Quantile Regression for Group Effect Analysis

Cristina Davino¹ Domenico Vistocco²

¹Dip.to di Studi sullo Sviluppo Economico Università di Macerata

cdavino@unimc.it

²Dip.to di Scienze Economiche Università di Cassino vistocco@unicas.it

19th International Conference on Computational Statistics Paris, 22 – 27 August 2010

all computations and graphics were done in the R language using the packages *quantreg* and *ggplot2*

イロト 不得 とくほ とくほう

An empirical analysis

Concluding remarks

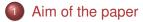
Outline

Aim of the paper

- QR for group effect analysis
 - Basic notation
 - The reference framework
 - The proposed approach
- An empirical analysis
 The dataset
 Main must be
 - Main results
- Concluding remarks

An empirical analysis

Outline

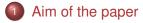


- QR for group effect analysis
 - Basic notation
 - The reference framework
 - The proposed approach
- An empirical analysis
 The dataset
 - Main results
- Concluding remarks

★ E > < E >

An empirical analysis

Outline



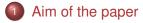
- QR for group effect analysis
 - Basic notation
 - The reference framework
 - The proposed approach
- An empirical analysis
 - The dataset
 - Main results
- 4 Concluding remarks

★ ∃ > < ∃ >

An empirical analysis

-∃=->

Outline



- QR for group effect analysis
 - Basic notation
 - The reference framework
 - The proposed approach
- An empirical analysis
 - The dataset
 - Main results

Aim of the paper

Identification of group effects in a quantile regression model

- CONFIRMATIVE APPROACH
- 2 ROW-PARTITIONED DATA
 - Supervised approach
 - Unsupervised approach

Aim of the paper

Identification of group effects in a quantile regression mod

- CONFIRMATIVE APPROACH
- 2 ROW-PARTITIONED DATA
 - Supervised approach
 - Unsupervised approach

Aim of the paper

Identification of group effects in a quantile regression model

- CONFIRMATIVE APPROACH
- 2 ROW-PARTITIONED DATA
 - Supervised approach
 - Unsupervised approach

Aim of the paper

Identification of group effects in a quantile regression model

- CONFIRMATIVE APPROACH
- 2 Row-partitioned data
 - Supervised approach
 - Unsupervised approach

Some solutions for group effect analysis

- Estimation of different models for each group
- Introduction of a dummy variable
- Multilevel modeling (Gelman and Hill, 2007)

(신문) (신문)

Basic notation

The data structure

- n: number of units
- p: number of regressors
- G: number of groups or levels

イロト 不得 トイヨト イヨト

э

An empirical analysis

Concluding remarks

Classical vs quantile linear regression

Classical linear regression (conditional expected value)

estimation of the conditional mean of a response variable (y) distribution as a function of a set X of predictor variables

 $E(\mathbf{y} \mid \mathbf{X}) = \mathbf{X}\beta$

$$eta_i = rac{\partial oldsymbol{\mathcal{E}}(\mathbf{y})}{\partial \mathbf{x}_i}$$

Quantile regression (Koenker and Basset, 1978) (conditional quantiles)

estimation of the conditional quantiles of a response variable (y) distribution as a function of a set X of predictor variables

 $Q_{\theta}(\mathbf{y} \mid \mathbf{X}) = \mathbf{X}\beta(\theta)$ where: $(0 < \theta < 1)$

 $rac{\partial \mathcal{Q}_{\theta}(\mathbf{y})}{\partial \mathbf{x}_{i}} = rac{\partial \mathcal{Q}_{\theta}(\mathbf{y})}{\partial \mathbf{x}_{i}}$

ヘロン 不良 とくほう 不良 とう

An empirical analysis

Concluding remarks

Classical vs quantile linear regression

Classical linear regression (conditional expected value)

estimation of the conditional mean of a response variable (y) distribution as a function of a set X of predictor variables

 $E(\mathbf{y} \mid \mathbf{X}) = \mathbf{X}\beta$

$$eta_i = rac{\partial E(\mathbf{y})}{\partial \mathbf{x}_i}$$

Quantile regression (Koenker and Basset, 1978) (conditional quantiles)

estimation of the conditional quantiles of a response variable (y) distribution as a function of a set X of predictor variables

