Motivation	The Insertion Sorting Rank mo	d
0000	0000	

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A Generative Model for Rank Data Based on an Insertion Sorting Algorithm

J. Jacques & C. Biernacki

Laboratory of Mathematics, UMR CNRS 8524 & University Lille 1 (France)

COMPSTAT'2010

Motivation 0000	The Insertion Sorting Rank model	Numerical illustration	Concluding remarks
Outline			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1 Motivation

- Importance of rank data
- Models for rank data

2 The Insertion Sorting Rank mode

- Formalization
- Properties
- Estimation of the model parameters

3 Numerical illustration

- \bullet Comparison of ${\rm ISR}$ and Mallows Φ
- A specificity of ISR: Initial rank σ

4 Concluding remarks

Motivation	The Insertion Sorting Rank model	Numerical illustration	Concluding remarks
0000			
Importance of rank data			

Ranking and ordering notations

Objects to rank

Three holidays destinations:

 $\mathcal{O}_1=\mathsf{Campaign},\,\mathcal{O}_2=\mathsf{Mountain}$ and $\mathcal{O}_3=\mathsf{Sea}$

Rank notations

- Unformalized: First Sea, second Campaign, and last Mountain
- Ordering:

$$x = (3, 1, 2) = (\mathcal{O}_3^{1^{st}}, \mathcal{O}_1^{2^{nd}}, \mathcal{O}_2^{3^{th}})$$

• Ranking:

$$x^{-1} = (2,3,1) = \begin{pmatrix} \mathcal{O}_1 & \mathcal{O}_2 & \mathcal{O}_3 \\ 2^{nd}, 3^{th}, 1^{st} \end{pmatrix}$$

ヘロト ヘ部ト ヘヨト ヘヨト

3

Motivation 0●00	The Insertion Sorting Rank model	Numerical illustration	Concluding remarks		
Importance of rank d	ata				
Interest of rank data					

Human activities involving preferences, attitudes or choices

Web Page ranking Sociology Economics Biology Marketing Sport Politics Educational Testing Psychology

. . .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

They often result from a transformation of other kinds of data!

Models for rank data				
0000	0000		000	Concluding remarks
Motivation	The Insertion Sorting F	Rank model	Numerical illustration	Concluding remarks

A model of reference: Mallows Φ (~1950)

$\mathsf{pr}(x;\mu, heta)\propto \exp(- heta d_{\mathcal{K}}(x,\mu))$

- $\mu = (\mu_1, \dots, \mu_m)$: Rank of reference parameter (*m* objects)
- $d_{\kappa}(x,\mu)$: Kendall distance between $x = (x_1, \dots, x_m)$ and μ
- $\theta \in \mathbb{R}^+$: Dispersion parameter
 - $\theta >$ 0: μ is the mode and dispersion decreases with θ

• $\theta = 0$: Uniformity (max. of dispersion)

Interesting ...

- Many other models are linked with it
- Other distances can be retained (Cayley...)

Motivation	The Insertion Sorting Rank model
0000	0000

Concluding remarks

Models for rank data

Motivation for an alternative model

Two fundamental hypotheses

- \bigcirc x results from a sorting algo. based on paired comparisons
- **2** \neq between x and μ only result from bad paired comparisons

 \Rightarrow Mallows Φ model can be interpreted as a sorting algorithm where all pairs comparisons are performed.

Minimizing errors ⇔ minimizing paired comparisons

If $m \leq 10$, the insertion sorting algorithm has to be retained

₩

The present work!

Formalize, study, estimate and experiment a new model...

Motivation 0000	The Insertion Sorting Rank model	Numerical illustration	Concluding remarks
Outline			

▲日▼▲□▼▲□▼▲□▼ □ ののの

Motivation

Importance of rank data

Models for rank data

2 The Insertion Sorting Rank model

- Formalization
- Properties
- Estimation of the model parameters

3 Numerical illustration

- \bullet Comparison of ${\rm ISR}$ and Mallows Φ
- A specificity of ISR: Initial rank σ

4 Concluding remarks

Motivation 0000	The Insertion Sorting Rank model ●000	Numerical illustration	Concluding remarks
Formalization			
Notations			

•
$$x = (x_1, \ldots, x_m)$$
: Observed rank

•
$$\mu = (\mu_1, \dots, \mu_m)$$
: Rank of reference parameter ("true" rank)

•
$$p \in [0,1]$$
: Probability of good paired comparison (parameter)

•
$$\sigma = (\sigma_1, \ldots, \sigma_m)$$
: Initial rank (latent data!)

