Smoothly Clipped Absolute Deviation (SCAD) for Correlated Variables

SIDI ZAKARI Ibrahim

LIB-MA, FSSM Cadi Ayyad University (Morocco)

COMPSTAT'2010 Paris, August 22-27, 2010

Motivations

- > Fan and Li (2001), Zou and Li (2008) works
- Convex penalties (e.g quadratic penalties) : make trade-off between bias and variance, can create unnecessary biases when the true parameters are large and cannot produce parsimonious models.
- Nonconcave penalties (e.g: SCAD penalty,Fan 1997 and hard thresholding penalty, Antoniadis 1997)
- Variables selection in high dimension (correlated variables)
- Penalized likelihood framework

Ideal procedure for variable selection

- Unbiasedness: The resulting estimator is nearly unbiasedness when the true unkwown parameter is large to avoid excessive estimation bias.
- Sparsity: Estimating a small coefficient as zero, to reduce model complexity.
- Continuity: The resulting estimator is continuous in the data to avoid instability in model prediction.

The Smoothly Clipped Absolute Deviation (SCAD) Penalty

The SCAD penalty noted $J_{\lambda}(.)$ satisfies all three requirements (unbiasedness,sparsity,continuity) and is defined by $J_{\lambda}(0) = 0$ and for $|\beta_{j}| > 0$

$$J_{\lambda}'(|\beta_j|) = \lambda \mathbf{I}(|\beta_j| \le \lambda) + \frac{(a\lambda - |\beta_j|)_+}{a - 1} \mathbf{I}(|\beta_j| > \lambda), \quad (1)$$

where $(z)_+ = \max(z, 0)$, a > 2 and $\lambda > 0$. SCAD possesses oracle properties.

Generalities

Let $(\mathbf{x}_i, y_i), i = 1, ..., n$ an i.i.d random variables sample where $\mathbf{x}_i \in \mathbf{R}^p, y_i \in \mathbf{R}$. The conditional log-likelihood function knowing \mathbf{x}_i is:

$$\ell_i(\boldsymbol{\beta}) = \ell_i(\boldsymbol{\beta}, \phi) = \ell_i(\mathbf{x}_i^t \boldsymbol{\beta}, \mathbf{y}_i, \phi)$$
(2)

where ϕ is the dispersion parameter, supposed known. We want to estimate β maximizing:

$$P\ell(eta) = \sum_{i=1}^n \ell_i(eta) - n \sum_{j=1}^p J_\lambda(|eta_j|),$$

(3)

- The penalized likelihood is nonconcave and nondifferentiable
- Maximization problem
- Alternative: Approximation of the SCAD penalty by convex functions
- Iterative algorithms

LQA Algorithm: Fan and Li (2001)

$$\beta^{(k+1)} = \operatorname{argmax}_{\beta} \left\{ \sum_{i=1}^{n} \ell_i(\beta) - n \sum_{j=1}^{p} \frac{J'_{\lambda}(|\beta_j^{(k)}|)}{2|\beta_j^{(k)}|} \beta_j^2 \right\}.$$
 (4)

▶ When
$$|\beta_j^{(k)}| < \epsilon_0$$
 put $\hat{\beta}_j = 0$

Two drawbacks: Choice of ϵ_0 and definitive exclusion of variables.

LLA Algorithm: Zou and Li (2008)

$$\beta^{(k+1)} = \operatorname{argmax}_{\beta} \left\{ \sum_{i=1}^{n} \ell_i(\beta) - n \sum_{j=1}^{p} J'_{\lambda}(|\beta_j^{(k)}|) |\beta_j| \right\}.$$
(5)

- The one step LLA estimations are good as estimations obtained after the fully iterative LLA.
- The well known LARS algorithm is used when computing the solution.
- Therefore, as with LASSO (Tibshirani, 1996) there is a problem of selection in the case p >> n.

Our contribution: MLLQA Algorithm

$$\beta^{(k+1)} = \operatorname{argmax}_{\beta} \left\{ \sum_{i=1}^{n} \ell_i(\beta) - n \sum_{j=1}^{p} \omega_j^1 |\beta_j| - \frac{n}{2} \sum_{j=1}^{p} \omega_{j,\tau}^2 \beta_j^2 \right\}.$$
(6)

Where ω_j^1 and $\omega_{j,\tau}^2$ depend on $J'_{\lambda}(|\beta_j^{(0)}|)$, $|\beta_j^{(0)}|$ and eventually $\tau > 0$.

- > $\beta^{(0)}$ is the Maximum Likelihood Estimator.
- The second term is for selection.
- The third one guarantees grouping effect as with the elastic net (Zou and Hastie, 2005).
- For the convergence we prove that MLLQA is an instance of MM algorithms (Hunter and Li 2005).

Augmented data problem

We show that solving problem (6) is equivalent to find:

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} \left\{ \frac{1}{2} \parallel \boldsymbol{Y}^* - \boldsymbol{X}^* \boldsymbol{\beta} \parallel^2 + n \sum_{j=1}^p \omega_j^1 |\beta j|. \right\}$$
(7)

 $Y^* \in \mathbb{R}^{n+p}$, X^* of dimension (n+p) * p and (Y^*, X^*) depend on data (Y, X).

