gj(#;) for any
parameter 0.

This formulation is deliberately general so that it encompasses as many
distributions and models as possible. We wish to be limited only by the
assumption that the regression coefficients enter through a set of linear or
additive predictors.

Given the covariates, the conditional distribution of the response is
intended to be completely general. More general = more useful.
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Introduction to VGLMs and VGAMs

Introduction to VGLMs and VGAMs V
The scope of VGAM is very broad; it potentially covers

univariate and multivariate distributions,
categorical data analysis,

quantile and expectile regression,

time series,

survival analysis,

mixture models,

extreme value analysis,

nonlinear regression,

reduced-rank regression,

ordination, . ...

It conveys GLM/GAM-type modelling to a much broader range of models.
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Introduction to VGLMs and VGAMs VI

QRR-VGLM
RR-VGLM RR-VGAM
Generalized VGLM ‘ VGAM
RR-VLM
Normal errors |
VLM VAM
M
Parametric Nonparametric
Figure: Flowchart for different classes of models. Legend: LM = linear model

Y = X3+ €, V = vector, G = generalized, A = additive, RR = reduced-rank.
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Introduction to VGLMs and VGAMs VII

t

‘ n=01,--,nm)" ‘ Model ‘ S function ‘ Reference
B/ x; + BJ x> (=B"x) VGLM vglm() Yee & Hastie (2003)
pLtpP2
Bl x1+ 3. Hifi(x) VGAM vgam() Yee & Wild (1996)
k=p1+1
B/x; +Av RR-VGLM rrvglm() Yee & Hastie (2003)
vDiv
B/ x1+Av+ QRR-VGLM | ¢cqo O Yee (2004)
v Dyv
R
B/ x1+ > fr(vr) RR-VGAM | cao() Yee (2006)
r=1

Table: VGAM & its framework. The latent variables v = Csz, X

(Xl 7X2)

More abbreviations: C = constrained, O = ordination, Q = quadratic.
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The VGAM Package |
See VGAMrefcard.pdf for a summary.

How does VGAM differ from other packages?

@ its breadth,
o its similarity to glm() and gam(), e.g.,
>n =20

> y = rchisq(n, df = exp(2))
> fit = vglm(y ~ 1, family = chisq)
> fitted(fit)
> summary (fit)
@ its size,

@ its room for future extension.
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VGLMs

VGLMs |
Data (xi,y;), i=1,...,n, from independent “individuals".
Definition Conditional distribution of y given x is

fF(ylx; B) = h(y,m,-...1nm, @),
where for j =1,... M,
no= ni(x) = B]x, (3)
IB_/ = (5(]')17"'7/80)[’)7-)
B = B],....08m)7",

¢ = a vector of scale factors.

Often g;(6;) = n; for parameters 6; and link functions g;.

Nb. —oo < n; < oc.
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VGLM Examples |

@ Negative binomial distribution. Fory=0,1,2,...,
k
y+k-—1 wo\” k
f ’ ,k = , , k > O,
b, ) ( y )(u+k) kvp)
m = logpu,
12 = log k are good choices.

If k > 1 then could have 7, = log log k. Use negbinomial (1k = loglog).

Later (Slide 77): will be able to fit
(i) Var(Y) = s p,
(i) Var(Y) = p+p>,
easily regardless whether s; and s, are known or unknown.
[cf. Var(Y) = p + p?/K]
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VGLM Examples Il

@ Bivariate (logistic) odds-ratio model
Data: (Y1, Y2) where Y; =0 or 1.

Examples
> Y1 = 1if left eye is blind, Y2 =1 if right eye is blind.
» Y; =1/0 if Species j is present/absent.
> Y1 =1/0 if person has/hasn't cancer,
Y, = 1/0 if person has/hasn't diabetes.

pi = P(Y;=1), marginal probabilities,
ps = P(Yi=r,Ya=s5s), r,s=0,1, joint probabilities,
Y = poop11/(po1pro)  (Odds ratio).
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VGLM Examples Il
Model:
logit pj(x) = n;(x), j=12,
log 1(x) = n3(x).

