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@ Consider a sampling model p(y; 0), with = (¢, \) € © C RP,
where
e ¢ is a scalar parameter of interest
@ \is ap— 1dimensional nuisance parameter.

We are interested in testing H : ¢ € Vg against H; : ¢ € V4

@ Classical approach: use Bayes Factor (BF) based on the ratio of
integrated likelihoods. It requires

e prior elicitation on A;
e calculation on a p-dimensional integral
@ Proposed approach: use a pseudo-BF based on a
pseudo-likelihood L*(v), which is a function of v only.
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Classical Bayesian Hypothesis Testing (Kass, Raftery, 1995)

@ Test
Hy : ¢ € Wy against Hy : i € Wy,

with the Bayes Factor

Sy Ja L N mo(Aj)mo(4) dA dp

= e L m (9)m (9) dA dy

where
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Classical Bayesian Hypothesis Testing (Kass, Raftery, 1995)

@ Test
Ho : ¢ € Wy against Hy = ¢ € Uy,

with the Bayes Factor

Sy Ja L N mo(Aj)mo(4) dA dp

= e L m (9)m (9) dA dy

where
o L(x,\) = L(¢, \; y) is the full likelihood based on data y;
o mi(v) for ¢ € Wy, k = 0,1 are priors under Hy and H; respectively;
o m(Aly) for ¢ € Wy are priors on the nuisance parameter given 1;
@ This approach
@ requires elicitation of priors mx(A|%))
... critical when p is large and/or A has not physical meaning;
@ needs p dimensional integrations on (W, A).

Cabras etal. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 3/15



Pseudo likelihoods (Pace, Salvan, 1997; Severini, 2000) in Bayesian

inference (Severini, 1999; Ventura et al., 2009; 2010)

@ Nuisance parameters \ are eliminated using a pseudo-likelihood

L ().
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Pseudo likelihoods (Pace, Salvan, 1997; Severini, 2000) in Bayesian

inference (Severini, 1999; Ventura et al., 2009; 2010)

@ Nuisance parameters \ are eliminated using a pseudo-likelihood
L* ().

@ Properties of L*(v) are similar to those of a genuine likelihood
function.

@ Examples of L*(v) are the conditional, marginal, profile and the
Modified Profile likelihoods (MPL)

@ Using L*(¢) as a true likelihood, a posterior distribution of ¢ can
be considered

T (Ply) o< L () (4),

where 7 (1)) is a suitable prior on ) only.
@ Advantages in using 7*(v|y):

e no elicitation on A;
e no multi-dimensional integration over A.
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Pseudo-Bayes Factors Bf*

@ We use 7*(¢|y) in order to test Hy : ¢ € Vg against Hy : ¢ € V.
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Pseudo-Bayes Factors Bf*

@ We use 7*(¢|y) in order to test Hy : ¢ € Vg against Hy : ¢ € V.
@ In our approach we only need:

@ a pseudo-likelihood L*(1))
@ priors mi (1) for ¢ € Wy, k= 0,1

@ We then define the Pseudo-Bayes Factor:

e L@)mo(0) d [y, ma(ely) d
= Jo, L@ (@) do ~ Jy, wi(dly) du’

which needs only 1 dimensional integrations over W.

BF*
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Comparison of BF* versus BF

@ The null model Hy is favored when BF* > 1 o (BF > 1).
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@ To evaluate the behavior of BF* we compare it versus BF in terms
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Comparison of BF* versus BF

@ The null model Hy is favored when BF* > 1 o (BF > 1).

@ To evaluate the behavior of BF* we compare it versus BF in terms
of the corresponding the Frequentist Risks, R*(¢, \) and R(«, A),
where

R*(¢,\) = Pr(BF*(y) < 1|Hp) + Pr(BF*(y) > 1|H;)
R(y,\) = Pr(BF(y) < 1|Hp) + Pr(BF(y) > 1|H;)

o If R*(¢, \) < R(¢, A) then, at point (¢, \), BF* outperforms BF.

@ In the next examples we assume a favorable scenario for BF:
mk(AlY) = w(A) for k = 0,1, with 7(\) concentrated on the true
values.
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Comparison of BF* versus BF

@ The null model Hy is favored when BF* > 1 o (BF > 1).

