Large Scale Machine Learning with Stochastic Gradient Descent

Léon Bottou leon@bottou.org

Microsoft (since June)

Summary

- i. Learning with Stochastic Gradient Descent.
- ii. The Tradeoffs of Large Scale Learning.
- iii. Asymptotic Analysis.
- iv. Learning with a Single Pass.

Léon Bottou 2/37

Léon Bottou 3/37

Example

Binary classification

- Patterns x.
- Classes $y = \pm 1$.

Linear model

- Choose features: $\Phi(x) \in \mathbb{R}^d$
- Linear discriminant function: $f_w(x) = \operatorname{sign}\left(w^ op \Phi(x)
 ight)$

4/37

SVM training

Choose loss function

$$Q(x,y,w) = \ell(y,f_w(x)) = (\text{e.g.}) \log\left(1 + e^{-y\,w^ op\,\Phi(x)}
ight)$$

- Cannot minimize the expected risk $E(w) = \int Q(x,y,w) \, dP(x,y)$.
- Can compute the empirical risk $E_n(w) = rac{1}{n} \sum_{i=1}^n Q(x_i, y_i, w)$.

 $lue{}$ Minimize L_2 regularized empirical risk

$$\min_{w} rac{\lambda}{2} \|w\|^2 + rac{1}{n} \sum_{i=1}^{n} Q(x_i, y_i, w)$$

Choosing λ is the same setting a constraint $||w||^2 < B$.

5/37

Batch versus Online

Batch: process all examples together (GD)

- Example: minimization by gradient descent

Repeat:
$$w \leftarrow w - \gamma \left(\lambda w + \frac{1}{n} \sum_{i=1}^n \frac{\partial Q}{\partial w}(x_i, y_i, w)\right)$$

Online: process examples one by one (SGD)

- Example: minimization by stochastic gradient descent

Repeat: (a) Pick random example x_t, y_t

(b)
$$w \leftarrow w - \gamma_t \left(\lambda w + rac{\partial Q}{\partial w}(x_t, y_t, w)
ight)$$

Léon Bottou 6/37

Second order optimization

Batch: (2GD)

Example: Newton's algorithm

Repeat:
$$w \leftarrow w - H^{-1}\left(\lambda w + \frac{1}{n}\sum_{i=1}^n \frac{\partial Q}{\partial w}(x_i,y_i,w)\right)$$

Online: (2SGD)

- Example: Second order stochastic gradient descent

Repeat: (a) Pick random example x_t, y_t

(b)
$$w \leftarrow w - \gamma_t \, H^{-1} \, \left(\lambda w + \frac{\partial Q}{\partial w} (x_t, y_t, w) \right)$$

Léon Bottou 7/37

More SGD Algorithms

Adaline (Widrow and Hoff, 1960)

$$Q_{\text{adaline}} = \frac{1}{2} (y - w^{\mathsf{T}} \Phi(x))^{2}$$

$$\Phi(x) \in \mathbb{R}^{d}, \ y = \pm 1$$

$$w \leftarrow w + \gamma_t (y_t - w^{\mathsf{T}} \Phi(x_t)) \Phi(x_t)$$

Perceptron (Rosenblatt, 1957)

$$Q_{\text{perceptron}} = \max\{0, -y \, w^{\top} \Phi(x)\}$$

$$\Phi(x) \in \mathbb{R}^d, \ y = \pm 1$$

$$w \leftarrow w + \gamma_t \left\{ \begin{array}{l} y_t \, \Phi(x_t) & \text{if } y_t \, w^\top \Phi(x_t) \leq 0 \\ 0 & \text{otherwise} \end{array} \right.$$

Multilayer perceptrons (Rumelhart et al., 1986) ...

SVM (Cortes and Vapnik, 1995) ...

Lasso (Tibshirani, 1996)

$$Q_{\text{lasso}} = \lambda |w|_{1} + \frac{1}{2} (y - w^{\top} \Phi(x))^{2}$$

$$w = (u_{1} - v_{1}, \dots, u_{d} - v_{d})$$

$$\Phi(x) \in \mathbb{R}^{d}, \ y \in \mathbb{R}, \ \lambda > 0$$

$$u_i \leftarrow \begin{bmatrix} u_i - \gamma_t (\lambda - (y_t - w^{\mathsf{T}} \Phi(x_t)) \Phi_i(x_t)) \end{bmatrix}_+ \\ v_i \leftarrow \begin{bmatrix} v_i - \gamma_t (\lambda + (y_t - w_t^{\mathsf{T}} \Phi(x_t)) \Phi_i(x_t)) \end{bmatrix}_+ \\ \text{with notation } [x]_+ = \max\{0, x\}.$$