Recover p,s's from py, po and 1.

Q: why not allow a probit or complementary log-log link?

> binom2.or("cloglog", exchangeable = TRUE, zero = NULL)
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VGLM Examples IV

Exchangeable data = constrain 1y = 1, (e.g., ears and eyes), i.e.,

cloglog pj(x) = m(x), j=12,
log ¥(x) = m3(x).

Note:
m P 1 0 6* P 5(1)/(
m k=1\ 0 1 (2)k =1\ By
General formula is
P
n(x) = B'x = Y HBjx,
k=1

* * * !
where B, = (/6(1)1(’ EE 7ﬁ(rk)k) ’

Thomas Yee (Auckland University) Fisher scoring univariate discrete distribution 26 August 2010

15 / 62



VGLM Examples V

© Nonproportional odds model for a categorical response i.e.,
Ye{l,2,...,M+1}

logit P(Y <j[x) = n;(x), j=1...,M.

Proportional odds model: constrain

ni(x) = aj +n(x)

(aka the parallelism assumption, which stops the probabilities from becoming
negative or greater than 1). Have Hy = ly;; Hy =1y for k=2,...,p.
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VGLMs

VGLM Examples VI
Other links (for 0 < p < 1):

probit ®~(p),
cloglog log{—log(1 — p)},
cauchit tan(r(p — 1)).

> vglm(y ~ x2, cumulative(link = probit))
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VGLM algorithm |
Models with log-likelihood

0B) = ti{m(xi), - mm(xi)},
i=1

where 7); = ,6 x;j. Then

or T
o~ o
and 8—26 = 3 0% x; x;
98; 081 i ok

Newton-Raphson algorithm

g+ _ g@ | 7 <g(a))‘1 u (8®)
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VGLMs

VGLM algorithm 1l
written in iteratively reweighted least squares (IRLS) form is
Bt = (XTWX) 'XTWX 8 4+ (XTWX) T XTWW 1y
1
= (X WO X)X WE 2,

Let z=(z{,...,z])Tand u= (uf,...,u])7, where u; has jth element
ol
(u); = —,
i)j 3771'
and z; = n(x;) + Wi_lu,- (adjusted dependent vector or pseudo-response).
0?(;
Also, W = Diag(W1,...,W,), W)x=———,
g( 1 ) ( )Jk anj 877/(

Xowm = (X!, ..., X7, X; = Diag(x/,....x]) =y ®x].
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VGLMs

VGLM algorithm [l1

B(@*1) is the solution to

-1
Z(a) — XVLM ,3(3+1) +€(a), Var(e(a)) — ¢W(a) .
Fisher scoring:
0%(;
W)y = — E [—’]
(Wi, On; Onk
usually results in slower convergence but is preferable because the working
weight matrices are positive-definite over a larger parameter space.

wz computed in @weight is usually

02¢; ) 0°¢;
W))x = —E|~———], sometimes — ———.
(Wil <8nj Ak On; Oni
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VLMst |

The vector linear model (VLM) is the central model behind VGLMs and
VGAMSs. lts crux is to minimize

n p . T p .
Z (Zi_ > Hy By xix ) W, (Zi— > Hi By xix ),
k=1 k=1

i=1

where the Hy are known constraint matrices of full column rank.

With no constraints (Hx = ly), this is equivalent to fitting

X,-T,31
z; = : +ei, e ~ (W), i=1,...n

-
X; Bm
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VLMst I

Cf. Multivariate linear model (aka multivarate regression)

(Ya) -~ Ym)) = XB+U, ui ~ (0,X) (6)

where U = (ug,...,u,)7.
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The VGAM package for R |

The central functions of VGAM

vglm() Vector generalized linear models.
vgam() Vector generalized additive models.

rrvglm()  Reduced-rank vector generalized linear models.

cqo () Constrained quadratic (Gaussian) ordination (QRR-VGLM).
cao() Constrained additive ordination (RR-VGAM).