@ To evaluate the behavior of BF* we compare it versus BF in terms
of the corresponding the Frequentist Risks, R*(¢, \) and R(«, A),
where

R*(¢,\) = Pr(BF*(y) < 1|Hp) + Pr(BF*(y) > 1|H;)
R(y,\) = Pr(BF(y) < 1|Hp) + Pr(BF(y) > 1|H;)

o If R*(¢, \) < R(¢, A) then, at point (¢, \), BF* outperforms BF.

@ In the next examples we assume a favorable scenario for BF:
mk(AlY) = w(A) for k = 0,1, with 7(\) concentrated on the true
values.

@ Both R*(y, \) and R(v, \) are approximated by Monte Carlo
simulations.
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@ We discuss two examples:

@ stress-strength model;
© logistic regression.

@ We mainly focus on the Modified Profile Likelihood (Severini, 2000)

a2, Ap)|'/2
L - L — A
K % W
where L,(v) = L(1, Ay,), 8 is the MLE for 8, A, is the conditional MLE of
A and

I(2, X; 80) = Egy (A (10, X)la (20, Xo)T)
with 8y = (10, Xo) and £x (v, A) = 94(1), X) /OX.
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Example 1. Stress-strength model (Kotz et al., 2003)

@ Let X ~ Exp(a) and Y ~ Exp(3) be random variables. Interest is
on
p=Pr(X<Y)=a/(a+p)

with A = a.
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Example 1. Stress-strength model (Kotz et al., 2003)

@ Let X ~ Exp(a) and Y ~ Exp(3) be random variables. Interest is

on
Yp=Pr(X<Y)=a/(a+p)
with A = a.
@ Given random samples of size nand m from from X and Y

respectively, we test Hyp : ¢» < 1/2 against Hy : ¢p > 1/2, YA >0
assuming the following priors
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Example 1. Stress-strength model (Kotz et al., 2003)

@ Let X ~ Exp(a) and Y ~ Exp(3) be random variables. Interest is

on
v=PrX<Y)=a/(a+p)

with A = a.

@ Given random samples of size nand m from from X and Y
respectively, we test Hyp : ¢» < 1/2 against Hy : ¢p > 1/2, YA >0
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Example 1. Stress-strength model (Kotz et al., 2003)

@ Let X ~ Exp(a) and Y ~ Exp(3) be random variables. Interest is

on
v=PrX<Y)=a/(a+p)

with A = a.

@ Given random samples of size nand m from from X and Y
respectively, we test Hyp : ¢» < 1/2 against Hy : ¢p > 1/2, YA >0
assuming the following priors

o mo(¢) = U(0,1/2)

o () = U(1/2,1)
e w(\) = Gamma(1,1)
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Example 1. Stress-strength model (Kotz et al., 2003)

@ Let X ~ Exp(a) and Y ~ Exp(3) be random variables. Interest is

on
v=PrX<Y)=a/(a+p)

with A = a.

@ Given random samples of size nand m from from X and Y
respectively, we test Hyp : ¢» < 1/2 against Hy : ¢p > 1/2, YA >0
assuming the following priors

o mo(¢) = U(0,1/2)
o m(y) = U(1/2,1)
e w(\) = Gamma(1,1)

® The MPLIS Lup(¢) = —(n+ m —2)log (s, + 5,52 ) + mlog 1
where sy =Y x;and s, =) y;.
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Example 1. Stress-strength model (Kotz et al., 2003)

@ Let X ~ Exp(a) and Y ~ Exp(3) be random variables. Interest is

on
Yp=Pr(X<Y)=a/(a+p)
with A = a.
@ Given random samples of size nand m from from X and Y

respectively, we test Hyp : ¢» < 1/2 against Hy : ¢p > 1/2, YA >0
assuming the following priors

o m(y) = U(0,1/2)
o () = U(1/2,1)
e w(\) = Gamma(1,1)

® The MPLIS Lup(¢) = —(n+ m —2)log (s, + 5,52 ) + mlog 1
where sy =Y x;and s, =) y;.
@ Both BF* and BF are evaluated numerically.
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Example 1. Stress-strength model (Kotz et al., 2003)

R R*
A=05 A=25[1=05 A=25]|
p=04] 10% 33% | 21% 23%
$=06| 29% 22% | 21%  26%

Table: Values of risks (with n = m = 5).

@ For some (¢, \), R < R* just because prior 7(\) = Gamma(1,1)
gives high probability to the “true” values of .