K-Means (MacQueen, 1967)

$$Q_{\text{kmeans}} = \min_{k} \frac{1}{2} (z - w_k)^2$$

$$z \in \mathbb{R}^d, \ w_1 \dots w_k \in \mathbb{R}^d$$

$$n_1 \dots n_k \in \mathbb{N}, \text{ initially 0}$$

$$k^* = \arg\min_{k} (z_t - w_k)^2$$

$$n_{k^*} \leftarrow n_{k^*} + 1$$

$$w_{k^*} \leftarrow w_{k^*} + \frac{1}{n_{k^*}} (z_t - w_{k^*})$$

II. The Tradeoffs of Large Scale Learning

Léon Bottou 9/37

The Computational Problem

Baseline large-scale learning algorithm

Randomly discarding data is the simplest way to handle large datasets.

- What is the statistical benefit of processing more data?
- What is the computational cost of processing more data?
- We need a theory that links Statistics and Computation!
- 1967: Vapnik's theory does not discuss computation.
- 1981: Valiant's learnability excludes exponential time algorithms,
 but (i) polynomial time already too slow, (ii) few actual results.

Léon Bottou 10/37

Decomposition of the Error

$$E(\tilde{f}_n) - E(f^*) = E(f_{\mathcal{F}}^*) - E(f^*)$$
 Approximation error (\mathcal{E}_{app}) + $E(f_n) - E(f_{\mathcal{F}}^*)$ Estimation error (\mathcal{E}_{est}) + $E(\tilde{f}_n) - E(f_n)$ Optimization error (\mathcal{E}_{opt})

Problem:

Choose \mathcal{F} , n, and ρ to make this as small as possible,

subject to budget constraints $\left\{ \begin{array}{l} \text{max number of examples } n \\ \text{max computing time } T \end{array} \right.$

Note: choosing λ is the same as choosing \mathcal{F} .

Léon Bottou 11/37

Small-scale Learning

"The active budget constraint is the number of examples."

- ullet To reduce the estimation error, take n as large as the budget allows.
- ullet To reduce the optimization error to zero, take ho=0.
- ullet We need to adjust the size of \mathcal{F} .

Léon Bottou

See Structural Risk Minimization (Vapnik 74) and later works.

12/37

Large-scale Learning

"The active budget constraint is the computing time."

More complicated tradeoffs.

The computing time depends on the three variables: \mathcal{F} , n, and ρ .

Example.

If we choose ρ small, we decrease the optimization error. But we must also decrease \mathcal{F} and/or n with adverse effects on the estimation and approximation errors.

- The exact tradeoff depends on the optimization algorithm.
- We can compare optimization algorithms rigorously.

13/37

Léon Bottou 14/37

Vary the number of examples. . .

15/37

Vary the number of examples, the statistical models, the algorithms, . . .

Léon Bottou 16/37

Not all combinations are equal.

Let's compare the red curve for different optimization algorithms.

Léon Bottou 17/37

III. Asymptotic Analysis

Asymptotic Analysis

$$E(ilde{f_n}) - E(f^*) = \mathcal{E} = \mathcal{E}_{\mathrm{app}} + \mathcal{E}_{\mathrm{est}} + \mathcal{E}_{\mathrm{opt}}$$

Asymptotic Analysis

All three errors must decrease with comparable rates.

Forcing one of the errors to decrease much faster

- would require additional computing efforts,
- but would not significantly improve the test error.

Léon Bottou 19/37

Statistics

Asymptotics of the statistical components of the error

- Thanks to refined uniform convergence arguments

$$\mathcal{E} = \mathcal{E}_{\mathrm{app}} + \mathcal{E}_{\mathrm{est}} + \mathcal{E}_{\mathrm{opt}} \sim \mathcal{E}_{\mathrm{app}} + \left(\frac{\log n}{n}\right)^{\alpha} + \rho$$

with exponent $\frac{1}{2} \le \alpha \le 1$.

Asymptotically effective large scale learning

– Must choose \mathcal{F} , n, and ρ such that

$$\mathcal{E} \sim \mathcal{E}_{\mathrm{app}} \sim \mathcal{E}_{\mathrm{est}} \sim \mathcal{E}_{\mathrm{opt}} \sim \left(\frac{\log n}{n}\right)^{\alpha} \sim \rho$$
.

What about optimization times?