Example: $\mu = (1, 2, 3)$ and $\sigma = (1, 3, 2)$

Motivation 0000	The Insertion Sorting Rank model ○●○○	Numerical illustration	Concluding remarks
Formalization			
Model exp	ression		

good(x, σ, μ): Total number of good paired comparisons
bad(x, σ, μ): Total number of bad paired comparisons

$$\operatorname{pr}(x|\sigma;\mu,p) = p^{\operatorname{good}(x,\sigma,\mu)} (1-p)^{\operatorname{bad}(x,\sigma,\mu)}$$

But σ is latent: Marginal over $p(\sigma) = m!^{-1}$ $pr(x; \mu, p) = m!^{-1} \sum_{\sigma} pr(x|\sigma; \mu, p)$

Motivation	The Insertion Sorting Rank mod
	0000

Concluding remarks

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Properties

Properties of the ISR model

Well-behaved model

- μ is the mode and $\bar{\mu}$ the anti-mode $(p > \frac{1}{2})$
- $pr(\mu; \mu, p) pr(x; \mu, p)$ is an increasing function of p
- Identifiability of (μ, p) if $p > \frac{1}{2}$

• Uniform distribution when $p = \frac{1}{2}$

Space reduction for p

Symmetry:
$$pr(x; \bar{\mu}, 1 - p) = pr(x; \mu, p) \Rightarrow p \in [\frac{1}{2}, 1]$$

Motivation 0000	OCO●	Numerical illustration	Concluding remarks		
Estimation of the model parameters					
The EM algorithm					

Maximizing the likelihood from incomplete data (x^1, \ldots, x^n)

• E step:

$$t_{i\sigma} = \operatorname{pr}(\sigma | x^{i}; \mu, p) = \frac{\operatorname{pr}(x^{i} | \sigma; (\mu, p))}{\sum_{s} \operatorname{pr}(x^{i} | s; (\mu, p))}$$

• M step: μ^+ given by browsing the half space (symmetry)

$$p^{+} = \frac{\sum_{i=1}^{n} \sum_{\sigma} t_{i\sigma} \text{good}(x^{i}, \sigma, \mu)}{\sum_{i=1}^{n} \sum_{\sigma} t_{i\sigma} (\text{good}(x^{i}, \sigma, \mu) + \text{bad}(x^{i}, \sigma, \mu))}$$

Possibility to restrict the candidates μ ...

... to a stochastic subset of (x^1, \ldots, x^n) related to empirical freq.

Motivation	The Insertion Sorting Rank model	Numerical illustration	Concluding remarks

▲日▼▲□▼▲□▼▲□▼ □ ののの

Outline

Motivation

- Importance of rank data
- Models for rank data

2 The Insertion Sorting Rank model

- Formalization
- Properties
- Estimation of the model parameters

3 Numerical illustration

- \bullet Comparison of ${\rm ISR}$ and Mallows Φ
- A specificity of ISR: Initial rank σ

Motivation	The Insertion Sorting Rank model	Numerical illustration	Concluding remarks
		000	
Comparison of ISR	and Mallows Φ		
Five real	data sets		

Data set	Quizz	т	n	μ^*	Objects $\mathcal{O}_1, \ldots, \mathcal{O}_m$	
Rank the four r	Rank the four national football teams according to increasing number of victories in the football World Cup					
Football	Yes	4	40	(1,2,4,3)	France, Germany, Brasil, Italy	
Rank chronolog	ically these (Quentin	Tarantin	o movies		
Cinema	Yes	4	40	(3, 2, 4, 1)	Inglourious Basterds, Pulp Fiction	
				. ,	Reservoir Dogs, Jackie Brown	
Results of the f	our nations r	ugby lea	ague, fro	n 1910 to 1999	(except years where they were tie)	
Rugby 4N	No	4	20	None	England, Scotland, Ireland, Walles	
Rank five words	according to	o streng	th of ass	ociation (least to	o most associated) with the target word "Idea"	
Word	Yes	5	98	None	Thought, Play, Theory,	
association					Dream, Attention	
Rank seven sports according to their preference in participating						
Sports	Yes	7	130	None	Baseball, Football, Basketball,	
					Tennis, Cycling, Swimming, Jogging	

Motivat 0000	tion	The Insertion S	orting Rank model	1 0	Numerical illust ⊃●○	ration	Со	ncluding remark	
Compa	rison of ISR and N	lallows Φ							
Res	ults								
	Data set	Model	$\hat{\mu}$	\hat{p} / $\hat{ heta}$	L	p-value	$\#\mu$	Time (s)	
	Football	ISR	(1.2.4.3)	0.834	-89.58	0.001	1	1.6	-

