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Aim of the paper

Identification of group effects in a quantile regression model
1 CONFIRMATIVE APPROACH
2 ROW–PARTITIONED DATA

Supervised approach
Unsupervised approach

Some solutions for group effect analysis

Estimation of different models for each group
Introduction of a dummy variable
Multilevel modeling (Gelman and Hill, 2007)
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Basic notation

The data structure
n: number of units
p: number of regressors
G: number of groups or levels

X[n×p]

gxij
(i=1,...,n; j=1,...,p; g=1,...G)

y[n]

gyi
(i=1,...,n; g=1,...G)

ng : number of units in group g
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Classical vs quantile linear regression

Classical linear regression
(conditional expected value)

estimation of the conditional mean of a
response variable (y) distribution as a
function of a set X of predictor variables

E(y | X) = Xβ

βi =
∂E(y)
∂xi

Quantile regression (Koenker and Basset, 1978)

(conditional quantiles)

estimation of the conditional quantiles of a
response variable (y) distribution as a
function of a set X of predictor variables

Qθ(y | X) = Xβ(θ)

where: (0 < θ < 1)

βi(θ) =
∂Qθ(y)
∂xi
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The proposed approach
1 Global estimation

Qθ(y|X) = XB̂(θ)

2 Identification of the best model
for each unit

1 density estimation
Ŷ = XB̂(θ)

2 best model identification
θi : argmin

θ=1,Θ
yi − ŷi(θ)

3 best density estimation
vector
ŷbest
θ

3 Identification of the best model
for each group
gθ

best , for g = 1,G
4 Partial estimation

Qθ(y|X) = XB̂(θ)best
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Ŷ = XB̂(θ)

2 best model identification
θi : argmin

θ=1,Θ
yi − ŷi(θ)
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The dataset

The evaluation of job satisfaction
n: random sample of 400 students graduated at University
of Macerata and in a working condition at the time of the
interview
p: 13 regressors (judgments of the different aspects
related to the working experience)
syllabus, University background, consistent training, career chance, skill,

personal interest, free time, salary, office location, job stability, human

relationships, amusing job, independence

dependent variable: overall opinion on the job
G: 3 groups corresponding to the type of job
self-employed, private employee, public employee
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Step 1: Global estimation
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Step 1: Global estimation
Variable LS θ=0.1 θ=0.25 θ=0.5 θ=0.75 θ=0.9
Intercept 0.403 -1.211 -0.149 0.711 0.761 2.370
syllabus -0.009 0.022 0.018 -0.003 -0.081 -0.062
University background 0.004 -0.024 -0.072 0.001 0.082 0.089
salary 0.146 0.120 0.194 0.165 0.130 0.069
career chance 0.078 0.093 0.071 0.037 0.068 0.157
job stability 0.061 0.116 0.061 0.059 0.028 0.035
skill 0.117 0.134 0.102 0.129 0.168 0.127
consistent training 0.043 0.101 0.082 0.049 0.070 -0.000
personal interest 0.187 0.008 0.170 0.202 0.192 0.267
independence 0.051 0.019 0.016 0.061 0.056 0.026
office location 0.031 0.044 0.072 -0.012 0.029 0.050
human relationships 0.126 0.181 0.118 0.146 0.134 0.026
free time 0.017 0.189 0.003 0.047 0.067 0.061
amusing job 0.147 0.230 0.158 0.066 0.069 0.064
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Step 2: Identification of the best model for each unit

Distribution of the:

dependent variable
(left panel)

LS estimated
dependent variable
(middle panel)

best QR estimated
dependent variable
(right panel)
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Step 3: Identification of the best model for each group

Distribution of the “best”
quantiles assigned to each
unit grouped according to
the type of job
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Step 3: Identification of the best model for each group

“Best” quantiles for each
group:

Mean value of the “best”
quantiles assigned to units
belonging to the gth group

θbest
1 =0.371

θbest
2 =0.474

θbest
3 =0.548
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Step 4: Partial estimation
Variable self-employed private employee public employee
intercept 0.646 0.683 0.694
syllabus -0.007 -0.012 -0.035
University background -0.030 0.006 0.026
salary 0.201 0.152 0.160
career chance 0.012 0.037 -0.008
job stability 0.049 0.034 0.054
skill 0.118 0.156 0.184
consistent training 0.065 0.066 0.064
personal interest 0.200 0.175 0.202
independence 0.022 0.035 0.035
office location 0.011 -0.006 0.007
human relationships 0.114 0.152 0.107
free time 0.018 0.032 0.026
amusing job 0.148 0.124 0.141
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Concluding remarks and further issues

The proposed approach
Group effect analysis
Impact of the regressors on the entire conditional
distribution
Semi–parametric approach

Further developments
Robust index for the identification of the “best” quantile
Statistical significance of the differences among the “best”
quantiles
Time as grouping variable
Unsupervised approach
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