Cabras etal. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 9/15



Example 1. Stress-strength model (Kotz et al., 2003)

R R*
A=05 A=25[1=05 A=25]|
p=04] 10% 33% | 21% 23%
$=06| 29% 22% | 21%  26%

Table: Values of risks (with n = m = 5).

@ For some (¢, \), R < R* just because prior 7(\) = Gamma(1,1)
gives high probability to the “true” values of .

@ However, R is much more sensitive to )\ than R*.
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Stress-strength model (Kotz et al., 2003)

BF Risk — BFP Risk, n=2 BF Risk — BFP Risk, n=5
o 5!
@ « 0.2
0 0
N 02 o 0.1
S 00 00
< w0 < @9 -0.
- 02 =
o o 0.
< 4
-04 0.
0 [
S S
-0.
0.2 0.4 0.6 0.8
Y v
BF Risk — BFP Risk, n=10 BF Risk — BFP Risk, n=20
o 5!
B B
02
2 2 0.2
01
2 2 0.1
- 0.0 -
< o < 9 0.0
-0.1
2 S -0.
-0.2
0 w0 -0.
E S
-0.3
0.2 04 06 08 02 04 06 08

v v
Figure: Values of R(v, A\) — R*(y, A) forn=m =2,5,10, 20.
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Example 2. Logistic Regression

@ The logistic regression model has likelihood function

n p n
L(B) = exp {Zy/ Z BjXij — Z log (1 + eXi ﬁ/Xf/) }
P

=1 j=t
with 8 = (B4, ..., Bp) unknown regression coefficient and x; fixed
constants,i=1,...,nandj=1,...,p.
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n p n
L(B) = exp {Zy/ Z BjXij — Z log (1 + eXi ﬁ/Xf/) }
P

=1 j=t

with 8 = (B4, ..., Bp) unknown regression coefficient and x; fixed
constants,i=1,...,nandj=1,...,p.

@ Assume ¢ = 3y andlet A = (34, ..., Bp—1) be the nuisance
parameter.
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with 8 = (B4, ..., Bp) unknown regression coefficient and x; fixed
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Example 2. Logistic Regression

@ The logistic regression model has likelihood function

n p n
L(B) = exp {Zy/ Z BjXij — Z log (1 + eXi ﬁ/Xf/) }
P

=1 j=t

with 8 = (B4, ..., Bp) unknown regression coefficient and x; fixed
constants,i=1,...,nandj=1,...,p.

@ Assume ¢ = 3y andlet A = (34, ..., Bp—1) be the nuisance
parameter.

@ Interest on testing Hp : v > 0 against H; : ) < 0, VA assuming the
following priors:

e 7o(1) = TruncNormal(0,1,v = 0,7 = oo);
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Example 2. Logistic Regression

@ The logistic regression model has likelihood function

= exp {ny > i - Z log (1 + €74 }
i=1 j=1

with 8 = (B4, ..., Bp) unknown regression coefficient and x; fixed
constants,i=1,...,nandj=1,...,p.

@ Assume ¢ = 3y andlet A = (34, ..., Bp—1) be the nuisance
parameter.

@ Interest on testing Hp : v > 0 against H; : ) < 0, VA assuming the
following priors:

e 7o(1) = TruncNormal(0,1,v = 0,7 = oo);
o m(y) = TruncNorma/(O ,1b = —00,4 = 0);
o w(A)=n(B1) ... n(Bpr). w(B) = N(0,10"2), j=1,2,....p— 1.
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Example 2. Logistic Regression - Urine data (Davison, Hinkley, 1997).

@ For illustration, we analyze the presence/absence of calcium
oxalate crystals in urine samples Y together with the values of
p = 6 quantitative covariates on n = 77 individuals.
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Example 2. Logistic Regression - Urine data (Davison, Hinkley, 1997).

@ For illustration, we analyze the presence/absence of calcium
oxalate crystals in urine samples Y together with the values of
p = 6 quantitative covariates on n = 77 individuals.

@ Assume that ¢ is the coefficient of the effect of the variable urea
concentration.

@ The weights of evidence (Good, 1985), W = log BF and
W* = log BF*, are

W and W+

BF based on L(/5) 4.2
BF* based on Lyp(¢)) 4.2

According to the Jeffreys’ scale, the evidence is substantial in favor of
positive effect of urea concentration.
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Example 2. Logistic Regression - p large.

In order to assess the behaviour of BF*, with respect to large p, we
evaluate the corresponding W* in 1000 data sets with p = 20
coefficients
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Example 2. Logistic Regression - p large.

