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Do Asset Returns Have Different Tail Indices?
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Asset Returns Have Different Tail Indices

−30 −20 −10 0 10 20 30

−15

−10

−5

0

5

10

15

Bank of America

Wa
l−M

art

Scatterplot of BoA and Wal−Mart

−10 −5 0 5 10
−10

−5

0

5

10

Bank of America

W
a

l−
M

a
rt

Fitted Multivariate Student t

k̂ = 2.014

Marc S. Paolella ALRIGHT: Asymmetric LaRge-Scale (I)GARCH with Hetero-Tails



Asset Returns Have Different Tail Indices
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Meta-Elliptical t Distribution

The pdf of the meta-elliptical t distribution is given by

fX(x; k,R) = ψ
(
Φ−1k0

(Φk1(x1)), . . . ,Φ−1k0
(Φkd (xd)); R, k0

) d∏
i=1

φki (xi ),

(1)
where
x = (x1, . . . , xd)′ ∈ Rd ;
k = (k0, k1, . . . , kd)′ ∈ Rd+1

>0 ;
φk(x) and Φk(x) denote, respectively, the univariate Student’s t pdf
and cumulative distribution function (cdf) with k degrees of
freedom, evaluated at x ∈ R;
R is a d-dimensional correlation matrix, ...
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Meta-Elliptical t Distribution

and, with z = (z1, z2, . . . , zd)′ ∈ Rd , the copula density function
ψ(·; ·) = ψ (z1, z2, . . . , zd ; R, k) multiplicatively relating the joint
distribution of X to their distribution under independence is given by

ψ(·; ·) =
Γ{(k + d)/2}{Γ(k/2)}d−1[

Γ{(k + 1)/2}
]d |R|1/2

(
1 +

z′R−1z

k

)−(k+d)/2

×
d∏

i=1

(
1 +

z2
i

k

)(k+1)/2

.
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FaK (Fang, Fang Kotz)

We express a random variable T with location parameter
µ = (µ1, . . . , µd)′ ∈ Rd , scale terms σ = (σ1, . . . , σd)′ ∈ Rd

>0, and
correlation matrix R, as T ∼ FaK (k,µ,σ,R), with FaK a reminder
of the involved authors, and density

fT(y; k,µ,σ,R) =
fX(x; k,R)

σ1σ2 · · ·σd
, x =

(
y1 − µ1

σ1
, . . . ,

yd − µd

σd

)
,

(2)
where fX(x; k,R) is given in (1).

From its construction as a copula, the marginal distribution of each
(Ti − µi )/σi is a standard Student’s t with ki degrees of freedom,
irrespective of k0.

If second moments exist for each Ti , then the variance-covariance
matrix of T is given by Σ = V(T) = MRM, where
M = diag(σ � κ), κ = (κ1, . . . , κd)′, and κi =

√
ki/(ki − 2),

i = 1, . . . , d . In particular, E[Ti ] = µi and V(Ti ) = σ2
i κ

2
i .
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FaK Parameter k0

While the marginals are not influenced by k0, its value does alter the
dependency structure of the distribution.

Via comparison with scatterplots of actual financial returns data,
one might speculate that only values of k0 ≥ maxi ki , i = 1, . . . , d ,
are of interest, and one could entertain just setting k0 = maxi ki .

In the empirical comparison, we indeed find that k̂0 is very close to
max(k̂1, k̂2) when it is freely estimated jointly with all other model
parameters; and its attained maximum log-likelihood is statistically
indistinguishable from that of the model which imposes the
restriction k0 = maxi ki .
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Effect of Parameter k0
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FaK with Asymmetric Marginals: AFaK

Introduce noncentrality parameters θi ∈ R, i = 1, 2, . . . , d , so that,
with φk,θ(x) and Φk,θ(x) the pdf and cdf of the noncentral t
distribution at x ∈ R, fX(x; k,R,θ) is

ψ
(
Φ−1k0,θ0

(Φk1,θ1(x1)), . . . ,Φ−1k0,θ0
(Φkd ,θd (xd)); R, k0

) d∏
i=1

φki ,θi (xi ),

still in conjunction with (2), and with θ0 = 0.

The location-scale variant fT(y; k,µ,σ,R,θ) is analogous to (2),
and we write T ∼ AFaK(k,µ,σ,R,θ), for asymmetric FaK.

We have V(T) = MRM, where M = diag(σ � v1/2), where
v = (V(S1), . . . ,V(Sd))′, for Si = (Ti − µi )/σi ∼ t ′(ki , θi , 0, 1), with
the variance of Si computed from

E
[
Si

]
= θi

(
ki
2

)1/2
Γ(ki/2− 1/2)

Γ(ki/2)
, ki > 1, (3)

E[S2
i ] = [ki/(ki − 2)](1 + θ2i ) for ki > 2, V(S) = E[S2]− (E[S ])2.
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Examples of Bivariate AFaK
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Bivariate Example: BoA and Wal-Mart

