
Empirical Composite Likelihoods

Nicola Lunardon, Francesco Pauli, Laura Ventura

Dept. of Statistics, University of Padova, Italy

email: ventura@stat.unipd.it

N. Lunardon, F. Pauli, L. Ventura – COMPSTAT2010 – Paris, August 22–27 2010 1/ 22



Outline

• Composite likelihoods may be useful for approximating
likelihood based inference when the full likelihood is too
complex to deal with.

• Stemming from a misspecified model, the asymptotic
distribution of the composite likelihood ratio statistic departs
from the familiar standard chi-square asymptotic distribution.

• Several adjustments have been proposed in the literature,
which all require the elements of the Godambe information.

• This paper proposes and discusses a computationally and
theoretically attractive approach based on the derivation of an
empirical likelihood function from the composite score.

• For the special case of the pairwise likelihood, our proposal
can allow reference to the usual asymptotic chi-square
distribution.
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Composite likelihoods

N. Lunardon, F. Pauli, L. Ventura – COMPSTAT2010 – Paris, August 22–27 2010 3/ 22



Composite likelihood

• Consider independent observations yi of a random vector
Yi = (Yi1, . . . , Yiq), i = 1, . . . , n, with Yi ∼ f(yi; θ),
θ ∈ Θ ⊆ IRd, d ≥ 1, yi ∈ Y.

• In some situations it may be difficult to evaluate f(y; θ) and
thus the full likelihood L(θ).

• However, suppose it may be possible to compute likelihood
contributions Lk(θ; yi) = L(θ;Ak(yi)), for the events Ak(yi),
k = 1, . . . ,K, on Y.

• The composite likelihood is then defined as (Lindsay 1988, Varin

et al 2010)

cL(θ; y) =
n∏
i=1

K∏
k=1

Lk(θ; yi)wk

with wk positive weights.

• Let c`(θ) = log cL(θ; y) be the composite loglikelihood and
let cU(θ) be the composite score function (∂/∂θ)c`(θ).
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An example: The pairwise likelihood

• When the events Ak(yi) are defined in terms of pairs of
observations (yir, yis) from the bivariate marginal density
f(yir, yis; θ), the pairwise likelihood is obtained (Cox Reid 2004)

pL(θ; y) =
n∏
i=1

q−1∏
r=1

q∏
s=r+1

f(yir, yis; θ)

• The pairwise loglikelihood is

p`(θ; y) =
n∑
i=1

q−1∑
r=1

q∑
s=r+1

log f(yir, yis; θ)

• The pairwise score function is

pU(θ; y) =
n∑
i=1

q−1∑
r=1

q∑
s=r+1

∂

∂θ
log f(yir, yis; θ)
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Composite likelihood: Properties

• The validity of inference on θ using cL(θ; y) can be justified
invoking the theory of unbiased estimating functions.

• Indeed, cU(θ; y) is still an unbiased estimating function, since
it is a linear combination of valid score functions.

• The composite MLE θ̂c is consistent and approximately
normal with mean θ and variance

V (θ) = H(θ)−1J(θ)H(θ)−1

with H(θ) = E(−∂cU(θ)/∂θT ) and J(θ) = E(cU(θ)cU(θ)T ).

• Matrix G(θ) = V (θ)−1 is the Godambe information.
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First order asymptotics

• The asymptotic distribution of the Wald-type statistic
cww(θ) = (θ̂c − θ)TG(θ)(θ̂c − θ) is χ2

d. The same result holds
for the score-type statistic cws(θ) = cU(θ)TJ(θ)−1cU(θ).

• Let cw(θ) = 2(c`(θ̂c)− c`(θ)) be the composite likelihood
ratio statistic.

• Its asymptotic null distribution is

cw(θ) ∼̇
d∑
i=1

λiZ
2
i

with Z2
i independent χ2

1 random variables and λi eigenvalues
of H(θ)−1J(θ).

• All the above results extend to the case of partial interest
about ψ, with θ = (ψ, λ).
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Adjustments of composite likelihood ratios: Why needed?

• Wald-type statistics lack invariance under reparameterization
and force confidence regions to have an elliptical shape.

• Score-type statistics seem to suffer from numerical instability
(Molenberghs Verbeke 2005, Ch. 9).

• Under this respect, a likelihood ratio type statistic would be
more appealing.

• However, its approximate
∑
λiZ

2
i distribution departs from

the familiar pivot result. This calls for adjustments in order to
obtain the standard χ2

d distribution:
I For d = 1, most proposed adjustments agree and lead to the

exact asymptotic reference.
I For d > 1, some adjustments are not parameterization

invariant or only match some moments of the asymptotic
reference.