In order to assess the behaviour of BF*, with respect to large p, we
evaluate the corresponding W* in 1000 data sets with p = 20
coefficients, with 5 positive, 5 negative and 10 zero coefficients.

Weight of Evidence based on
Modified Profile Likelihood

9
g

10
I

Weight of Evidence
0
|

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure: Empirical mean W* for the sign of 20 coefficients.
(Horizontal dashed lines are the levels of strong evidence).
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Conclusions

@ The use of pseudo-Bayes factor BF* may be of potential interest
in situations with many nuisance parameters having a weak
physical meaning.

Cabras etal. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 14/15



Conclusions

@ The use of pseudo-Bayes factor BF* may be of potential interest
in situations with many nuisance parameters having a weak
physical meaning.

@ For the analyzed examples we obtained that:

Cabras etal. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 14/15



Conclusions

@ The use of pseudo-Bayes factor BF* may be of potential interest
in situations with many nuisance parameters having a weak
physical meaning.

@ For the analyzed examples we obtained that:

e ingeneral, R*(¢, \) < R(¢, A)

Cabras etal. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 14/15



Conclusions

@ The use of pseudo-Bayes factor BF* may be of potential interest
in situations with many nuisance parameters having a weak
physical meaning.

@ For the analyzed examples we obtained that:

e ingeneral, R*(¢, \) < R(¢, A)
e R* is almost constant with respect to A

Cabras etal. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 14/15



Conclusions

@ The use of pseudo-Bayes factor BF* may be of potential interest
in situations with many nuisance parameters having a weak
physical meaning.

@ For the analyzed examples we obtained that:

e ingeneral, R*(¢, \) < R(¢, A)
e R* is almost constant with respect to A

@ Main advantages of BF*:

Cabras etal. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 14/15



Conclusions

@ The use of pseudo-Bayes factor BF* may be of potential interest
in situations with many nuisance parameters having a weak
physical meaning.

@ For the analyzed examples we obtained that:

e ingeneral, R*(¢, \) < R(¢, A)
@ R* is almost constant with respect to A

@ Main advantages of BF*:

e avoid elicitation of priors on nuisance parameters

Cabras etal. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 14/15



Conclusions

@ The use of pseudo-Bayes factor BF* may be of potential interest
in situations with many nuisance parameters having a weak
physical meaning.

@ For the analyzed examples we obtained that:

e ingeneral, R*(¢, \) < R(¢, A)
e R* is almost constant with respect to A

@ Main advantages of BF*:

e avoid elicitation of priors on nuisance parameters
e no multidimensional integrations.

Cabras etal. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 14/15



Conclusions

@ The use of pseudo-Bayes factor BF* may be of potential interest
in situations with many nuisance parameters having a weak
physical meaning.

@ For the analyzed examples we obtained that:

e ingeneral, R*(¢, \) < R(¢, A)
@ R* is almost constant with respect to A

@ Main advantages of BF*:

e avoid elicitation of priors on nuisance parameters
@ no multidimensional integrations.

@ BF* may be also obtained for semi-parametric models or complex
models, when the L(¢, \) is difficult or even impossible to
compute,

Cabras etal. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 14/15



Conclusions

@ The use of pseudo-Bayes factor BF* may be of potential interest
in situations with many nuisance parameters having a weak
physical meaning.

@ For the analyzed examples we obtained that:

e ingeneral, R*(¢, \) < R(¢, A)
@ R* is almost constant with respect to A

@ Main advantages of BF*:

e avoid elicitation of priors on nuisance parameters
@ no multidimensional integrations.

@ BF* may be also obtained for semi-parametric models or complex
models, when the L(¢, \) is difficult or even impossible to
compute,

Cabras etal. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 14/15



Conclusions

@ The use of pseudo-Bayes factor BF* may be of potential interest
in situations with many nuisance parameters having a weak
physical meaning.

@ For the analyzed examples we obtained that:

e ingeneral, R*(¢, \) < R(¢, A)
e R* is almost constant with respect to A

@ Main advantages of BF*:

e avoid elicitation of priors on nuisance parameters
@ no multidimensional integrations.

@ BF* may be also obtained for semi-parametric models or complex
models, when the L(¢, \) is difficult or even impossible to
compute, in fact, it is possible to resort to quasi-profile likelihoods
(Ventura et al., 2010), empirical likelihoods and composite
likelihoods (Pauli et al., 2010).
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