model	μ	p / v	L	p-value	$\#\mu$	Time (s)
ISR	(1,2,4,3)	0.834	-89.58	0.001	1	1.6
Φ	(1,2,4,3)	1.093	-90.22	0.001	1	3.0
ISR	(4,3,2,1)	0.723	-112.99	0.042	14	4.2
Φ	(4,3,2,1)	0.627	-113.16	0.029	2	7.3
ISR	(2,4,1,3)	0.681	-59.53	0.538	12	2.7
Φ	(2,4,1,3)	0.528	-59.18	0.395	2	7.0
ISR	(2,5,4,3,1)	0.879	-283.00	0.001	1	6.0
Φ	(2,5,4,3,1)	1.432	-252.57	0.019	1	19.0
ISR	(1,3, <mark>2,4</mark> ,5,7,6)	0.564	-1103.50	0.999	1	1353.1
φ	(1,3, <mark>4,2</mark> ,5,6,7)	0.080	-1104.24	0.045	11	15842
	ISR Φ ISR Φ ISR Φ ISR Φ ISR Φ	$\begin{array}{c cccc} \mu \\ \text{ISR} & (1,2,4,3) \\ \Phi & (1,2,4,3) \\ \text{ISR} & (4,3,2,1) \\ \Phi & (4,3,2,1) \\ \text{ISR} & (2,4,1,3) \\ \Phi & (2,4,1,3) \\ \text{ISR} & (2,5,4,3,1) \\ \Phi & (2,5,4,3,1) \\ \text{ISR} & (1,3,2,4,5,7,6) \\ \Phi & (1,3,4,2,5,6,7) \end{array}$	$\begin{array}{c ccccc} \mu & \mu & \mu \\ \text{ISR} & (1,2,4,3) & 0.834 \\ \Phi & (1,2,4,3) & 1.093 \\ \text{ISR} & (4,3,2,1) & 0.723 \\ \Phi & (4,3,2,1) & 0.627 \\ \text{ISR} & (2,4,1,3) & 0.681 \\ \Phi & (2,4,1,3) & 0.528 \\ \text{ISR} & (2,5,4,3,1) & 0.879 \\ \Phi & (2,5,4,3,1) & 1.432 \\ \text{ISR} & (1,3,2,4,5,7,6) & 0.564 \\ \Phi & (1,3,4,2,5,6,7) & 0.080 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- Both models are hard competitors
- Computational feasibility, even for m = 7
- Efficiency of μ space restriction (both models)
- Consistency in the $\hat{p}/\hat{\theta}$ meaning: $\hat{p}_{\text{football}} > \hat{p}_{\text{cinema}}$ and $\hat{\theta}_{\text{football}} > \hat{\theta}_{\text{cinema}}$
- Often both models with same $\hat{\mu}$ except "Sports": ISR more coherent?
- Parameter p of ISR easier to understand

Motivation The Insertion Sorting Rank model

Numerical illustration

Concluding remarks

A specificity of ISR: Initial rank σ

ISR detects quizz or no-quizz through $\hat{\sigma}$!

$$\operatorname{pr}(\sigma^1 = \ldots = \sigma^n = s | x^1, \ldots, x^n, \sigma^1 = \ldots = \sigma^n; \hat{\mu}, \hat{\rho})$$

Motivation 0000	The Insertion Sorting Rank model	Numerical illustration 000	Concluding remarks
Outline			

▲口 → ▲御 → ▲注 → ▲注 → □注 □

Motivation

- Importance of rank data
- Models for rank data

2 The Insertion Sorting Rank model

- Formalization
- Properties
- Estimation of the model parameters

3 Numerical illustration

- \bullet Comparison of ${\rm ISR}$ and Mallows Φ
- A specificity of ISR: Initial rank σ

4 Concluding remarks

Motivation	The Insertion Sorting Rank model
0000	0000

Summary about the ${\scriptstyle\rm ISR}$ proposal

- Optimality when $m \leq 10$: Minimize number of errors
- Meaningful parameters
- The initial rank σ is taken into account and meaningful
- Good results when compare to the Mallows Φ
- Computational feasible for $m \le 7$ in R, probably 10 with C
- Estimation easy with an EM algorithm
- Efficient starting strategy for avoiding combinatory about μ

Future work

- $m \leq 10$: Try non-optimal but realistic sorting algorithms
- *m* > 10: Which sorting algorithm? Computational cost?

Motivation	The Insertion Sorting Rank model

Concluding remarks

Polytopes illustration

Empirical "Football"

Empirical "Rugby 4N"

estimate ISR "Football"

estimate ISR "Rugby 4N"

Motivation The Insertion S

The Insertion Sorting Rank model

Numerical illustration

Concluding remarks

Application to clustering of rank data

Natural extension to clustering by assuming that observed ranks arise from a **mixture** of K ISR distributions

$$\operatorname{pr}(x;\theta) = \sum_{k=1}^{K} \frac{\pi_k}{m!} \sum_{\sigma} \operatorname{pr}(x|\sigma;\mu_k,p_k)$$

where

•
$$\theta = (\pi_1, \dots, \pi_K, \mu_1, \dots, \mu_K, p_1, \dots, p_K)$$

• $\operatorname{pr}(x | \sigma; \mu_k, p_k) = p_k^{\operatorname{good}(x, \sigma, \mu_k)} (1 - p_k)^{\operatorname{bad}(x, \sigma, \mu_K)}$

◆ロ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

Motivation	The Insertion Sorting Rank model

Concluding remarks

An example : Football Quizz

Rank these teams in increasing order of victories number to the Football World Cup : 1. France 2. Germany 3. Brasil 4. Italy

empiric

	ISR	Mixture ISR				
μ	(1, 2, 4, 3)	(1, 2, 4, 3) $(3, 4, 2, 1)$				
р	0.69	0.85	0.84			
π		0.73	0.27			
BIC	179.1	160	.6			
	-	 < □ > < □ > 	 < E > < E > < E 	590		