FaK loglika k0 k1 k2 µ1 µ2 scale 1 R12 scale 2
MLE −7086.1 3.975 1.464 3.873 0.0331 0.0027 0.857 0.492 1.106
std err Hess (0.497) (0.067) (0.344) (0.026) (0.028) (0.028) (0.020) (0.030)
std err NPB (0.562) (0.058) (0.376) (0.025) (0.031) (0.024) (0.020) (0.030)
std err PB (0.526) (0.068) (0.349) (0.026) (0.028) (0.029) (0.020) (0.033)
AFaK k0 k1 k2 θ1 θ2 µ1 µ2 scale 1 R12 scale 2
MLE −7079.1 3.903 1.472 3.879 −0.165 0.136 0.190 −0.192 0.856 0.492 1.106
std err Hess (0.481) (0.068) (0.344) (0.055) (0.094) (0.057) (0.119) (0.028) (0.020) (0.030)
std err NPB (0.551) (0.059) (0.374) (0.060) (0.094) (0.062) (0.115) (0.024) (0.020) (0.030)
std err PB (0.486) (0.081) (0.330) (0.049) (0.096) (0.051) (0.122) (0.030) (0.022) (0.030)

S-L 1 v1 v2 µ1 µ2 scale 1 θ scale 2
MLE −7092.2 1.618 3.731 0.0275 −0.0068 0.922 0.545 1.082
std err Hess (0.074) (0.306) (0.027) (0.028) (0.029) (0.024) (0.029)
std err NPB (0.078) (0.317) (0.026) (0.029) (0.027) (0.026) (0.030)
std err PB (0.082) (0.337) (0.035) (0.036) (0.033) (0.031) (0.035)
S-L 2 v1 v2 µ1 µ2 scale 1 θ scale 2
MLE −7142.7 1.601 4.813 0.0313 −0.0057 0.926 0.587 1.160
std err Hess (0.077) (0.491) (0.027) (0.030) (0.030) (0.023) (0.031)
std err NPB (0.072) (0.508) (0.027) (0.028) (0.027) (0.023) (0.029)
std err PB (0.067) (0.498) (0.024) (0.024) (0.029) (0.023) (0.032)
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Data Scatterplot and the Fitted Densities
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Two-Step Unconditional Estimation

We propose the following, essentially obvious, two-step procedure:

1 The three (or four) parameters ki , µi and σi (and θi ) based on the
univariate data set corresponding to the ith variable are estimated
via maximum likelihood, i = 1, . . . , d . Observe that only three (or
four) parameters need to be estimated simultaneously. Set k̂0 to
maxi (k̂i ).

2 Parameter R is estimated as the sample correlation matrix, R̃, or a
shrinkage-based variant of it; see below.
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Remarks on: Two-Step Unconditional Estimation

1. Unlike with maximum likelihood, application of this two step
procedure (in particular, the second step) only makes sense if
min(ki ) > 2. Have a solution... In the more realistic case that a
conditional model via GARCH will be used, the conditional tail index
ki is, in all probability, larger than two.
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Remarks on: Two-Step Unconditional Estimation

2. Observe that step 1 will be extremely fast in the symmetric (FaK)
case, as only the usual univariate Student’s t density is required for
the likelihood.
For the asymmetric case, computing the density of the noncentral t
distribution at each point involves either a univariate numeric
integration, or evaluation of an infinite sum, and will thus be
massively slower than computing the usual Student’s t distribution.
This bottleneck can be overcome by using the second-order
closed-form saddlepoint approximation to the density, which is
extremely accurate (even, and especially, in the tails) and about
1200 times faster to compute.
The derivation and relevant formulae are given in Broda and Paolella
(2007) and the references therein. Crucially, there is virtually no
difference in the estimates when using either the true or the
saddlepoint density.
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Remarks on: Two-Step Unconditional Estimation

3. It is well-known that shrinkage of the estimated covariance matrix in
the traditional portfolio optimization setup is highly beneficial. They
could be shrunk towards their mean value. We can express this
algebraically as, with a = 1′

(
R̃− I

)
1/ [d (d − 1)] and 1 a d-length

column of ones,

R̂ = (1− sc)R̃ + sc
(
(1− a)I + a11′

)
. (4)
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Remarks on: Two-Step Unconditional Estimation

4. One might consider robust estimation of the covariance matrix, say
Σ̂, from which R̂ = D̂−1Σ̂D̂−1 can be computed, where
D = diag(σ), and the scale terms σi are estimated in step one.
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Simulation to Assess Quality: FaK

Consider the tri-dimensional FaK distribution with parameters

k1 = 3, k2 = 5, k3 = 7, k0 = max(ki ) = 7,

µ1 = 0.2, µ2 = 0, µ3 = −0.2,

σ1 = σ2 = σ3 = 2, R12 = 0.25, R13 = 0.5, R23 = 0.75,

(and θ = 0).

We assess, via simulation, the differences in the quality (bias and
spread) of the estimated parameters when using joint maximum
likelihood and the two-step procedure.

This is conducted for the sample size T = 250, and based on 500
replications.
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Simulation to Assess Quality: FaK
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Simulation to Assess Quality: FaK

The average time for joint parameter estimation of this FaK model
(using a 3GHz PC, Matlab) is 34 seconds. The two-step method
requires 0.050 seconds.