Others:

vim(Q) Vector linear models.

grc() Goodman’s RC(r) model.

uqo () Unconstrained quadratic ordination (QU-VGLM).
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The VGAM package for R Il

Table: VGAM generic functions applied to a model called fit.

Function Value

coef (fit) B

coef (fit, matrix = TRUE) B
constraints(fit) Hy, k=1,...,p
deviance(fit) Deviance D = zn: d;
fitted(fit) fiij usually -
logLik(fit) Log-likelihood Xn: w; ¢;

i=1
"Im") | LM model matrix (n x p)

"vim") | VLM model matrix Xy um

model .matrix(fit, type

model .matrix(fit, type

predict (fit) nij
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The VGAM package for R Il

Table: VGAM generic functions applied to a model called fit.

Function Value

predict(fit, type = "response") | [ usually

resid(fit, type = "response") yij — Mjj usually

"deviance") sign(y; — Qi) Vd;

resid(fit, type

resid(fit, type = "pearson") W, *u;

resid(fit, type = "working") zi—n; = Wi_l u;
veov(fit) KEE(B)

weights(fit, type = "prior") w; (weights argument)

weights(fit, type = "working") | W; (in matrix-band format)
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The VGAM package for R IV

The VGAM package employs several feature to make the software more
robust, e.g.,

@ Parameter link functions, e.g.,

> logf for 6 > 0,
> logit 0 for0 <6 <1,
> log(d — 1) for 6 > 1.

These improve the quadratic approximation to £ near the solution and
avoid range-restriction problems.

o Half-step sizing.
o Good initial values, e.g., self-starting VGAM family functions.

@ Numerical linear algebra based on orthogonal methods, e.g., QR
method in LINPACK. Yet to do: use LAPACK.

@ B-splines, not the Reinsch algorithm.
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Working weightsy |

Each W; needs to be positive-definite.

@ Expected information matrix (EIM) is often positive-definite over a
larger parameter space than the observed information matrix (OIM).
But the EIM may be intractable.

@ Under mild regularity conditions,

oL 0°4;

Often the score vector is easy. Use random variates to compute the
sample variance of the score vector. The nsimEIM argument
implements this.
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Working weightsy Il

For example, the negative binomial has

024, i,
k2 = Y (yi+ k) = (k) = —Z (k+1r)2
r=0

where 1)/(z) is the trigamma function (the digamma function
Y(z) =T"(2)/T(z)). Its expected value involves an infinite series.

The weight slot of negbinomial ():
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VGLMs

Working weightsy Il

weight = eval(substitute(expression({
wz = matrix(as.numeric(NA), n, M) # wz is 'diagonal'
run.varcov = matrix(0, n, NOS)
indl = iam(NA, NA, M=M, both=TRUE, diag=TRUE)
for(ii in 1:( .nsimEIM )) {
ysim = rnbinom(n=n*NOS, mu=c(mu), size=c(kmat))
dl.dk = digamma(ysim+kmat) - digamma(kmat) -
(ysim+kmat)/(mutkmat) + 1 + log(kmat/(kmat+mu))
run.varcov = run.varcov + dl.dk"2
}
run.varcov = cbind(run.varcov / .nsimEIM)
# Can do even better if it is an intercept-only model
wz[,2%(1:N0OS)] = if(intercept.only)
matrix(colMeans (run.varcov),
n, ncol(run.varcov), byrow=TRUE) else run.varcov

wz[,2%(1:N0S)] = wz[,2*(1:N0OS)] * dk.deta"2

# The 1-1 element (known exactly):
ed2l.dmu2 = 1/mu - 1/(mu+kmat)
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Working weightst 1V

wz[,2%(1:N0S)-1] = dmu.deta"2 * ed2l.dmu2
W o* Wz
}), list( .cutoff = cutoff, .Maxiter = Maxiter, .nsimEIM = nsimEIM )))
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Some computational and implementational details

@ Is S4 object-orientated and very modular—simply have to write a
VGAM “family function™.
@ > args(vglm.control)

function (checkwz = TRUE, criterion = names(.min.criterion.VGAM),
epsilon = 1e-07, half.stepsizing = TRUE, maxit = 30, stepsize = 1,
save.weight = FALSE, trace = FALSE, wzepsilon = .Machine$double.eps~0.75,
xij = NULL, ...)

