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Motivations

I Fan and Li (2001), Zou and Li (2008) works
I Convex penalties (e.g quadratic penalties) : make trade-off

between bias and variance, can create unnecessary
biases when the true parameters are large and cannot
produce parsimonious models.

I Nonconcave penalties (e.g: SCAD penalty,Fan 1997 and
hard thresholding penalty, Antoniadis 1997)

I Variables selection in high dimension (correlated variables)
I Penalized likelihood framework
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Ideal procedure for variable selection

I Unbiasedness: The resulting estimator is nearly
unbiasedness when the true unkwown parameter is large
to avoid excessive estimation bias.

I Sparsity: Estimating a small coefficient as zero, to reduce
model complexity.

I Continuity: The resulting estimator is continuous in the
data to avoid instability in model prediction.
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The Smoothly Clipped Absolute Deviation (SCAD) Penalty

The SCAD penalty noted Jλ(.) satisfies all three requirements
(unbiasedness,sparsity,continuity) and is defined by Jλ(0) = 0
and for |βj | > 0

J
′

λ(|βj |) = λI(|βj | ≤ λ) +
(aλ − |βj |)+

a − 1
I(|βj | > λ), (1)

where (z)+ = max(z, 0), a > 2 and λ > 0.
SCAD possesses oracle properties.
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Generalities

Let (xi , yi ), i = 1, . . . , n an i.i.d random variables sample where
xi ∈ IRp, yi ∈ IR.
The conditional log-likelihood function knowing xi is:

`i(β) = `i(β, φ) = `i(xt
i β, yi , φ) (2)

where φ is the dispersion parameter, supposed known.
We want to estimate β maximizing:

P`(β) =

n∑

i=1

`i(β) − n
p∑

j=1

Jλ(|βj |), (3)
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I The penalized likelihood is nonconcave and
nondifferentiable

I Maximization problem
I Alternative: Approximation of the SCAD penalty by convex

functions
I Iterative algorithms

LQA Algorithm: Fan and Li (2001)

β(k+1) = argmaxβ





n∑

i=1

`i(β) − n
p∑

j=1

J ′

λ(|β(k)
j |)

2|β(k)
j |

β2
j



 . (4)

I When |β(k)
j | < ε0 put β̂j = 0

I Two drawbacks: Choice of ε0 and definitive exclusion of
variables.
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LLA Algorithm: Zou and Li (2008)

β(k+1) = argmaxβ





n∑

i=1

`i(β) − n
p∑

j=1

J
′

λ(|β(k)
j |)|βj |



 . (5)

I The one step LLA estimations are good as estimations
obtained after the fully iterative LLA.

I The well known LARS algorithm is used when computing
the solution.

I Therefore, as with LASSO (Tibshirani, 1996) there is a
problem of selection in the case p >> n.
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Our contribution: MLLQA Algorithm

β(k+1) = argmaxβ





n∑

i=1

`i(β) − n
p∑

j=1

ω1
j |βj | −

n
2

p∑

j=1

ω2
j ,τβ

2
j



 .

(6)
Where ω1

j and ω2
j ,τ depend on J ′

λ(|β(0)
j |), |β(0)

j | and eventually
τ > 0.

I β(0) is the Maximum Likelihood Estimator.
I The second term is for selection.
I The third one guarantees grouping effect as with the

elastic net (Zou and Hastie, 2005).
I For the convergence we prove that MLLQA is an instance

of MM algorithms (Hunter and Li 2005).
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Augmented data problem

We show that solving problem (6) is equivalent to find:

β̂ = argminβ





1
2
‖ Y ∗ − X ∗β ‖2 +n

p∑

j=1

ω1
j |βj |.



 (7)

Y ∗ ∈ IRn+p, X ∗ of dimension (n + p) ∗ p and (Y ∗, X ∗) depend
on data (Y , X ).

Proposition
Solving the problem (3) via one-step MLLQA algorithm is
equivalent to One-step LLA on augmented data.
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Oracle and Statistical Properties of the one step MLLQA estimator
Let β̂(ose) be the one-step estimator β(1) and β0 the true
model parameter.
Assume β0 = (β01, ..., β0p)T = (βT

10, β
T
20)

T and β20 = 0. Under
some regularity conditions we have the following theorem:

Theorem
If
√

nλn → ∞ and λn → 0, β̂(ose) is
Sparse: with probability tending to 1, β̂(ose)2 = 0.

Asymptotically normal:
√

n(β̂(ose)1 − β10) → N(0, I−1
1 (β10))

I Continuity: the minimum of the function | β | +J
′

λ(| β |)
must be attained at zero (Fan and Li 2001).In the case of
one-step it suffices that J

′

λ(| β |) be continuous for | β |> 0
to have the continuity of β̂(ose).
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Grouping effect: case of correlated variables

Assume that the response variable is centered and the
predictors are standardized. If |β(0)

i | = |β(0)
j | 6= 0 i , j ∈ {1, ..., p}

we then have:

1. Dλ,τ,β(0)(i , j) ≤ |β
(0)
j |+τ

nJ′

λ
(|β

(0)
j |)

√
2(1 − ρ)

2. xi = xj ⇒ β̂i = β̂j

Where ρ = x t
i xj and Dλ,τ,β(0)(i , j) =

|β̂i−β̂j |

|Y |1
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Linear Model

In this example, simulation data were generated from the linear
regression model,

y = xT β + ε,

where β = (3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0)T , ε ∼ N (0, 1) and x is
multivariate normal distribution with zero mean and covariance
between the i th and j th elements being ρ|i−j | with
ρ ∈ {0.5, 0.7, 0.9}.The sample size is set to be 50 and 100.For
each case we repeated the simulation 500 times.
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n = 50
No. of Zeros Proportion of

Method MRME C IC Underfit Correctfit Overfit
ρ = .5

LLA 0.357 3 2.712 0 0.412 0.588
MLLQA 0.331 3 2.488 0 0.492 0.508

ρ = .7
LLA 0.437 2.998 2.794 0.002 0.362 0.636

MLLQA 0.383 2.994 2.654 0.006 0.410 0.584
ρ = .9

LLA 0.616 2.884 2.676 0.116 0.282 0.606
MLLQA 0.579 2.876 2.556 0.124 0.302 0.578
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n = 100
No. of Zeros Proportion of

Method MRME C IC Underfit Correctfit Overfit
ρ = .5

LLA 0.492 2.998 3.154 0.002 0.460 0.538
MLLQA 0.455 2.998 3.114 0.002 0.482 0.516

ρ = .7
LLA 0.486 2.998 2.828 0.002 0.480 0.518

MLLQA 0.451 2.998 2.872 0.002 0.490 0.508
ρ = .9

LLA 0.539 2.946 2.490 0.054 0.394 0.552
MLLQA 0.491 2.944 2.516 0.056 0.412 0.532
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Conclusion

I Using convexe approximation of SCAD penalty, we’ve
transformed our initial problem in one-step LLA on
augmented data.

I This approach is adapted in the high dimensional setting
(p >> n).So, allows the selection of more than n variables.

I We considered one-step estimator as final estimation
because it’s naturally adopt sparse representation and has
oracle properties.

I Our approach improves one-step LLA results in the case
(p < n).
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Thank you for your attention!!!
MERCI DE VOTRE ATTENTION!!!
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