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In recent years,
— Development of the Internet
— Improvement of computer performance

— =

“Large data” and “more Complex information”.

— We deal with

In some cases, In some cases,

Difficult to analyze them Difficult to describe them
by using classical methods. by classical data.

Some new methods for analyzing them are required.
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1.2 Distribution-valued data

 When we use distribution-valued data?

— Aggregate Large data to more manageable data

— Describe objects with several values on a one variable
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1.2 Distribution-valued data
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1.2 Distribution-valued data
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1.2 Distribution-valued data
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1.2 Distribution-valued data
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1.2 Distribution-valued data

 When we use distribution-valued data?

— Aggregate Large data to more manageable data

— Describe objects with several values on a one variable
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2.1 Dissimilarity measures for distribution-valued data

* P, Q:a probability distribution, respectively

* P, d: adensity function of P, Q, respectively

* Dissimilarity measures for density functions
— Kullback-Leibler divergence

» Kullback-Leibler information : [(P | Q) = /10g{% >q(x) dx
q\x) .

» Kullback-Leibler divergence :j(p, Q)=1(Q|P)+1(P| Q)
— Minkowski’s L* distance (Bock and Diday, 2000)

d(P, 0) = [ (p(v) ~ q(x))*dx
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2.1 Dissimilarity measures for distribution-valued data

* P, Q:a probability distribution, respectively

* P, d: adensity function of P, Q, respectively

* Dissimilarity measures for density functions
— Kullback-Leibler divergence

» Kullback-Leibler information : (P | Q) /log{P((x)) g (x) dx
q\Xx) .

» Kullback-Leibler divergence :J J(P,Q)=I(Q|P)+I(P|Q)
— Minkowski’s L* distance (Bock and Diday, 2000)

d(P. 0) = [ (plx) - a(x))2dx A

I e square of j:( >H]Dl

this grey area!
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2.1 Dissimilarity measures for distribution-valued data

* P, Q:a probability distribution, respectively
* | G: adistribution function of P, Q, respectively

* Dissimilarity measures for distribution functions
— Wasserstein metric

ay (P, 0) = [ 1F() - Glolax= [ 1! (1)

— Mallow’s distance

u(P, 0) = \// F 0 -6 () dx T -




Introduction Dissimilarities Centroid Non-hierarchical Abolvin
and Clustering distribution clustering PPIYINg
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* | G: adistribution function of P, Q, respectively
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2.1 Dissimilarity measures for distribution-valued data

* P, Q:a probability distribution, respectively
* F, G: adistribution function of P, Q, respectively
* Dissimilarity measures for histogram-valued data

— Irpino and Verde (2006) (Irpino et al., 2006) define
a Wasserstein metric for histogram-valued data.

— Verde and Irpino (2008) define

a Mahalanobis—Wasserstein distance for histogram—
valued data.
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2.2 Clustering for distribution-valued data

* Irpino and Verde (2006)
— The hierarchical clustering (Ward’s method) of

histogram-valued data using the Wasserstein metric
for histogram-valued data

* Irpino et al. (2006)

— The dynamic clustering of histogram-valued data

using the Wasserstein metric for histogram-valued
data

* Verde and Irpino (2008)

— Applying the Mahalanobis—Wasserstein distance for
histogram—-valued data to the dynamic clustering
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2.2 Clustering for distribution-valued data

 De Souza et al. (2007)

— Dynamic clustering methods for mixed feature-type
symbolic data

— Pre-processing step for transforming mixed feature-
type symbolic data into modal symbolic data

— Performing the clustering for E={(mw)|i=1, .., n}

— the transformed data by using the weight vectors

* De Carvalho and De Souza (2010)

— Unsupervised pattern recognition methods for mixed
feature-type symbolic data using adaptive distances
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2.2 Clustering for distribution-valued data

 De Souza et al. (2007)

— Dynamic clustering methods for mixed feature-type
symbolic data

— Pre-processing step for transforming mixed feature-
type symbolic data into modal symbolic data