Léon Bottou 20/37

Statistics and Computation

	GD	2GD	SGD	2SGD
Time per iteration:	$oldsymbol{n}$	$oldsymbol{n}$	1	1
Iters to accuracy $ ho$:	$\log rac{1}{ ho}$	$\log\lograc{1}{ ho}$	$rac{1}{ ho}$	$rac{1}{ ho}$
Time to accuracy $ ho$:	$n\lograc{1}{ ho}$	$n\log\lograc{1}{ ho}$	$rac{1}{ ho}$	$rac{1}{ ho}$
Time to error $oldsymbol{arepsilon}$:	$rac{1}{{oldsymbol arepsilon}^{1/lpha}}\log^2\!rac{1}{{oldsymbol arepsilon}}$	$rac{1}{{oldsymbol{arepsilon}}^{1/lpha}}\lograc{1}{{oldsymbol{arepsilon}}}\log\lograc{1}{{oldsymbol{arepsilon}}}$	$rac{1}{\mathcal{E}}$	$rac{1}{\mathcal{E}}$

- 2GD optimizes much faster than GD.
- SGD optimization speed is catastrophic.
- SGD learns faster than both GD and 2GD.
- 2SGD only changes the constants.

Léon Bottou 21/37

Experiment: Text Categorization

Dataset

- Reuters RCV1 document corpus.
- 781,265 training examples, 23,149 testing examples.

Task

- Recognizing documents of category CCAT.
- 47,152 TF-IDF features.
- Linear SVM.

Same setup as (Joachims, 2006) and (Shalev-Schwartz et al., 2007) using plain SGD.

Experiment: Text Categorization

Results: Hinge-loss SVM

$$Q(x, y, w) = \max\{0, 1 - yw^{\mathsf{T}}\Phi(x)\}$$
 $\lambda = 0.0001$

	Training Time	Primal cost	Test Error
SVMLight	23,642 secs	0.2275	6.02%
SVMPerf	66 secs	0.2278	6.03%
SGD	1.4 secs	0.2275	6.02%

Results: Log-Loss SVM

$$Q(x, y, w) = \log(1 + \exp(-yw^{\mathsf{T}}\Phi(x))) \qquad \lambda = 0.00001$$

Traini	ng Time	Primal cost	Test Error
TRON(LibLinear, $\varepsilon = 0.01$)	30 secs	0.18907	5.68%
TRON(LibLinear, $\varepsilon = 0.001$)	44 secs	0.18890	5.70%
SGD	2.3 secs	0.18893	5.66%

Léon Bottou 23/37

The Wall

Léon Bottou 24/37

IV. Learning with a Single Pass

Léon Bottou 25/37

Batch and online paths

Léon Bottou 26/37

Effect of one Additional Example (i)

Compare

$$egin{array}{ll} w_n^* &= rg \min_w E_n(f_w) \ w_{n+1}^* &= rg \min_w E_{n+1}(f_w) = rg \min_w \left[E_n(f_w) + rac{1}{n} \ell(f_w(x_{n+1}), y_{n+1})
ight] \end{array}$$

Léon Bottou 27/37

Effect of one Additional Example (ii)

First Order Calculation

$$w_{n+1}^* \; = \; w_n^* \; - \; rac{1}{n} H_{n+1}^{-1} rac{\partial \, \ell ig(f_{w_n}(x_n), y_n ig)}{\partial w} \; + \; \mathcal{O}ig(rac{1}{n^2}ig)$$

where H_{n+1} is the empirical Hessian on n+1 examples.

• Compare with Second Order Stochastic Gradient Descent

$$w_{t+1} = w_t - rac{1}{t} H^{-1} rac{\partial \, \ell ig(f_{w_t}(x_n), y_n ig)}{\partial w}$$

- Could they converge with the same speed?
- ullet C₂ assumptions \Longrightarrow Accurate speed estimates.

