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1.2 Distribution-valued data

• When we use distribution-valued data?

– Aggregate Large data to more manageable data

– Describe objects with several values on a one variable
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2.1 Dissimilarity measures for distribution-valued data

• P, Q : a probability distribution, respectively

• p, q : a density function of P, Q, respectively

• Dissimilarity measures for density functions

– Kullback-Leibler divergence

 Kullback-Leibler information :

 Kullback-Leibler divergence   : 

– Minkowski’s distance (Bock and Diday, 2000)
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2.1 Dissimilarity measures for distribution-valued data

• P, Q : a probability distribution, respectively

• F, G: a distribution function of P, Q, respectively

• Dissimilarity measures for histogram-valued data

– Irpino and Verde (2006) (Irpino et al., 2006) define 

a Wasserstein metric for histogram-valued data.

– Verde and Irpino (2008) define 

a Mahalanobis–Wasserstein distance for histogram–
valued data.
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2.2 Clustering for distribution-valued data

• Irpino and Verde (2006) 
– The hierarchical clustering (Ward’s method) of 

histogram-valued data using the Wasserstein metric 
for histogram-valued data

• Irpino et al. (2006)
– The dynamic clustering of histogram-valued data 

using the Wasserstein metric for histogram-valued 
data

• Verde and Irpino (2008)
– Applying the Mahalanobis–Wasserstein distance for 

histogram–valued data to the dynamic clustering
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2.2 Clustering for distribution-valued data

• De Souza et al. (2007)

– Dynamic clustering methods for mixed feature-type 
symbolic data

– Pre-processing step for transforming mixed feature-
type symbolic data into modal symbolic data

– Performing the clustering for 

– the transformed data by using the weight vectors 

• De Carvalho and De Souza (2010)

– Unsupervised pattern recognition methods for mixed 
feature-type symbolic data using adaptive distances
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2.2 Clustering for distribution-valued data

Here, 

• Define the centroid of a set of distributions

• Propose a non-hierarchical clustering (k-means)
method for more general distribution-valued 
data by using the centroid dsitribuion
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3.1 Definition of Centroid distribution

• First,we consider the centroid for distribution-
valued data.

– : a set of distributions

– : a dissimilarity measure on

– : elements of 

• Definition of Centroid distribution
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3.2 Calculation of Centroid distribution

• Here, 

we deal with Minkowski’s distance 

for distribution functions (or density functions).

– P, Q : a probability distribution, respectively

– p, q : a density function of P, Q, respectively

– F, G: a distribution function of P, Q, respectively
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3.2 Calculation of Centroid distribution

• Here, 

we deal with Minkowski’s distance 

for distribution functions (or density functions).

– When we consider marginal distributions,

– P, Q : a distribution that has marginal 
distribution              , respectively

– : a density function of P, Q, respectively

– : a distribution function of P, Q, respectively
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3.2 Calculation of Centroid distribution

• The centroid distribution with  aaaaaaa

– : a set of (continuous) distributions on 

– : elements of 

– : a distribution function of 
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4.1 Objective function for clustering

• We propose 

“a non-hierarchical clustering method” using

dissimilarity and centroid distribution     .
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4.2 Non-hierarchical clustering algorithm

• Clustering algorithm (k-means)
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5.1 Applying for the weather data at Japan

• The weather data

– Date : 1 to 31 March 2009 

– Observation points :

meteorological observatories in the region at Japan

– Variables : average temperature and humidity (per day)
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5.1 Applying for the weather data at Japan

• Transformed distribution-valued data

– If we use histograms,

the number of bins or range of bins affect the result.
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5.1 Applying for the weather data at Japan

• Transformed distribution-valued data

– If we use histograms,

the number of bins or range of bins affect the result.

– Here, we use  the empirical distribution function.
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5.1 Applying for the weather data at Japan

• We also apply the classical (k-means) method 

for the following classical data transformed by 
using means.
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5.1 Applying for the weather data at Japan

• We also apply the classical (k-means) method 

for the following classical data transformed by 
using means.

• We compare the result of the classical method 
and the proposal method.
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• Result of the classical method (k-means)

 Classified by a degree of latitude and altitude
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6. Conclusion

• In this presentation, 

– We define the centroid dsitribution

– and proposed a non-hierarchical clustering method
for more general distribution-valued data by using 
the centroid dsitribuion

• Possibility that new classification structures are 
found by using proposal method.

• For the future study, 

– Calculation of the centroid dsitribution on the other 
dissimilarity measure. 
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Thank you very much for your attention!
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Appendix. Altitude of observatories

• Altitude of observatories
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