 $Q_{\theta}(\mathbf{y} \mid \mathbf{X}) = \mathbf{X}\beta(\theta)$

where: $(0 < \theta < 1)$

 $\beta_i(\theta) = \frac{\partial Q_{\theta}(\mathbf{y})}{\partial \mathbf{x}_i}$

イロト 不得 とくほと くほとう

An empirical analysis

Concluding remarks

Classical vs quantile linear regression

estimation of the conditional mean of a response variable (y) distribution as a function of a set X of predictor variables

 $E(\mathbf{y} \mid \mathbf{X}) = \mathbf{X}\beta$

$$eta_i = rac{\partial m{ extsf{E}}(\mathbf{y})}{\partial \mathbf{x}_i}$$

Quantile regression (Koenker and Basset, 1978) (conditional quantiles)

estimation of the conditional quantiles of a response variable (y) distribution as a function of a set X of predictor variables

 $Q_{\theta}(\mathbf{y} \mid \mathbf{X}) = \mathbf{X}\beta(\theta)$

where: $(0 < \theta < 1)$

 $\beta_i(\theta) = \frac{\partial Q_{\theta}(\mathbf{y})}{\partial \mathbf{x}_i}$

イロト 不得 とくほと くほとう

An empirical analysis

Concluding remarks

Classical vs quantile linear regression

Classical linear regression (conditional expected value)

estimation of the conditional mean of a response variable (y) distribution as a function of a set X of predictor variables

 $E(\mathbf{y} \mid \mathbf{X}) = \mathbf{X}\beta$

$$_{g}\mathbf{y}={}_{g}\mathbf{X}_{g}eta+_{g}\mathbf{e}$$

Quantile regression (conditional quantiles)

estimation of the conditional quantiles of a response variable (y) distribution as a function of a set X of predictor variables

 $Q_{\theta}(\mathbf{y} \mid \mathbf{X}) = \mathbf{X}\beta(\theta)$

where: $(0 < \theta < 1)$

 $Q^{ heta}({}_{g}\mathbf{y}|_{g}\mathbf{X}) = {}_{g}\mathbf{X}_{g}eta(heta)$

イロン 不得 とくほう 不良 とう

э

An empirical analysis

Concluding remarks

Classical vs quantile linear regression

estimation of the conditional mean of a response variable (y) distribution as a function of a set X of predictor variables

 $E(\mathbf{y} \mid \mathbf{X}) = \mathbf{X}\beta$

$$_{g}\mathbf{y}={}_{g}\mathbf{X}_{g}eta+_{g}\mathbf{e}$$

Quantile regression (conditional quantiles)

estimation of the conditional quantiles of a response variable (y) distribution as a function of a set X of predictor variables

 $Q_{\theta}(\mathbf{y} \mid \mathbf{X}) = \mathbf{X}\beta(\theta)$

where: $(0 < \theta < 1)$

 $Q^{ heta}({}_{g}\mathbf{y}|_{g}\mathbf{X}) = {}_{g}\mathbf{X}_{g}eta(heta)$

イロト 不得 とくほと くほとう

Concluding remarks

э

The proposed approach

- Global estimation $Q^{\theta}(\mathbf{y}|\mathbf{X}) = \mathbf{X} \hat{\mathbf{B}}(\theta)$
- Identification of the best model for each unit
 - density estimation $\hat{\mathbf{Y}} = \mathbf{X}\hat{\mathbf{B}}(\theta)$
 - Ø best model identification
 - $\theta_i : \underset{\theta=1,\Theta}{\operatorname{argmin}} y_i \hat{y}_i(\theta)$
 - Sest density estimation vector \hat{y}^{best}_{θ}
- ldentification of the best model for each group $_{g}\theta^{best}$, for g = 1, G
- Partial estimation $Q^{\theta}(\mathbf{y}|\mathbf{X}) = \mathbf{X}\hat{\mathbf{B}}(\theta)^{best}$