28/37

Speed of Scaled Stochastic Gradient

- Study $w_{t+1}=w_t-\frac{1}{t}B_t\frac{\partial \ell \left(f_{w_t}(x_n),y_n\right)}{\partial w}+\mathcal{O}\left(\frac{1}{t^2}\right)$ with $B_t\to B\succ 0$, $BH\succ I/2$.
- Establish convergence a.s. via quasi-martingales (see Bottou, 1991, 1998).
- Let $U_t = H(w_t w^*)(w_t w^*)'$. Observe $E(f_{w_t}) E(f_{w^*}) = \operatorname{tr}(U_t) + o(\operatorname{tr}(U_t))$
- Derive $\mathbb{E}_t(U_{t+1}) = \left[I \frac{2BH}{t} + o\left(\frac{1}{t}\right)\right]U_t + \frac{HBGB}{t^2} + o\left(\frac{1}{t^2}\right)$ where G is the Fisher matrix.
- Lemma: study real sequence $u_{t+1} = \left(1 + \frac{\alpha}{t} + o\left(\frac{1}{t}\right)\right) u_t + \frac{\beta}{t^2} + o\left(\frac{1}{t^2}\right)$.
 - When $\alpha > 1$ show $u_t = \frac{\beta}{\alpha 1} \frac{1}{t} + o(\frac{1}{t})$ (nasty proof!).
 - When $\alpha < 1$ show $u_t \sim t^{-\alpha}$ (up to log factors).
- Bracket $\mathbb{E}(\operatorname{tr}(U_{t+1}))$ between two such sequences and conclude:

$$\frac{\operatorname{tr}(HBGB)}{2\lambda_{BH}^{\max}-1}\frac{1}{t}+o\left(\frac{1}{t}\right) \leq \mathbb{E}\big[E(f_{w_t})-E(f_{w^*})\big] \leq \frac{\operatorname{tr}(HBGB)}{2\lambda_{BH}^{\min}-1}\frac{1}{t}+o\left(\frac{1}{t}\right)$$

• Interesting special cases: $B = I/\lambda_H^{\min}$ and $B = H^{-1}$.

Asymptotic Efficiency of Second Order SGD.

"Empirical optima" "Second-order SGD"

$$n \, \mathbb{E}ig[E(f_{w_n^*}) - E(f_{\mathcal{F}}) ig] = \lim_{t o \infty} \ t \, \mathbb{E}ig[E(f_{w_t}) - E(f_{\mathcal{F}}) ig]$$

$$\lim_{n o \infty} \ n \ \mathbb{E} ig[\| w_\infty^* - w_n^* \|^2 ig] \ = \lim_{t o \infty} \ t \ \mathbb{E} ig[\| w_\infty - w_t \|^2 ig]$$

Best solution in F.

(Fabian, 1973; Murata & Amari, 1998; Bottou & LeCun, 2003).

Léon Bottou 30/37

Optimal Learning in One Pass

A Single Pass of Second Order Stochastic Gradient generalizes as well as the Empirical Optimum.

Experiments on synthetic data

Léon Bottou 31/37

Unfortunate Issues

Unfortunate theoretical issue

- How long to "reach" the asymptotic regime?
- One-pass learning speed regime may not be reached in one pass. . .

Unfortunate practical issue

- Second order SGD is rarely feasible.
 - estimate and store $d \times d$ matrix H^{-1} .
 - multiply the gradient for each example by this matrix H^{-1} .

Léon Bottou 32/37

Solutions

Limited storage approximations of H^{-1}

- Diagonal Gauss-Newton (Becker and Lecun, 1989)
- Low rank approximation [oLBFGS], (Schraudolph et al., 2007)
- Diagonal approximation [SGDQN], (Bordes et al., 2009)

Averaged stochastic gradient

- Perform SGD with slowly decreasing gains, e.g. $\gamma_t \sim t^{-0.75}$.
- Compute averages $ar{w}_{t+1} = rac{t}{t+1}ar{w}_t + rac{1}{t}w_{t+1}$
- Same asymptotic speed as 2SGD (Polyak and Juditsky, 92)
- Can take a while to "reach" the asymptotic regime.

Léon Bottou 33/37

Experiment: ALPHA dataset

- From the 2008 Pascal Large Scale Learning Challenge.

- Loss:
$$Q(x, y, w) = \left(\max\{0, 1 - y w^{\top} x\}\right)^{2}$$
.

- SGD, SGDQN: $\gamma_t = \gamma_0 (1 + \gamma_0 \lambda t)^{-1}$. ASGD: $\gamma_t = \gamma_0 (1 + \gamma_0 \lambda t)^{-0.75}$

ASGD nearly reaches the optimal expected risk after a single pass.

Experiment: Conditional Random Field

- CRF for the CONLL 2000 Chunking task.
- 1.7M parameters. 107,000 training segments.

SGDQN more attractive than ASGD.

Training times: 500s (SGD), 150s (ASGD), 75s (SGDQN).

Standard LBFGS optimizer needs 72 minutes.

35/37

V. Conclusions

Léon Bottou 36/37

Conclusions

- Good optimization algorithm \neq good learning algorithm.
- SGD is a poor optimization algorithm.
- SGD is a good learning algorithm for large scale problems.
- SGD variants can learn in a single pass (given enough data)

Léon Bottou 37/37