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The context
Cookie' squality at Danone and the kneading process

A cookie from Danone :

e choose a type of flour (components, density, etc)

e kneading processy{ 1h)

- Put the dough in form and cook it
o > > 2N,

- Evaluate quality of the obtained cookies

/

|dea : predict the cookie’s quality from elements derived from
the kneading process : Danone gets time and money !
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Dough resistance during the kneading process: X = X (?),
t € {0,2,4,...480s}
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Flour evaluation

The quality of cookies obtained with some type of flour is give
by experts.

The responseX() is : this type of flour iS500d or Bad.

90 flours were evaluateds0 are good and0 are bad.
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Functional discriminant analysis
X ={Xiheor, Xi: Q= R,
- B(X?) < oo,
- Lo—continuous,

Vw € Q1 (Xy(w))iepor € L2(]0,TY),
E(X,) =0,V € [0, 7).

Y :Q —{0,1}.

Discriminant score:
dr = ®(X)
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Discriminant score estimation

{(X17 }/1)7 (X27 }/2)7 sy (Xna Yn)}
e Linear discriminant score :
O(X) = (B, X) o017, B € L]0, 7.

Criterion (Fisher):

e VE(RX)]Y))
sel:0,1]  V(P(X))

Estimation by functional linear regression model (PCR,
PLS, etc).
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e Nonparametric estimation

Y YK (u(X, X)) /)
P = S R (X, X)) /)

e RKHS approximation

Zozz (X;, X)

Criterion (logistic loss) :

L(z,y,®) = —y®(z) +log(1 + )
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Kneading data results
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Good (black) and bad (red) flours. Left : original data. Righinoothed data

M odel PLS_FLDA NP PC_FLDA | Gaussian(6)| LDA

Error rate 0.112 0.103 0.142 0.108 0.154
Error rate averaged ové00 test samples.
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Anticipated prediction
X is observed o0, T

Problem : find the smallest™, 7™ < T', such that the
prediction ofY by X observed on0, 7| is "similar"
to the prediction obtained witkk'’ observed ono, 7.

Discrimination power : ROC curve
—d : the discriminant score.
—threshold-: Y =11if d > r.
—"Sensitivity" : P(d > r|Y = 1)

— "Specificity" : P(d > r|Y = 0).

Measure of discrimination : area under the ROC curve (AUC)
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— Estimation of AUC
{Y =1} Xy = djy=1, sample of sizey,
{Y =0} : Xo = djy—o, sample of sizex,

#{X; > Xo}

1M

D = {d; }o<t<T, {A/U\C(t)}oqgir

AUC =

Criterion for’T™ : compareAUC(t) andAUC(T) for t < T and
chosel™ as the largest such that the test

Hy: AUC(t) = AUC(T),

H,: AUC(t) < AUC(T)
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Simulation

)
W(l—t), 0<t<1
Class{Y =0} : X; = ¢ ( ) -
—2sin(t — 1) + W(t — 1), 1<t<2
\
(
W(l—1), 0<t<l1
Class{Y = 1}: X} = « ( ) -
2sin(t — 1) + W (t — 1), 1<t<2
\
X(t) Y=1 (black), Y=0 (blue)

Figure : Sample of size = 100 for each class oY'.
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M = 50 learning and test samples of size 100.
For eacht € {0,2.00,1.98,...,0} : sample of sizé\/ = 50 of

AUC(1).

—T* = 1.46.
— test statistic S = 1.663

—_—

AUC(t) = 0.856, AUC(T) = 0.872
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Kneading data

Y € {Bad, Good}. The sample 090 flours is randomly divided
Into a learning sample of siz#) and a test sample of si3e.

Error test rate (PLS estimatioii) = 480 : 0.112,
— AUC(T) = 0.746.

Anticipated prediction : T = 186.
Error test rate (PLS estimatioid} = 186 : 0.121,
— AUC(T*) = 0.778.

Conclusion : the predictive power of the dough curves for the
cookies quality is resumed by the fitS6 seconds of the
kneading process.
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Adaptive prediction

Remark : in anticipated predictidfi* is a constant.

Letw € () be a new observation for which one wants to predict
Y from X. Suppose thakX is observed in a sequential way. The
problem addressed by the adaptive prediction is :

Problem : find the smallest™(w), T*(w) < T, such thatX
observed on0, T*(w)| provides similar prediction as it is
observed ono, 7.

Remark :

- hereT™ is a random variable.

- to observeX (w) on [T™, T'| will not change the prediction for
Y (w) obtained withX on [0, T%(w)].
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Conservative index for prediction :

The discriminant scoré;.
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Denote by

(1) = {w; € QY3 (w) = Y;,;} and O, (1) = Q — Q,(t)

the class of elements having the same predictian, as
respectively its complement with respectio

) dt dr

/ Pg Y=0

t \J A
20 | | P | ¥=1

Q § | A

QM) | 1 A
” | P | Y=l

0) t -

Conservation rate of the prediction forandt.
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Let
{o' € Q¥r() = 0} N Q1))

be the observed rate of element<in(¢) predicted in the class
Y = 0 at the timel" using the scord,. Similarly, letp o),

Poja.,(n@NAdpya, 1)

Let define byCq 1) = max{poja. @), P1jo.@) }» respectively by
Ca. v = max{Pojas ), Pia. ¢ theconservatiorrate of the
prediction at the time with respect to the timé& for the
elements of2,,(t), respectively of),, ().

As a global measure of conservation we consider

Ca(w,t) = min{Co, ), Cq, )
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Remark : For eache [0, T], Cq(w,t) is such that
0.5 < Cq(w,t) <1andCq(w,T) = 1.

Given a confidence conservation thresheld (0, 1), e.qg.
~v = 0.90, we define the followin@daptive prediction ruldor w
andt :

(1) if Cq(w,t) > v then the observation of for w on the time interval0, ¢] is sufficient
for the prediction oft (w). Y (w) is then the same as the prediction at time T of the

subgroup of, (¢) corresponding t@' | (4)-
(2) if Cq(w,t) < then the observation processXffor w should continue after. Put
t =t + h and repeat the adaptive prediction procedure.

Then,T*(w) is the smallest such that the condition (1) of the
adaptive prediction rule is satisfied.
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Left : new flourw. Right:Cq(w,t),t € [100,480], v = 0.90.

T*(w) = 220.
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For 25 new flours, the adaptive procedure is applied.
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Empirical cumulative distribution function af* (in red, the time point t=186).
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