Concluding remarks

3

The proposed approach

- **1** Global estimation $Q^{\theta}(\mathbf{y}|\mathbf{X}) = \mathbf{X}\hat{\mathbf{B}}(\theta)$
 - Identification of the best model for each unit
 - density estimation $\hat{\mathbf{Y}} = \mathbf{X}\hat{\mathbf{B}}(\theta)$
 - Ø best model identification
 - $\theta_i : \underset{\theta=1,\Theta}{\operatorname{argmin}} y_i \hat{y}_i(\theta)$
 - best density estimation vector \hat{y}_{θ}^{best}
- Identification of the best model for each group $_{g}\theta^{best}$, for g = 1, G
- Partial estimation $Q^{\theta}(\mathbf{y}|\mathbf{X}) = \mathbf{X}\hat{\mathbf{B}}(\theta)^{best}$

Concluding remarks

э

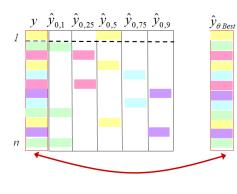
The proposed approach

- **1** Global estimation $Q^{\theta}(\mathbf{y}|\mathbf{X}) = \mathbf{X}\hat{\mathbf{B}}(\theta)$
- Identification of the best model for each unit
 - density estimation
 Ŷ = XB̂(θ)
 - e best model identification
 - $\theta_i : \underset{\theta=1,\Theta}{\operatorname{argmin}} y_i \hat{y}_i(\theta)$
 - best density estimation
 vector
 ŷ^{best}_θ
- ldentification of the best model for each group $_{g}\theta^{best}$, for g = 1, G
- Partial estimation $Q^{\theta}(\mathbf{y}|\mathbf{X}) = \mathbf{X}\hat{\mathbf{B}}(\theta)^{best}$

Concluding remarks

The proposed approach

- **()** Global estimation $Q^{\theta}(\mathbf{y}|\mathbf{X}) = \mathbf{X}\hat{\mathbf{B}}(\theta)$
- Identification of the best model for each unit
 - density estimation $\hat{\mathbf{Y}} = \mathbf{X}\hat{\mathbf{B}}(\theta)$
 - **2** best model identification θ_i : argmin $y_i \hat{y}_i(\theta)$
 - e=1,Θ
 best density estimation vector
 - $\hat{\mathbf{y}}_{\theta}^{best}$
- Identification of the best model for each group $_g \theta^{best}$, for g = 1, G
- Partial estimation $Q^{\theta}(\mathbf{y}|\mathbf{X}) = \mathbf{X}\hat{\mathbf{B}}(\theta)^{best}$



・ 同 ト ・ ヨ ト ・ ヨ ト

Concluding remarks

The proposed approach

- **1** Global estimation $Q^{\theta}(\mathbf{y}|\mathbf{X}) = \mathbf{X}\hat{\mathbf{B}}(\theta)$
- Identification of the best model for each unit
 - density estimation $\hat{\mathbf{Y}} = \mathbf{X}\hat{\mathbf{B}}(\theta)$
 - Ø best model identification
 - $\theta_i : \underset{\theta=1,\Theta}{\operatorname{argmin}} y_i \hat{y}_i(\theta)$
 - best density estimation vector \hat{y}_{θ}^{best}
- 3 Identification of the best model for each group $_{g}\theta^{best}$, for g = 1, G
- Partial estimation $Q^{\theta}(\mathbf{y}|\mathbf{X}) = \mathbf{X}\hat{\mathbf{B}}(\theta)^{best}$

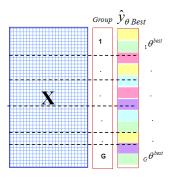
・ 同 ト ・ ヨ ト ・ ヨ ト

Concluding remarks

The proposed approach

- **1** Global estimation $Q^{\theta}(\mathbf{y}|\mathbf{X}) = \mathbf{X}\hat{\mathbf{B}}(\theta)$
- Identification of the best model for each unit
 - density estimation $\hat{\mathbf{Y}} = \mathbf{X}\hat{\mathbf{B}}(\theta)$
 - **2** best model identification $\theta_i : \underset{\theta=1,\Theta}{\operatorname{argmin}} y_i - \hat{y}_i(\theta)$
 - best density estimation vector