NULL

@ Implements “smart” prediction, e.g., bs(scale(x)), I(bs(x)).
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VGAMs |

These allow additive-model extensions to all 77; in a VGLM, i.e., from:
n(x) = Bfx = Bynxit+ 8%

to M additive predictors:
ni(x) = By + fi2x) + - + fj)p(xp),

a sum of arbitary smooth functions. Equivalently,

n(x) = fi0a)+-+f(x)
= H; ff(x1)+~~+prf,(Xp) (7)

for some constraint matrices Hy (default: Hy = ly).

@ Hy,...,H, are known and of full-column rank,
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VGAMs I

o f is a vector containing a possibly reduced set of component
functions,

Starred quantities in (7) are unknown and to be estimated.

The f are centered for identifiability.
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VGAMs

Examples of constraints

@ Exchangeable bivariate odds-ratio model All
10 10 1
H=[1 0], He=| 10 Jor | 1|, k=2,...
01 01 0

@ Proportional odds model
Hy =1y, H, -=H,=1p.

VGAM facilitates the implementation and use of constraints, e.g.,

> binom2.or (exchangeable = TRUE, zero = 2)
> cumulative(parallel = FALSE ~ x5 - 1)
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Simple Example: Positive Poisson Distributionf |

Its probability function is

e M\

(1 h y 5 4y ;

0, y=0.

where A is the rate parameter. Then

EY) =
Var(Y) — A1+ N

l—e* (1—e M2
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VGAMs

Simple Example: Positive Poisson Distributionf Il

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Positive Poisson(2) (blue) vs Poisson(2) (green)

]III..-
0 1 2 3 4 5 6
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VGAMs

Simple Example: Positive Poisson Distributionf |lI

The log-likelihood components are
(N yi) = =i+ log \j — log(1 — e ) — log y;! .

The score and Hessian functions are

ot Yi 1
VI VT
Pl v, e
ON2 N2 (N —1)%
0%(; e 1 1
aE(ZHY) = & (2 ).
n (ax%) (&b — 1) ()\,- eAf—l)

The default is a log link:
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Simple Example: Positive Poisson Distributionf 1V

Table: On a spring afternoon in Portland, Oregon, data on the sizes of different
groups observed in public places were collected by Coleman and James (1961).

Group size 1 2 3 4 5 6
Frequency | 1486 694 195 37 10 1

Now

> odata = data.frame(y = 1:6, w = c(1486, 694, 195,
+ 37, 10, 1))
> fit = vglm(y ~ 1, pospoisson, data = odata, weights = w)

The output is

> print(summary(fit), presid = FALSE)
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VGAMs

Simple Example: Positive Poisson Distributionf V

Call:
vglm(formula = y ~ 1, family = pospoisson, data = odata, weights = w)

Coefficients:

Value Std. Error t value
(Intercept) -0.114 0.0268 -4.25
Number of linear predictors: 1
Name of linear predictor: log(lambda)

Dispersion Parameter for pospoisson family: 1

Log-likelihood: -2304.7 on 5 degrees of freedom

Number of Iterations: 6
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VGAMs

Simple Example: Positive Poisson Distributionf VI

The maximum likelihood estimate A = e?’, is
> Coef(fit)

lambda

0.8925

The estimate mean is
> fitted(fit)[1]

[1] 1.5118

That is, the mean group size is estimated to be 1.512 persons for the
observed data and 0.89 persons for the expected Poisson distribution.
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Simple Example: Positive Poisson Distributionf VII

The standard error of \ is

> sqrt(vcov(fit, untransform = TRUE))

lambda
lambda 0.023899

using the delta method.