• All the adjustments require the evaluation of H(θ) and J(θ).
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Adjustments of composite likelihood ratios: Available solutions

• Simple adjustments are based on moments conditions:

1. First order moment matching gives cw1(θ) = cw(θ)/λ̃, with
λ̃ =

∑
λi/d = tr(H(θ)−1J(θ))/d, with a χ2

d approximate null
distribution.

2. First and second order moment matching gives the
Satterthwaite (1946) adjustment cw2(θ) = cw(θ)/κ, with a χ2

ν

approximate null distribution, where κ =
∑
λ2
i /

∑
λi and

ν = (
∑
λi)2/(

∑
λ2
i ).

3. Matching of moments up to higher order are available (see

Lindsay et al 2000).

• Chandler and Bate (2007) propose a vertical scaling of cw(θ)
giving cwcb(θ) = cw(θ)cww(θ)/(θ̂c − θ)TH(θ̂c)(θ̂c − θ) having
χ2
d null distribution, but which is not parameterization

invariant.

• Pace et al (2010) propose the parameterization invariant scaling
cwinv(θ) = cw(θ)cws(θ)/cU(θ)TH(θ)−1cU(θ) also having the
usual asymptotic null distribution.
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Empirical likelihood from the composite score function
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Empirical likelihood

• We can define an empirical likelihood based on a general
unbiased estimating equation for θ ∈ IRd:

η(y; θ) =
1
m

m∑
j=1

ηj(Yj ; θ) = 0 , with Yj ⊂ Y

• The empirical likelihood is defined as (Owen 2001)

Le(θ) =
1
m

m∏
j=1

1
(1 + λTηj(Yj ; θ))

where the Lagrangian multiplier λ satisfies

(1/m)
∑m

j=1
ηj(Yj ;θ)

(1+λT ηj(Yj ;θ))
= 0

• The empirical likelihood ratio statistic for θ derived from
η(y; θ) is

we(θ) = 2
m∑
j=1

log(1 + λTη(Yj ; θ))
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Empirical composite likelihood ratio statistic

• The empirical composite likelihood ratio statistic derived from
η(y; θ) = cU(θ) is

cwe(θ) = 2
K∑
k=1

log(1 + λT cU(θ;Ak))

• Under suitable conditions (see Adimari and Guolo 2010) it can be
shown that:

1. When d = 1, cwe(θ)/λ̃ ∼̇ χ2
1.

2. When d > 1, the asymptotic null distribution of
cwe1(θ) = cwe(θ)/λ̃ can be approximated with a χ2

d (as for
cw1(θ)).

• These results hold also for the pairwise score function

pU(θ) =
K∑
k=1

pU(θ;Ak)

with K = nq(q − 1)/2, obtaining pwe1(θ).
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Empirical likelihood from the pairwise score

• Let us focus on the pairwise likelihood function.

• The pairwise score function with K = n can be written with

pU(θ; yi) =
q−1∑
s=1

q∑
r=s+1

∂

∂θ
log f(yis, yir; θ)

• The pairwise empirical likelihood ratio is

pwe(θ) = 2
n∑
i=1

log(1 + λTpU(θ; yi))

• In this situation, we have pwe(θ)∼̇χ2
d (the proof follows from

Adimari and Guolo 2010).
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Simulation results
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Example 1: Equicorrelated multivariate normal data

• One-way normal-theory random effects model:
Yir = µ+ ξi + εir, i = 1, . . . , n, r = 1, . . . , q, and ξi and εir
independently normally distributed with zero mean and
variances σ2

ξ and σ2
ε .

• The problem can be reformulated by writing Yi as a
multivariate normal with components having mean µ and
variance σ2 = σ2

ξ + σ2
ε , and with correlation ρ = σ2

ξ/(σ
2
ξ + σ2

ε )
between any two components of the same vector.

• This example has been chosen so that we can easily do closed
form calculations both of complete and pairwise likelihood
quantities, and not for direct interest in the application of
composite likelihood.

• The special case with µ = 0, σ2 = 1 and θ = ρ has been
treated in detail by Cox Reid (2004).

• Here interest on inference about θ = (µ, σ2, ρ).
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• The pairwise likelihood is

p`(θ) = −nq(q − 1)
2

log σ2 − nq(q − 1)
4

log(1− ρ2)

− q − 1 + ρ

2σ2(1− ρ2)
SSW −

q(q − 1)SSB + nq(q − 1)(ȳ − µ)2

2σ2(1 + ρ)

with SSW =
∑n
i=1(ȳi − ȳ)2 and SSB =

∑n
i=1

∑q
r=1(yir − ȳi)2.

• For this model the pairwise MLE coincides with the full MLE
Mardia et al (2009). Moreover, pU(θ) = J(θ)H(θ)−1U(θ), so
that G(θ) = i(θ). As a consequence the Wald and the score
statistics based on the full likelihood coincide with those
based on the pairwise likelihood.