Proposition

Solving the problem (3) via one-step MLLQA algorithm is equivalent to One-step LLA on augmented data.

Oracle and Statistical Properties of the one step MLLQA estimator Let $\hat{\beta}(ose)$ be the one-step estimator $\beta^{(1)}$ and β_0 the true model parameter.

Assume $\beta_0 = (\beta_{01}, ..., \beta_{0p})^T = (\beta_{10}^T, \beta_{20}^T)^T$ and $\beta_{20} = 0$. Under some regularity conditions we have the following theorem:

Theorem If $\sqrt{n}\lambda_n \to \infty$ and $\lambda_n \to 0$, $\hat{\beta}(ose)$ is Sparse: with probability tending to 1, $\hat{\beta}(ose)_2 = 0$. Asymptotically normal: $\sqrt{n}(\hat{\beta}(ose)_1 - \beta_{10}) \to N(0, I_1^{-1}(\beta_{10}))$

► Continuity: the minimum of the function $|\beta| + J'_{\lambda}(|\beta|)$ must be attained at zero (Fan and Li 2001). In the case of one-step it suffices that $J'_{\lambda}(|\beta|)$ be continuous for $|\beta| > 0$ to have the continuity of $\hat{\beta}(ose)$.

Grouping effect: case of correlated variables

Assume that the response variable is centered and the predictors are standardized. If $|\beta_i^{(0)}| = |\beta_j^{(0)}| \neq 0$ $i, j \in \{1, ..., p\}$ we then have:

1.
$$D_{\lambda,\tau,\beta^{(0)}}(i,j) \leq \frac{|\beta_j^{(0)}|+\tau}{nJ'_{\lambda}(|\beta_j^{(0)}|)}\sqrt{2(1-\rho)}$$

2. $x_i = x_j \Rightarrow \widehat{\beta}_i = \widehat{\beta}_j$
Where $\rho = x_i^t x_j$ and $D_{\lambda,\tau,\beta^{(0)}}(i,j) = \frac{|\widehat{\beta}_i - \widehat{\beta}_j|}{|Y|}$

FSSM Eliter they they

Linear Model

In this example, simulation data were generated from the linear regression model,

$$\mathbf{y} = \mathbf{x}^{\mathsf{T}}\boldsymbol{\beta} + \boldsymbol{\epsilon},$$

where $\beta = (3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0)^T$, $\epsilon \sim \mathcal{N}(0, 1)$ and x is multivariate normal distribution with zero mean and covariance between the *i*th and *j*th elements being $\rho^{|i-j|}$ with $\rho \in \{0.5, 0.7, 0.9\}$. The sample size is set to be 50 and 100. For each case we repeated the simulation 500 times.

<i>n</i> = 50						
		No. of	Zeros		Proportion of	
Method	MRME	С	IC	Underfit	Correctfit	Overfit
			$\rho = .5$			
LLA	0.357	3	2.712	0	0.412	0.588
MLLQA	0.331	3	2.488	0	0.492	0.508
			$\rho = .7$			
LLA	0.437	2.998	2.794	0.002	0.362	0.636
MLLQA	0.383	2.994	2.654	0.006	0.410	0.584
			ho = .9			
LLA	0.616	2.884	2.676	0.116	0.282	0.606
MLLQA	0.579	2.876	2.556	0.124	0.302	0.578

<i>n</i> = 100						
		No. of	Zeros		Proportion of	
Method	MRME	С	IC	Underfit	Correctfit	Overfit
			$\rho = .5$			
LLA	0.492	2.998	3.154	0.002	0.460	0.538
MLLQA	0.455	2.998	3.114	0.002	0.482	0.516
			$\rho = .7$			
LLA	0.486	2.998	2.828	0.002	0.480	0.518
MLLQA	0.451	2.998	2.872	0.002	0.490	0.508
			ho = .9			
LLA	0.539	2.946	2.490	0.054	0.394	0.552
MLLQA	0.491	2.944	2.516	0.056	0.412	0.532

Conclusion

- Using convexe approximation of SCAD penalty, we've transformed our initial problem in one-step LLA on augmented data.
- This approach is adapted in the high dimensional setting (p >> n). So, allows the selection of more than *n* variables.
- We considered one-step estimator as final estimation because it's naturally adopt sparse representation and has oracle properties.
- Our approach improves one-step LLA results in the case (p < n).

- EFRON, B., HASTIE, T., JOHNSTONE, I. and TIBSHIRANI, R.(2004): Least angle regression. *The annals of statistics (32), 407-499*
- FAN, J. and LI, R.(2001): Variable selection via nonconcave penalized likelihood and its oracle properties. *Journal of the American Statistical Association (96), 1348-1360.*
- HUNTER, D. and Li, R.(2005): Variable selection using MM algorithms. *The annals of statistics, volume 33, 1617-1642*
- TIBSHIRANI, R.(1996): Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society (58), 267-288.*
- ZOU, H. and HASTIE, T.(2005): Regularization and variable selection via the elastic-net. *Journal of the Royal Statistical Society (67), 301-320.*

ZOU, H. and LI, R.(2008): One-step sparse estimates in

Thank you for your attention!!! MERCI DE VOTRE ATTENTION!!!