The constraint matrix Hy is

> constraints(fit)

$" (Intercept)’
[,1]
[1,] 1

Thomas Yee (Auckland University) Fisher scoring univariate discrete distribution 26 August 2010 41 / 62



Some Implemented Models |

The following are some distributions currently implemented by VGAM.
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Some Implemented Models

Positive Models

t
Distribution Density function f(y; 0) VGAM family
e 1 LAWY N(1—y)
Positive binomial —_— ( )p V(1 - p) v posbinomial ()
(1 —p)V \ Ny
1 e AW
Positive Poisson _ pospoisson()
1—e X
» o 1 y+k—1 m y k 3
Positive negative binomial _ _— posnegbinomial ()
1 — (k/(k+ p))* y pwtk k+p
1 —
Positive normal - M posnormall()

o [1 = &(=p/o)]

Table: Some positive distributions currently supported by the VGAM package.
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Zero-inflated Models

Some Implemented Models

Zero-inflated distribution

Probability function f(y; 6)

VGAM family function

Z| negative binomial

Iy =0)¢ + (1 — ¢)x

(", ) ) (

k
k+p

X

zinegbinomial ()

y!

ZI binomial Iy =0)¢p+ (1 — ¢)Xx zibinomial ()
NNy N(1—y)
1—
Ny)p (1-p)
e N
Z1 Poisson Iy =0)¢+ (1 — o) zipoisson()

Table: Summary of zero-inflated discrete distributions currently supported by

VGAM. “ZI" stands for “zero-inflated”.
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Some Implemented Models

Zero-altered Models

Zero-altered distribution Probability function f(y; 6) VGAM family
1-9)
ZA negative binomial Ily=0¢+I(y >0 —————x zanegbinomial ()
L= (k/(k+ )"
() ) ()
y w+k k4 p
e AN
ZA Poisson y=0)¢+1I(y >0)(1—¢)—F— zapoisson()
(1—eMy!

Table: Summary of zero-altered discrete distributions currently supported by

VGAM. "ZA” stands for “zero-altered”.
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Zero-inflated, Zero-Altered and Positive Models

t
‘ Distribution Random variates functions

Zero-altered negative binomial [dpqr]zanegbin ()
Zero-altered Poisson [dpqrlzapois ()
Zero-inflated binomial [dpqrlzibinom()
Zero-inflated negative binomial [dpgrlzinegbin ()
Zero-inflated Poisson [dpqrlzipois ()
Positive binomial [dpgrlposbinom()
Positive negative binomial [dpgrlposnegbinom()
Positive normal [dpgrlposnorm()
Positive Poisson [dpqrlpospois()

Table: Some of VGAM functions for generating random variates etc. The prefix
“d" means the density, “p” means the distribution function, “q" means the quantile
function and “r" means random deviates. Note: most functions have a
[dpgrlfoo() for density, distribution function, quantile function and random

generation.
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Some Implemented Models

GLMs

t
Distribution Density/probability function f(y) Range of y VGAM family function
_1 T
Gaussian (2770'2) 2 exp {— E(y — ;1.)2/0'2} (—o0, o) gaussianff ()
A
Binomial (A )pA‘V(l — pA= 0(1/A)1 | binomialff()
y.
. exp{—A}N
Poisson — 0(1)oc0 poissonff ()
y!
k K k=T exp{—k
Gamma (k/w)"y pihy/u} (0, 00) gammaff ()
(k)
I 2
A A —
Inverse Gaussian (7> 2 expq ——— u (0, c0) inverse.gaussianff ()
2m y3 2p2

Table: Summary of GLMs supported by VGAM. The known prior weight
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Dispersion Models |

A reproductive dispersion model with positional parameter p and
dispersion parameter o is a family of distributions whose probability
density functions are of the form

fy;p,0%) = a(y;o®) exp{—;‘z d(y:u)}- (8)

where a > 0 is a suitable function, and d is a unit deviance.