Observe that, by design, the required estimation time for the
two-step method increases linearly in d , but will increase
exponentially in d for the joint parameter estimation.

Furthermore, as the number of parameters to be simultaneously
estimated increases, the problems associated with avoiding inferior
local maxima of the log-likelihood become exacerbated.
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Simulation to Assess Quality: AFaK

We use the tri-dimensional AFaK distribution with the parameters as
given above, but additionally take the noncentrality parameters to be
θ1 = −0.2 , θ2 = 0, θ3 = 0.2.

A distinction can be seen for parameters k3, θ3 and µ3, for which the joint
MLE does indeed perform noticeably better, albeit not demonstrably so.

With regard to estimation time, using the same computing platform
mentioned above, joint maximum likelihood (AFaK for d = 3 and
T = 250) takes, on average, 14.0 minutes, while the two-step procedure,
using the saddlepoint approximation, takes on average 0.82 seconds, i.e.,
it is over 1,000 times faster.
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Simulation to Assess Quality: FaK
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CCC-GARCH

We extend the model to CCC-GARCH. The 2-step procedure applies.

Each marginal distribution is a (noncentral) Student’s t with its own
degree of freedom (and asymmetry parameter).

They are linked via the t-copula as the (A)FaK distribution, but
such that each univariate time series is endowed with a time-varying
scale term via a t ′-(I)GARCH model.

The correlation matrix is estimated from the multivariate set of
t ′-(I)GARCH residuals and is not time-varying.

We will refer to this as the (A)FaK-(I-)CCC model.
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Density Forecasting

Good in-sample fit is nice... Good simulation results are good... but
what counts is the ability to forecast.

We forecast the entire multivariate density.

The measure of interest is what we will call the (realized)
predictive log-likelihood, given by

πt(M, v) = log fMt|It−1
(yt ; ψ̂), (5)

where v denotes the size of the rolling window used to determine
It−1 (and the set of observations used for estimation of ψ) for each
time point t.
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Density Forecasting

We suggest to use what we refer to as the normalized sum of the
realized predictive log-likelihood, given by

Sτ0,T (M, v) =
1

(T − τ0) d

T∑
t=τ0+1

πt(M, v), (6)

where d is the dimension of the data.

It is thus the average realized predictive log-likelihood, averaged over
the number of time points used and the dimension of the random
variable under study. This facilitates comparison over different d , τ0
and T .

In our setting, we use the d = 30 daily return series of the DJ-30,
with v = τ0 = 500, which corresponds to two years of data, and
T = 1, 945.
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Forecast Cusum Plots

To nicely illustrate the differences among the models and to contrast their
sources of forecast improvement, plot difference of the cumulative sum
(cusum) of the πt(Mi , 500), for two models i , and does so for 3 combinations
of interest.
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Shrinkage for the FaK-CCC Model

0 0.05 0.1 0.15 0.2 0.25 0.3
−1.526

−1.524

−1.522

−1.52

−1.518

−1.516

−1.514

−1.512

−1.51
FaK S500,1945(Ms, 500) Correlation Shrinkage

 

 

IGARCH: Shrinkage to zero
IGARCH: Shrinkage to mean
 GARCH: Shrinkage to zero
 GARCH: Shrinkage to mean

Marc S. Paolella ALRIGHT: Asymmetric LaRge-Scale (I)GARCH with Hetero-Tails



Shrinkage for the FaK-CCC Model
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Asymmetry: Shrinkage for the AFaK-CCC Model
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How Much Does Asymmetry Help? AFaK vs. FaK
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How Much Does Shrinkage Help?

500 1000 1500 2000
0

50

100

150

200

250

300

Cusum Difference of Shrinkage and No Shrinkage

 

 

FaK
AFaK

Marc S. Paolella ALRIGHT: Asymmetric LaRge-Scale (I)GARCH with Hetero-Tails



Estimating (Time Varying) k0

Now use a three-step procedure, with the final step allowing the
incorporation of a time-varying copula into the model, by estimating the
value of k0, conditional on all other model parameters.
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Weighted Likelihood

The model is wrong w.p.1, but has value as a simplified filter, so use
weighted likelihood to put more weight on recent observations.

We use wt ∝ (T − t + 1)ρ−1, where the single parameter ρ dictates
the shape of the weighting function, and the actual weights are just
re-normalized such that they sum to one.

When researchers choose a window length (usually an arbitrary
multiple of 100), an implicit decision is made to weight all the
observations in the window equally likely, and observations which
came (right) before it receive zero weight. Such a scheme should
appear rather crude and primitive!

The procedure applied to step one helps significantly with univariate
density forecasting, but not with d = 30 assets. However, it does
help with the correlation matrix.
The weighted correlation matrix is formed in a natural way by taking
the sample means, covariances, and correlations for assets i and j as

mi = T−1
T∑
t=1

wtri,t , vi,j = T−1
T∑
t=1

wt(ri,t−mi )(rj,t−mj), Ri,j =
vi,j√
vi,ivj,j

,

Marc S. Paolella ALRIGHT: Asymmetric LaRge-Scale (I)GARCH with Hetero-Tails



Weighted Likelihood for the Correlation Matrix
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