— Performing the clustering for E={(mw)|i=1, .., n}

— the transformed data by using the weight vectors -

 De Carvalho and De Souza (2010) W:(le o )|

— Unsupervised pattern recognition methods for mixed
feature-type symbolic data using adaptive distances
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2.2 Clustering for distribution-valued data

Here,
 Define the centroid of a set of distributions

* Propose a non-hierarchical clustering (k-means)
method for more general distribution-valued
data by using the centroid dsitribuion
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2.2 Clustering for distribution-valued data

Here,
 Define the centroid of a set of distributions

* Propose a non-hierarchical clustering (k-means)
method for more general distribution-valued

data by using the centroid dswi/\

Represented as joint (or marginal) distribution function
or density function.
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3.1 Definition of Centroid distribution

* First,we consider the centroid for distribution-
valued data.
— 7 : a set of distributions
— d :adissimilarity measure on &4
— P (i=1,2,...,n) : elements of &

 Definition of Centroid distribution

We assume 2={0€ Z |d(P, Q) <o (i=1,2,...,n)}#0
and define the centroid distributionof distribu-
tions P;, satisfying

n
d*(P, Pr)= inf Y d*(P,
i; (: C QEJ’Z zQ
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3.1 Definition of Centroid distribution

* First,we consider the centroid for distribution-
valued data.
— 7 : a set of distributions
— d :adissimilarity measure on &4
— P (i=1,2,...,n) : elements of &
* Definition of Centroid distribution

We assume 2={0€ Z |d(P, Q) <o (i=1,2,...,n)}#0
and define the centroid distributionof distribu-
tions P;, satisfying

n

2(p. _ e _
Y. 4P, @) oo, L 4P, )

=1
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3.2 Calculation of Centroid distribution

* Here,
we deal with Minkowski’s 1.2 distance

for distribution functions (or density functions).
— P, Q : a probability distribution, respectively
— P, g : a density function of P, Q, respectively

— |, G: a distribution function of P, Q, respectively
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3.2 Calculation of Centroid distribution

* Here,
we deal with Minkowski’s 1.2 distance

for distribution functions (or density functions).
— When we consider marginal distributions,

— P, Q : a distribution that has marginal
distribution Pj, Q; , respectively

— Pj, 4;j . a density function of P, Q, respectively
— F;, G; : adistribution function of P, Q, respectively

\l Xi:lf J(x)) dx (or dp(P, Q) = \J Z / p} 2dx)
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3.2 Calculation of Centroid distribution

* The centroid distribution with dc (or dp)

— A, :aset of (continuous) distributions on[R”

— P (i=1,2,...,n) : elements of &,

— F; : adistribution function of P; (i=1, 2, ..., n)

If 2={0€ Z|dc(P, Q) <o (i=1,2,...,n)} #0,
then the centroid distribution P~ of P, is given

by the distribution that has the distribution
function satisfying

Fe®) =~ Y F(x) (Ve

i=1
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3.2 Calculation of Centroid distribution

* The centroid distribution with d¢(or dp)

If 2={0€ Z|dc(P, Q) <o (i=1,2,...,n)}#0,
then the centroid distribution P- of P, is given
by the distribution that has the distribution
function satisfying

n

) Fi(x) (VxeR).
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3.2 Calculation of Centroid distribution

* The centroid distribution with d¢(or dp)

If 2={0€ Z|dc(P, Q) <o (i=1,2,...,n)}#0,
then the centroid distribution P- of P, is given
by the distribution that has the distribution
function satisfying

n

Centroid
distribution

00 02 04 06 08 1.0
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4.1 Objective function for clustering

* We propose
“a non-hierarchical clustering method” using

dissimilarity dc(ordp) and centroid distribution/c.
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4.1 Objective function for clustering

* We propose

“a non-hierarchical clustering method” using
dissimilarity dc(ordp) and centroid distribution/c.

* Objective function for the clustering
— P;(j=1,2,...,n):distributions
— k : the number of cluster
—C;(i=1, ..., k): Clusters constructed by P;

k

k
oc=Y Y di(p, Pc) (0" op=Y Y dp(p;, Pc,-))-

i=1jeC; i=1jeC;
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4.1 Objective function for clustering

* We propose

“a non-hierarchical clustering method” using
dissimilarity dc(ordp) and centroid distribution/c.