Equation (8) is said to be of standard form. Jorgensen (1997) discusses
many models within a dispersion model framework. The VGLM framework
is too general to take advantage of the special structure of dispersion
models, however, many of the models discussed in that book have been
implemented in VGAM. See the table on Slide 49.
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Dispersion Models Il

t
Distribution Density function f(y; 6) Range of y VGAM family
+k—1 y k k
Negative binomial (y ) ( ® ) < ) {0,1,...} negbinomial
y n+k k+p
exp{0y + log(cos(6
Hyperbolic secant M (—o0, 00) hypersecant
2 cosh(my /2)
. cos(f) _1,86 _1_86
Hyperbolic secant ——u 27T (1—u) 2 7 (0,1) hypersecant.1
™
A T2y + ) {p(1 = p)} p*
Inverse binomial 2y ) 1o P p {0,1,...} invbinomial
Ty+) Ty +x+1)
X Ay — p)?
Reciprocal inverse Gaussian —— exp{ — M (0, o) rig
2y 2y
e A A
Leipnik (transformed) 4 )\y 14 Y ¢ (0,1) leipnik
Beta(242, 1) yl—y)
' . 0(0 + )1
Generalized Poisson —_— exp(—yX — 0) {0,1,...} genpoisson
yi
I VN
. eXp{ 202 y(1—y) p? (1—p)? } .
Simplex (0,1) simplex
Vera2{y(1 - y)}3

Table: Dispersion models implemented in VGAM.
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Other Distributions

t
Distribution Density function f(y; 8) Range of y Range of 6 VGAM family
2 2
- + v v
Rice R exp M Io(y—) Z v>00>0 riceff
o2 202 o2
ni\Y/2 _,. _
Skellam — e MR | (2/mimp) | Z pnj >0 skellam
K2
Yule-Simon p Bly,p+1) 1(I)co p >0 yulesimon

Table: More discrete models implemented in VGAM.
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More Distributions

t
Distribution Density function f(y; 8) Range of y Range of 6 VGAM family
Geometric 1—p)p 0(1)co 0<p<l1 geometric
-1
Zeta {ypﬂ ¢lp+ 1)} 1(1)c0 0< p<oo | zetaff
N
Zipf YD 1,2,...,N | s>0 zipf
i=1

Table: More discrete univariate distributions currently supported by VGAM. Note:

n
Hpm = > i~™is known as the nth generalized harmonic number, B is the beta
i=1

function.
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Zero-inflated Poisson model |

Loosely,
P(Y =y;0,\) = ¢P(Y =0)+ (1— ¢)Poisson(N).

where 0 < ¢ <1, A > 0.

ZIP(3, phi=0.2) (blue) vs Poisson(3) (green)

0.20

0.15 —|

0.10 —|

0.05 —| I

0.00 —~ ' - |
0 1 2 3 4 5 6 7 8 9 10
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Zero-inflated Poisson model I

Example 1: Y = the number of insects on a leaf of a particular plant
(some leaves have no insects because they are unsuitable for feeding).

Let the overall proportion of such leaves be ¢.
Actually,

P(Y=0) = ¢+(1—¢)e,

e N
PY=y) = -9 ]

) y:1727"'7

where 0 < ¢ <1 and A > 0. Then a good idea is

_(m\ _ [ logit¢
= (772) - ('OgA)'
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Zero-inflated Poisson model

Zero-inflated Poisson model IlI
If @ = (¢,\)7 then the expected information matrix (EIM) is given by

1-— e_)‘ —e_>‘
(1-¢) o+ (1—d)e?) o+ (1—¢)e
—e? 1-¢  ¢(1—g¢)e?
p+(1—¢)e? A o+ (1—g)e?

Here is some simulated data example.

set.seed(1111)
N = 2000

zdata = data.frame(x2 = runif(n = N))
zdata = transform(zdata, phi = logit(-1 + 1 * x2,

inverse = TRUE), lambda = loge(-2 + 2 * x2, inverse = TRUE))
zdata = transform(zdata, y = rzipois(N, lambda, phi))
with(zdata, table(y))

vV V. + VvV VvV
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Zero-inflated Poisson model

Zero-inflated Poisson model IV

y
0 1 2 3

1608 308 66 17

1

> fit = vglm(y ~ x2, zipoisson, zdata, trace =

VGLM linear loop
VGLM linear loop

Taking a modified step...