• We run a simulation experiment with three values of ρ (from a
moderate to a strong correlation). We computed the empirical
coverages of confidence regions based on several statistics.
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q = 30 ρ = 0.2 ρ = 0.5 ρ = 0.9
n = 15 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

w(θ) 0.891 0.943 0.987 0.889 0.941 0.987 0.888 0.941 0.987
pw1(θ) 0.838 0.890 0.949 0.839 0.892 0.952 0.845 0.899 0.959
pw2(θ) 0.865 0.919 0.972 0.863 0.919 0.972 0.869 0.924 0.976
pww(θ) 0.809 0.860 0.924 0.776 0.831 0.900 0.715 0.767 0.837
pws(θ) 0.906 0.947 0.983 0.906 0.947 0.983 0.905 0.948 0.983
pwcb(θ) 0.831 0.884 0.944 0.820 0.876 0.941 0.762 0.818 0.891
pwinv(θ) 0.907 0.953 0.989 0.898 0.948 0.989 0.890 0.941 0.986
pwe1(θ) 0.904 0.953 0.990 0.907 0.949 0.989 0.848 0.871 0.880
pwe(θ) 0.886 0.930 0.976 0.884 0.935 0.949 0.856 0.870 0.888
pwe,inv(θ) 0.955 0.988 0.988 0.892 0.926 0.946 0.820 0.846 0.865

n = 30 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

w(θ) 0.892 0.944 0.987 0.896 0.944 0.988 0.894 0.945 0.988
pw1(θ) 0.855 0.905 0.961 0.855 0.906 0.967 0.868 0.919 0.974
pw2(θ) 0.882 0.931 0.980 0.879 0.933 0.982 0.891 0.940 0.985
pww(θ) 0.850 0.900 0.955 0.824 0.879 0.941 0.709 0.763 0.831
pws(θ) 0.901 0.947 0.986 0.902 0.947 0.984 0.902 0.948 0.985
pwcb(θ) 0.861 0.914 0.967 0.852 0.908 0.963 0.743 0.796 0.869
pwinv(θ) 0.900 0.949 0.989 0.898 0.947 0.989 0.893 0.942 0.986
pwe1(θ) 0.900 0.950 0.990 0.900 0.946 0.976 0.871 0.923 0.958
pwe(θ) 0.815 0.876 0.937 0.826 0.883 0.941 0.855 0.903 0.951
pwe,inv(θ) 0.903 0.952 0.988 0.891 0.925 0.952 0.869 0.920 0.951
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Example 2: Binary data

• Correlated binary outcomes: Multivariate probit model with
logistic marginal and constant cluster sizes.

• The pairwise likelihood is

p`(θ) =
n∑
i=1

q−1∑
r=1

q∑
s=r+1

logPr(Yir = yir, Yis = yis; θ)

with Pr(Yir = 1, Yis = 1; θ) = Φ2(xirβ/σ, xisβ/σ; ρ).

• Pairwise likelihood inference is much simpler than full
likelihood inference since it involves only bivariate normal
integrals

• Here interest on inference about θ = (β, ρ), with σ = 1.

• We run a simulation experiment with three values of ρ. We
computed the empirical coverages of confidence regions based
on several statistics.
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q = 3 q = 6 q = 10
n 50 80 50 80 50 80

ρ = 0.25
pw1(θ) 0.935 0.941 0.925 0.931 0.919 0.930
pwe1(θ) 0.934 0.942 0.934 0.937 0.927 0.933
pwe(θ) 0.908 0.933 0.913 0.933 0.914 0.932

ρ = 0.50
pw1(θ) 0.934 0.943 0.931 0.937 0.916 0.928
pwe1(θ) 0.932 0.943 0.935 0.939 0.922 0.932
pwe(θ) 0.921 0.934 0.924 0.932 0.921 0.940

ρ = 0.50
pw1(θ) 0.925 0.934 0.931 0.938 0.920 0.925
pwe1(θ) 0.916 0.932 0.932 0.940 0.923 0.930
pwe(θ) 0.898 0.922 0.925 0.934 0.924 0.935
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Concluding remarks
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• The proposed statistic show reasonable coverage performances
and are in general accurate.

• For large q, pwe(θ) appears preferable to pwe1(θ).

• Also moment matching and Pace et al adjustments perform
well but they all require the evaluation of the matrices H(θ)
and J(θ). The estimation/approximation of H(θ) and J(θ) is
an open issue (see Varin et al 2010).

• Bayesian application of the empirical composite likelihood is
under investigation, following Lazar (2003) and Pauli et al (2010).
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