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Fan and Li (2001), Zou and Li (2008) works

Convex penalties (e.g quadratic penalties) : make trade-off
between bias and variance, can create unnecessary
biases when the true parameters are large and cannot
produce parsimonious models.

Nonconcave penalties (e.g: SCAD penalty,Fan 1997 and
hard thresholding penalty, Antoniadis 1997)

Variables selection in high dimension (correlated variables)

Penalized likelihood framework
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Unbiasedness: The resulting estimator is nearly
unbiasedness when the true unkwown parameter is large
to avoid excessive estimation bias.

Sparsity: Estimating a small coefficient as zero, to reduce
model complexity.

Continuity: The resulting estimator is continuous in the
data to avoid instability in model prediction.
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The SCAD penalty noted J,(.) satisfies all three requirements
(unbiasedness,sparsity,continuity) and is defined by J,(0) =
and for |3;| >0

L8 = M5 < A) +

B0 5 0, )

where (z); = max(z,0), a>2and XA > 0.
SCAD possesses oracle properties.
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Let (x;,y;),i =1,...,nani.id random variables sample where
X; € Rp,y,- € R.
The conditional log-likelihood function knowing X; is:

gl(/B)=£l(57¢)=£l(xfﬁayl7¢) (2)

where ¢ is the dispersion parameter, supposed known.
We want to estimate 8 maximizing:

n p
PUB) = 4i(B)—n>_ (I8, (3)
i=1

J=1
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The penalized likelihood is honconcave and
nondifferentiable

Maximization problem

Alternative: Approximation of the SCAD penalty by convex
functions

Iterative algorithms

LQA Algorithm: Fan and Li (2001)
' 1 alk
L0890

n p
B, = argmaxg ¢ > 4i(B) —n> = e
i—1 = 25

When |ﬁ}k)| < e putf=0
Two drawbacks: Choice of ¢y and definitive exclusion of m
variables. —
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LLA Algorithm: Zou and Li (2008)

n P
B = argmaxg ¢ > 4i(B) — ”ZJ/A(lﬂ,-(k)DWﬂ )
=

i=1

The one step LLA estimations are good as estimations
obtained after the fully iterative LLA.

The well known LARS algorithm is used when computing
the solution.

Therefore, as with LASSO (Tibshirani, 1996) there is a
problem of selection in the case p >> n.
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n p
B = argmaxg ¢ > 4i(B) — anﬂ 16| — gz

=il j=1

Where w! and ?_ depend on J'A(\Bj(o)\), ]ﬁ}o)\ and eventually
7> 0.
5 is the Maximum Likelihood Estimator.
The second term is for selection.
The third one guarantees grouping effect as with the
elastic net (Zou and Hastie, 2005).
For the convergence we prove that MLLQA is an instancdFSSM ¢
of MM algorithms (Hunter and Li 2005). il e
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We show that solving problem (6) is equivalent to find:

~ N B R P :
B=argming ¢ 5 | V"= X"B |2 +nd_wflgil. o (@)
j=1
Y* € R™P  X* of dimension (n+ p) = p and (Y*, X*) depend
on data (Y, X).
Proposition

Solving the problem (3) via one-step MLLQA algorithm is
equivalent to One-step LLA on augmented data.
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Let 3(ose) be the one-step estimator 3(1) and 3, the true
model parameter.

Assume o = (o1, -, fop) " = (B{y, B35)" and a0 = 0. Under
some regularity conditions we have the following theorem:

~

If VnAp — oo and Ay — 0, 3(0se) is
Sparse: with probability tending to 1, 5(ose)2 = 0.
Asymptotically normal: v/n(3(0se)1 — B10) — N(O, I;" (B10))

Continuity: the minimum of the function | 3 | +J(| 8 |)

must be attained at zero (Fan and Li 2001).In the case of
one-step it suffices that J'A(| 5 |) be continuous for | 5 |> 0

to have the continuity of 3(ose). m
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Assume that the response variable is centered and the

predictors are standardized. If |6,.(°)\ = ]ﬁj(o)\ #0i,j€{1,..,p}
we then have:

o 18O
D i) < —L—m
g0 (1) < nZ, (57

2(1—-p)

Xi = Xj = Bi = [
[
VT3

Where p = x{x; and D, _ 50)(i,f) =
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In this example, simulation data were generated from the linear
regression model,

y=x"8+e
where 5 = (3,1.5,0,0,2,0,0,0,0,0,0,0)7, e ~ A(0,1) and x is
multivariate normal distribution with zero mean and covariance
between the ith and jth elements being p!’~/l with
p € {0.5,0.7,0.9}.The sample size is set to be 50 and 100.For
each case we repeated the simulation 500 times.
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n=>50
No. of Zeros Proportion of
Method MRME C IC Underfit Correctfit Overfit
p=.5
LLA 0.357 3 2.712 0 0.412 0.588
MLLQA  0.331 3 2.488 0 0.492 0.508
p=.7
LLA 0.437 2998 2.794  0.002 0.362 0.636
MLLQA 0.383 2994 2.654 0.006 0.410 0.584
p=.9
LLA 0.616 2.884 2676 0.116 0.282 0.606
MLLQA 0579 2876 2556 0.124 0.302 0.578
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n= 100
No. of Zeros Proportion of
Method MRME C IC Underfit Correctfit Overfit
p=_5
LLA 0.492 2998 3.154 0.002 0.460 0.538
MLLQA 0455 2998 3.114 0.002 0.482 0.516
p=.7
LLA 0.486 2.998 2.828 0.002 0.480 0.518
MLLQA 0451 2998 2.872 0.002 0.490 0.508
p=29
LLA 0.539 2946 2490 0.054 0.394 0.552
MLLQA 0491 2944 2516 0.056 0.412 0.532
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Using convexe approximation of SCAD penalty, we've
transformed our initial problem in one-step LLA on
augmented data.

This approach is adapted in the high dimensional setting
(p >> n).So, allows the selection of more than n variables.
We considered one-step estimator as final estimation
because it’s naturally adopt sparse representation and has
oracle properties.

Our approach improves one-step LLA results in the case

(p<n).
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Thank you for your attention!!!
MERCI DE VOTRE ATTENTION!!!
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