 ^{best}
 ^{best}
- ldentification of the best model for each group $_{g}\theta^{best}$, for g = 1, G
- Partial estimation $Q^{\theta}(\mathbf{y}|\mathbf{X}) = \mathbf{X}\hat{\mathbf{B}}(\theta)^{best}$



(신문) (신문)

Concluding remarks

The proposed approach

- **1** Global estimation $Q^{\theta}(\mathbf{y}|\mathbf{X}) = \mathbf{X}\hat{\mathbf{B}}(\theta)$
- Identification of the best model for each unit
 - density estimation $\hat{\mathbf{Y}} = \mathbf{X}\hat{\mathbf{B}}(\theta)$
 - Ø best model identification
 - $\theta_i : \underset{\theta=1,\Theta}{\operatorname{argmin}} y_i \hat{y}_i(\theta)$
 - Solution is the second sec
- ldentification of the best model for each group $_{g}\theta^{best}$, for g = 1, G
- Partial estimation $Q^{\theta}(\mathbf{y}|\mathbf{X}) = \mathbf{X}\hat{\mathbf{B}}(\theta)^{best}$

伺下 くほう くほう

An empirical analysis

The dataset

The evaluation of job satisfaction

- n: random sample of 400 students graduated at University of Macerata and in a working condition at the time of the interview
- p: 13 regressors (judgments of the different aspects related to the working experience)

syllabus, University background, consistent training, career chance, skill, personal interest, free time, salary, office location, job stability, human relationships, amusing job, independence

- dependent variable: overall opinion on the job
- G: 3 groups corresponding to the type of job self-employed, private employee, public employee

イロト 不得 トイヨト イヨト

0.08 0.10

0.06

0.04

0.06

0.04

0.02

0.0

QR for group effect analysis

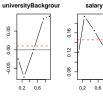
0.2

An empirical analysis 00000

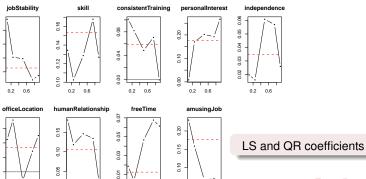
Concluding remarks

Step 1: Global estimation

syllabus



careerChance



Davino, Vistocco

Quantile Regression for Group Effect Analysis

 $\Xi \rightarrow$ ъ

An empirical analysis

Concluding remarks

Step 1: Global estimation

Variable	LS	<i>θ</i> =0.1	<i>θ</i> =0.25	<i>θ</i> =0.5	<i>θ</i> =0.75	<i>θ</i> =0.9
Intercept	0.403	-1.211	-0.149	0.711	0.761	2.370
syllabus	-0.009	0.022	0.018	-0.003	-0.081	-0.062
University background	0.004	-0.024	-0.072	0.001	0.082	0.089
salary	0.146	0.120	0.194	0.165	0.130	0.069
career chance	0.078	0.093	0.071	0.037	0.068	0.157
job stability	0.061	0.116	0.061	0.059	0.028	0.035
skill	0.117	0.134	0.102	0.129	0.168	0.127
consistent training	0.043	0.101	0.082	0.049	0.070	-0.000
personal interest	0.187	0.008	0.170	0.202	0.192	0.267
independence	0.051	0.019	0.016	0.061	0.056	0.026
office location	0.031	0.044	0.072	-0.012	0.029	0.050
human relationships	0.126	0.181	0.118	0.146	0.134	0.026
free time	0.017	0.189	0.003	0.047	0.067	0.061
amusing job	0.147	0.230	0.158	0.066	0.069	0.064

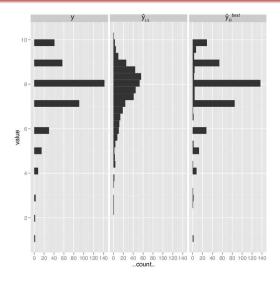
LS and QR coefficients

イロト 不得 とくほとくほとう

ъ

An empirical analysis

Step 2: Identification of the best model for each unit



Distribution of the:

