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Motivation

EDF data

Consider a square integrable continuous time stochastic process

X = (X(t), t € R) observed over the interval [0, T], T > 0 at a relatively high
sampling frequency. A commonly used approach is to divide the interval

[0, T] into subintervals [/6, (/ +1)d], I =1,...,nwithd = T /n, and to
consider the functional-valued discrete time stochastic process

Z = (Z,i € N), associated to X by

Z(ty=X(is+t) te]o,9) (1)
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Motivation

Clustering and FD

» Given a sample of curves, we
search for homogeneous
subgroups of individuals.

» Clustering is a process for

iR partitioning a dataset into
sub-groups

» The instances within a group
are similar to each other and
are very dissimilar to the
instances of other groups.

» In a functional context
clustering helps to identify

. : W s om representative curve patterns
Time and individuals who are very

likely involved in the same or O

similar processes. é‘D‘F

v ROD
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Wavelet based feature extraction

e Wavelet based feature extraction
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Wavelet based feature extraction

Wavelets

» domain-transform technique for hierarchical decomposing finite energy
signals

» description in terms of an approximation plus a set of details

» the broad trend is preserved in the approximation part, while the
localized changes are kept in the detail parts.

For short, a wavelet is a MRA

smooth and quickly o

vanishing oscillating function 3

with good localisation ¢

properties in both frequency \MWMM/MW\W
/

and time.

Specially interesting for
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Wavelet based feature extraction

Discret Wavelet Transform

We consider an orthonormal basis of waveforms derived from scaling and
translations of a compactly supported scaling function ¢ and a compactly
supported mother wavelet ¢». We let

di(t) = 27292t — k), hix(t) = 272p(2t — k).
For any j, > 0, the collection
{bjpk, k=0,1,..., 2o _ 1. YikyJ > Jos k70,1,....2"—1}ﬂ (2)

is an orthonormal basis of H a real separable Hilbert space.
Any z € H can be written as

2o —1 oo 21
z(t) = Z Cig ki, k(1) + Z Z di ki k(t), (3)
k=0 j=lo k=0

where ¢; x and d x are the scale and the wavelet coefficients (resp.) of z at
the position k of the scale j defined as

Cik =<Z,0jk >n ik =< Z,¢jk >n . €DF
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J—12/—1
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Wavelet based feature extraction

Energy decomposition of the DWT

Since DWT is based on an L,-orthonormal basis decomposition we have
conservation of the signal’s energy.

We can then write for a discretized function z a characterization by the set of
channel variances estimated at the output of the corresponding filter bank:

J—12/—1 J—1
Exllzf=c+> > dk=c+> ldil (4)
j=0

0

)=

>
Il

where &, = ||z||3,.
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Wavelet based feature extraction

Scale specific AC and RC Contributions

We will use jo = 0 and we will concentrate on the wavelet coefficients di x.
We have conservation of the energy

(D117 = lleool* + D l1d|[?
j

Foreachj=1,...,J, we compute the absolute and relative contribution
representations (ACR and RCR rp.) by
djl|®
cont; = ||| rel = <1
gont =Wl el = 5 Jiee
———
RCR
These coefficients resume the relative importance of each scale to the global
dynamic of a trajectory. =
€DF
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Results

Simulated data

We simulate K = 3 clusters of 25 observations sampled by 1024 points each.

a 2-sinus model
b FAR with diagonal covariance operator
¢ FAR with non diagonal covariance operator

Figure: Mean energy scale’s contribution by model.
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Results

Schema of procedure

) features

ACR
RCR

» After approximating functions by
discretized data, we obtain J handy
features.

» We use Steinley & Brusco’s feature
selection algorithm

RAW DATA

> In order to use k—means we estimate
the number of clusters K by detecting
jumps in the distortion energy curve
dk(Sugar & James, 2003):
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Simulated data

Results

Model K1 Kg K3
2-sinus 25 — -
FAR1 - 20 5
FAR2 - 13 12

» Good overall missclafication
rate (18/75)

» Perfect distinction of 2-sinus
model

» Relatively good performance
on the FAR models
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Results

EDF application

Data: 365 daily power demand profiles of french national consumption (48
points per day)

Some well known facts of electricity
demand:

» 2 well defined seasons with
transitions

» Weekly cycle due to calendar
(WE vs working days) 1

» Daily cycle: day vs night

» Other features that affect
electricity consumtion: bank ot

holidays, special priced days, ‘ ‘ ' ‘ ‘
strikes, financial crisis, storms Time

Aim: Detect daily profiles of french national electricity load demand.
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Conclusion

Conclusion

» We have presented a way of efficiently clustering functions using
wavelet-based dissimilarities.

» Wavelets give a well suited plateform because of their capacity on
detecting highly localized events.

» Feature extraction and feature selection give additional explanaitory
capacity to unsupervised learning.

Compstat 2010 | August 2010 | Jairo Cugliari Clustering FD with waveletes



Conclusion
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