* Objective function for the clustering
— P;(j=1,2,...,n):distributions
— k : the number of cluster
—C;(i=1, ..., k): Clusters constructed by P;

k k
0c=Y ¥ &) (or 0o=Y ¥ dbierc)).
i=1jeC;

i=1jeC;
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4.1 Objective function for clustering

* We propose
“a non-hierarchical clustering method” using

dissimilarity dc(ordp) and centroid distribution/c.

* Objective function for the clustering

— P (j=1,2, ..., n) : distributions | Centroid distribution
of
— k : the number of cluster Cluster C; (i=1, ..., k)

_Cili=1, ... k):dqu
k

k
Oc = 21 ZC a¢(P;,(Fc) (or Op=Y, Y. dp(P;, Pc,-))-
=1 je(;

i=1jeC;
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4.2 Non-hierarchical clustering algorithm

* Clustering algorithm (k-means)

Step 1: Initial seeds ch (j=1,2,..., k) are appropriately de-
termined from the objects P, (i=1, 2, ..., n) described by
distributions (e.g. by using random numbers).
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4.2 Non-hierarchical clustering algorithm

* Clustering algorithm (k-means)

Step 1: Initial seeds ch (j=1,2,..., k) are appropriately de-
termined from the objects P, (i=1, 2, ..., n) described by
distributions (e.g. by using random numbers).

Step 2: Dissimilarity d¢(P;, ch)(or dp(P;, ch)) from seed Fc; to
object P; is evaluated fori=1,2,---,n; j=1,2, ---, k.
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4.2 Non-hierarchical clustering algorithm

* Clustering algorithm (k-means)

Step 1: Initial seeds ch (j=1,2,..., k) are appropriately de-
termined from the objects P, (i=1, 2, ..., n) described by
distributions (e.g. by using random numbers).

Step 2: Dissimilarity d¢(P;, ch)(or dp(P;, ch)) from seed Fc; to
object P; is evaluated fori=1,2,---,n; j=1,2, ---, k.

Step 3: The centroid distribution Fc, of each cluster C; (j =
1,2, ..., k) is decided as a new seed.
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4.2 Non-hierarchical clustering algorithm

* Clustering algorithm (k-means)

Step 1: Initial seeds ch (j=1,2,..., k) are appropriately de-
termined from the objects P, (i=1, 2, ..., n) described by
distributions (e.g. by using random numbers).

Step 2: Dissimilarity d¢(P;, ch)(or dp(P;, ch)) from seed Fc; to
object P; is evaluated fori=1,2,---,n; j=1,2, ---, k.

Step 3: The centroid distribution Fc, of each cluster C; (j =
1,2, ..., k) is decided as a new seed.

Step 4: Each object is assigned to the nearest seed.
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4.2 Non-hierarchical clustering algorithm

* Clustering algorithm (k-means)

Step 1: Initial seeds ch (j=1,2,..., k) are appropriately de-
termined from the objects P, (i=1, 2, ..., n) described by
distributions (e.g. by using random numbers).

Step 2: Dissimilarity d¢(P;, ch)(or dp(P;, ch)) from seed Fc; to
object P; is evaluated fori=1,2,---,n; j=1,2, ---, k.

Step 3: The centroid distribution Fc, of each cluster C; (j =
1,2, ..., k) is decided as a new seed.

Step 4: Each object is assigned to the nearest seed.