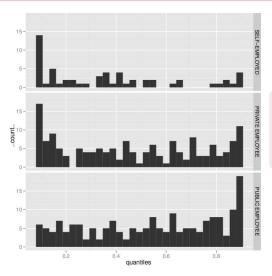
- dependent variable (*left panel*)
- LS estimated dependent variable (*middle panel*)
- best QR estimated dependent variable (*right panel*)

∃ > < ∃ >

An empirical analysis

Concluding remarks

Step 3: Identification of the best model for each group

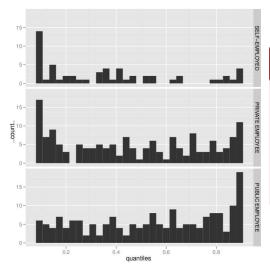


Distribution of the "best" quantiles assigned to each unit grouped according to the type of job

Davino, Vistocco Quantile Regression for Group Effect Analysis

An empirical analysis

Step 3: Identification of the best model for each group



"Best" quantiles for each group:

Mean value of the "best" quantiles assigned to units belonging to the g^{th} group

Concluding remarks

Step 4: Partial estimation

Variable	self-employed	private employee	public employee
intercept	0.646	0.683	0.694
syllabus	-0.007	-0.012	-0.035
University background	-0.030	0.006	0.026
salary	0.201	0.152	0.160
career chance	0.012	0.037	-0.008
job stability	0.049	0.034	0.054
skill	0.118	0.156	0.184
consistent training	0.065	0.066	0.064
personal interest	0.200	0.175	0.202
independence	0.022	0.035	0.035
office location	0.011	-0.006	0.007
human relationships	0.114	0.152	0.107
free time	0.018	0.032	0.026
amusing job	0.148	0.124	0.141

QR coefficients with group effects

イロト 不同 トイヨト イヨト

Concluding remarks

Concluding remarks and further issues

The proposed approach

- Group effect analysis
- Impact of the regressors on the entire conditional distribution
- Semi–parametric approach

Further developments

- Robust index for the identification of the "best" quantile
- Statistical significance of the differences among the "best" quantiles
- Time as grouping variable
- Unsupervised approach

Concluding remarks

ъ

Concluding remarks and further issues

The proposed approach

- Group effect analysis
- Impact of the regressors on the entire conditional distribution
- Semi–parametric approach

Further developments

- Robust index for the identification of the "best" quantile
- Statistical significance of the differences among the "best" quantiles
- Time as grouping variable
- Unsupervised approach

イロト 不同 トイヨト イヨト

3

Main references

DAVINO, C., VISTOCCO, D. (2007): The evaluation of university educational processes: a quantile
regression approach. STATISTICA, n.3, pp. 267-278.

DAVINO C., VISTOCCO D (2008): Quantile regression for the evaluation of student satisfaction. STATISTICA APPLICATA, vol. 20; p. 179-196.

EIDE, E. SHOWALTER, M.H. (1998): The effect of school quality on student performance: a quantile regression approach. *Economics Letters 58, 345-350.*

FURNO, M. (2010): Quantile regression analysis of the Italian school system. *Statistical Modelling*, vol. 4, 2010, in press.

GELMAN, A. HILL, J. (2006): Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.

HAO, L. NAIMAN, D. Q. (2007): *Quantile Regression*, Series: Quantitative Applications in the Social Sciences, SAGE Publications.

LOCKHEED, M.E. HANUSHECK, E.R.(1994): Concepts of Educational Efficiency and Effectiveness, in Torsten Husén and T. Neville Postlethwaite (ed.), *International Encyclopedia of Education*, second edition, Volume 3 (Oxford: Pergamon, 1994), pp. 1779-1784.

KOENKER, R., BASSET, G.W. (1978): Regression Quantiles, Econometrica 46, 33-50.

KOENKER, R. (2005): Quantile Regression. Econometric Society Monographs.

KOENKER, R. (2009): *quantreg: Quantile Regression*. R package version 4.44. http://CRAN.R-project.org/package=quantreg.