VGLM linear loop
VGLM linear loop
VGLM linear loop
VGLM linear loop
VGLM linear loop
VGLM linear loop
VGLM linear loop

> coef(fit, matrix

Thomas Yee (Auckland University)

1:
2

2

0 N bW

TRUE)

loglikelihood
loglikelihood

loglikelihood =

loglikelihood

loglikelihood =
loglikelihood =

loglikelihood

loglikelihood =
loglikelihood =

-1283.
-1860.

-1243.
-1223.
-1196.
-1194.
-1194.
-1194.
-1194.

TRUE)

w N

W wwkr N,
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Zero-inflated Poisson model

Zero-inflated Poisson model V

logit(phi) log(lambda)
(Intercept)  -0.27175 -1.8193
x2 -0.28954 1.6095

> fit2 = vglm(y ~ x2, zipoisson(shrinkage.init = 0.95),
+ zdata, trace = TRUE)

VGLM linear loop
VGLM linear loop
VGLM linear loop
VGLM linear loop
VGLM linear loop
VGLM linear loop

loglikelihood = -1222.
loglikelihood = -1208.
loglikelihood = -1195.
loglikelihood = -1194.
loglikelihood = -1194.
loglikelihood = -1194.

O WN -
W wwe~r oo

> coef (fit2, matrix = TRUE)

logit(phi) log(lambda)
(Intercept) -0.26973 -1.8185
x2 -0.29238 1.6083
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Robustness of negbinomial () |

Example 2: Robustness of negbinomial().

o= (757 () () ron

where k > 0.

> set.seed(123)

> ndata = data.frame(x = runif(n <- 500))

> ndata = transform(ndata, yl = rnbinom(n, mu = exp(3 +
+ x), size = exp(1)))

That is, n = 500, X; ~ Unif(0,1), u = exp(3 + x), k = e! ~ 2.72 in (9).
Then

> ndata$y1[1] <- 1e+08
> nbfit <- vglm(yl ~ x, negbinomial, ndata, trace = TRUE)
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Robustness of negbinomial ()

Robustness of negbinomial () Il

VGLM linear loop 1 : 1loglikelihood = -3357.5
VGLM linear loop 2 : loglikelihood = -3340.7
VGLM linear loop 3 : loglikelihood = -3323.2
VGLM linear loop 4 : loglikelihood = -3305.1
VGLM linear loop 5 : loglikelihood = -3286.7
VGLM linear loop 6 : loglikelihood = -3268.7
VGLM linear loop 7 : 1loglikelihood = -3253.1
VGLM linear loop 8 : loglikelihood = -3243.5
VGLM linear loop 9 : loglikelihood = -3241.1

VGLM linear loop 10 : loglikelihood = -3241.1
VGLM linear loop 11 : 1loglikelihood = -3241.1

Here the response might typically have a maximum of around 200, but one
of the values is replaced by 108. Convergence is still achieved!
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Yet

todo ...

Many probability distributions have been implemented. But there are
many more to go...

The ease by which estimation can be performed increases the need for
goodness-of-fits tests.

Call LAPACK instead of LINPACK.

Add random effect to linear predictors, e.g.,
g(0) = n = B/x++/z (10)

where v; ~ Ng(0, X), say.

Obtain the classes of VGLMMSs (and later VGAMMs).

Add automatic smoothing parameter selection, e.g., by using a
generalized cross validation (GCV) criterion. The associated ideas of
penalized regression splines (P-splines) have become very popular
recently. See Wood (2006).
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Closing Comments |
@ VGLMs and VGAMs are a very large class of models; VGLMs are

model-driven while VGAMs are data-driven.

@ The VGLMs/VGAMs framework naturally allows for estimation for
many statistical distributions.

© There is a lot of future work to develop the methodology fully.
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Closing Comments

Closing Comments I

Fini
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Closing Comments

Closing Comments Il

Fini
The End
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