Step 5: If it satisfies a stopping rule (e.g. pre-determined
maximum iteration number) then stop, else go to Step 2.
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5.1 Applying for the weather data at Japan

 The weather data % :
— Date : 1 to 31 March 2009 -
— Observation points : :

meteorological observatories in the region at Japan
— Variables : average temperature and humidity (per day)
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5.1 Applying for the weather data at Japan

 The weather data % :
— Date : 1 to 31 March 2009 -
— Observation points : :

meteorological observatories in the region at Japan
— Variables : average temperature and humidity (per day)

 Transformed distribution-valued data

Initial data

[ X117 x12 ]
X1 X

I

1

1

I

1

1

I

1

xnl 1 xnlz i
. . i
I

1

1

I

1



: Dissimilarities Centroid Non-hierarchical .
Introduction ) . . Applying
and Clustering distribution clustering

5.1 Applying for the weather data at Japan

 The weather data % :
— Date : 1 to 31 March 2009 -
— Observation points : :

meteorological observatories in the region at Japan
— Variables : average temperature and humidity (per day)

 Transformed distribution-valued data
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5.1 Applying for the weather data at Japan

 The weather data % :
— Date : 1 to 31 March 2009 -
— Observation points : :

meteorological observatories in the region at Japan
— Variables : average temperature and humidity (per day)

 Transformed distribution-valued data
Initial data

Observatory
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5.1 Applying for the weather data at Japan

 Transformed distribution-valued data

— |If we use histogrames,

the number of bins or range of bins affect the result.

Initial data ESGUEF o
~ °
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5.1 Applying for the weather data at Japan

 Transformed distribution-valued data

— |If we use histogrames,

the number of bins or range of bins affect the result.

Initial data R SEEE .
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— Here, we use the empirical distribution function.

Initial data >
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5.1 Applying for the weather data at Japan

* We also apply the classical (k-means) method

for the following classical data transformed by
using means.

Initial data classical data
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5.1 Applying for the weather data at Japan

* We also apply the classical (k-means) method

for the following classical data transformed by
using means. Observatory

Al
Initial data

Observatory

classical data ”
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5.1 Applying for the weather data at Japan

* We also apply the classical (k-means) method

for the following classical data transformed by
using means. Observatory

Al
Initial data

Observatory

classical data ”

)
o
oQ

q

(1]
oQ

Q

-+

1)

* We compare the result of the classical method
and the proposal method.
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5.1 Applying for the weather data at Japan

* Result of the classical method (k-means)
» Classified by a degree of latitude and altitude
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5.1 Applying for the weather data at Japan

* Result of the classical method (k-means)
» Classified by a degree of latitude and altitude
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5.1 Applying for the weather data at Japan

* Result of the classical method (k-means)

» Classified by a degree of latitude and altitude
These Observatories are

located at high altitude

» One Observatory located
at high altitude

is not classified into
the blue cluster
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5.1 Applying for the weather data at Japan

* Result of the classical method (k-means)

» Classified by a degree of latitude and altitude
These Observatories are

located at high altitude

» One Observatory located
at high altitude

is not classified into
the blue cluster
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5.1 Applying for the weather data at Japan

e Result of the proposal method
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5.1 Applying for the weather data at Japan

e Result of the proposal method

» The green cluster --- On the East sea side, mainly
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5.1 Applying for the weather data at Japan

e Result of the proposal method

» The green cluster --- On the East sea side, mainly

» The purple cluster
— On the Pacific side
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5.1 Applying for the weather data at Japan

e Result of the proposal method

» The green cluster --- On the East sea side, mainly

» The purple cluster
— On the Pacific side
» The aqua cluster
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5.1 Applying for the weather data at Japan

e Result of the proposal method

» The green cluster --- On the East sea side, mainly

> The purple cluster These Observatories are
e located at high altitude
— On the Pacific side

» The aqua cluster

— Inland
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6. Conclusion

* In this presentation,
— We define the centroid dsitribution

— and proposed a non-hierarchical clustering method
for more general distribution-valued data by using
the centroid dsitribuion

* Possibility that new classification structures are
found by using proposal method.
* For the future study,

— Calculation of the centroid dsitribution on the other
dissimilarity measure.
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6. Conclusion

* |n this presentation,
— We define the centroid dsitribution

— and proposed a non-hierarchical clustering method
for more general distribution-valued data by using
the centroid dsitribuion

* Possibility that new classification structures are
found by using proposal method.
* For the future study,

— Calculation of the centroid dsitribution on the other
dissimilarity measure.

Thank you very much for your attention!
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Appendix. Altitude of observatories

 Altitude of observatories




