Pseudo-Bayes Factors

Stefano Cabras¹, Walter Racugno¹ and Laura Ventura²

¹ Department of Mathematics, University of Cagliari ² Department of Statistics, University of Padova

Compstat, 2010

• Consider a sampling model $p(y; \theta)$, with $\theta = (\psi, \lambda) \in \Theta \subseteq \mathbb{R}^{p}$, where

- Consider a sampling model p(y; θ), with θ = (ψ, λ) ∈ Θ ⊆ ℝ^p, where
 - ψ is a scalar parameter of interest

- Consider a sampling model p(y; θ), with θ = (ψ, λ) ∈ Θ ⊆ ℝ^p, where
 - ψ is a scalar parameter of interest
 - λ is a p-1 dimensional nuisance parameter.

- Consider a sampling model p(y; θ), with θ = (ψ, λ) ∈ Θ ⊆ ℝ^p, where
 - ψ is a scalar parameter of interest
 - λ is a p-1 dimensional nuisance parameter.

- Consider a sampling model p(y; θ), with θ = (ψ, λ) ∈ Θ ⊆ ℝ^p, where
 - ψ is a scalar parameter of interest
 - λ is a p-1 dimensional nuisance parameter.

- Consider a sampling model p(y; θ), with θ = (ψ, λ) ∈ Θ ⊆ ℝ^p, where
 - ψ is a scalar parameter of interest
 - λ is a p-1 dimensional nuisance parameter.

 Classical approach: use Bayes Factor (BF) based on the ratio of integrated likelihoods. It requires

- Consider a sampling model p(y; θ), with θ = (ψ, λ) ∈ Θ ⊆ ℝ^p, where
 - ψ is a scalar parameter of interest
 - λ is a p-1 dimensional nuisance parameter.

- Classical approach: use Bayes Factor (BF) based on the ratio of integrated likelihoods. It requires
 - prior elicitation on λ ;

- Consider a sampling model p(y; θ), with θ = (ψ, λ) ∈ Θ ⊆ ℝ^p, where
 - ψ is a scalar parameter of interest
 - λ is a p-1 dimensional nuisance parameter.

- Classical approach: use Bayes Factor (BF) based on the ratio of integrated likelihoods. It requires
 - prior elicitation on λ ;
 - calculation on a *p*-dimensional integral

- Consider a sampling model p(y; θ), with θ = (ψ, λ) ∈ Θ ⊆ ℝ^p, where
 - ψ is a scalar parameter of interest
 - λ is a p-1 dimensional nuisance parameter.

- Classical approach: use Bayes Factor (BF) based on the ratio of integrated likelihoods. It requires
 - prior elicitation on λ ;
 - calculation on a *p*-dimensional integral
- Proposed approach: use a pseudo-BF based on a pseudo-likelihood L^{*}(ψ), which is a function of ψ only.

$$H_0: \psi \in \Psi_0$$
 against $H_1: \psi \in \Psi_1$,

with the Bayes Factor

$$BF = \frac{\int_{\Psi_0} \int_{\Lambda} L(\psi, \lambda) \pi_0(\lambda | \psi) \pi_0(\psi) \, d\lambda \, d\psi}{\int_{\Psi_1} \int_{\Lambda} L(\psi, \lambda) \pi_1(\lambda | \psi) \pi_1(\psi) \, d\lambda \, d\psi},$$

where

$$H_0: \psi \in \Psi_0$$
 against $H_1: \psi \in \Psi_1$,

with the Bayes Factor

$$BF = \frac{\int_{\Psi_0} \int_{\Lambda} L(\psi, \lambda) \pi_0(\lambda | \psi) \pi_0(\psi) \, d\lambda \, d\psi}{\int_{\Psi_1} \int_{\Lambda} L(\psi, \lambda) \pi_1(\lambda | \psi) \pi_1(\psi) \, d\lambda \, d\psi},$$

where

L(ψ, λ) = L(ψ, λ; y) is the full likelihood based on data y;

$$H_0: \psi \in \Psi_0$$
 against $H_1: \psi \in \Psi_1$,

with the Bayes Factor

$$BF = \frac{\int_{\Psi_0} \int_{\Lambda} L(\psi, \lambda) \pi_0(\lambda | \psi) \pi_0(\psi) \, d\lambda \, d\psi}{\int_{\Psi_1} \int_{\Lambda} L(\psi, \lambda) \pi_1(\lambda | \psi) \pi_1(\psi) \, d\lambda \, d\psi},$$

where

L(ψ, λ) = L(ψ, λ; y) is the full likelihood based on data y;
π_k(ψ) for ψ ∈ Ψ_k, k = 0, 1 are priors under H₀ and H₁ respectively;

$$H_0: \psi \in \Psi_0$$
 against $H_1: \psi \in \Psi_1$,

with the Bayes Factor

$$BF = \frac{\int_{\Psi_0} \int_{\Lambda} L(\psi, \lambda) \pi_0(\lambda | \psi) \pi_0(\psi) \, d\lambda \, d\psi}{\int_{\Psi_1} \int_{\Lambda} L(\psi, \lambda) \pi_1(\lambda | \psi) \pi_1(\psi) \, d\lambda \, d\psi},$$

where

• $L(\psi, \lambda) = L(\psi, \lambda; \mathbf{y})$ is the full likelihood based on data \mathbf{y} ;

- $\pi_k(\psi)$ for $\psi \in \Psi_k$, k = 0, 1 are priors under H_0 and H_1 respectively;
- $\pi_k(\lambda|\psi)$ for $\psi \in \Psi_k$ are priors on the nuisance parameter given ψ ;

$$H_0: \psi \in \Psi_0$$
 against $H_1: \psi \in \Psi_1$,

with the Bayes Factor

$$BF = \frac{\int_{\Psi_0} \int_{\Lambda} L(\psi, \lambda) \pi_0(\lambda | \psi) \pi_0(\psi) \, d\lambda \, d\psi}{\int_{\Psi_1} \int_{\Lambda} L(\psi, \lambda) \pi_1(\lambda | \psi) \pi_1(\psi) \, d\lambda \, d\psi},$$

where

- L(ψ, λ) = L(ψ, λ; y) is the full likelihood based on data y;
- $\pi_k(\psi)$ for $\psi \in \Psi_k$, k = 0, 1 are priors under H_0 and H_1 respectively;
- $\pi_k(\lambda|\psi)$ for $\psi \in \Psi_k$ are priors on the nuisance parameter given ψ ;

• This approach

$$H_0: \psi \in \Psi_0$$
 against $H_1: \psi \in \Psi_1$,

with the Bayes Factor

$$BF = \frac{\int_{\Psi_0} \int_{\Lambda} L(\psi, \lambda) \pi_0(\lambda | \psi) \pi_0(\psi) \, d\lambda \, d\psi}{\int_{\Psi_1} \int_{\Lambda} L(\psi, \lambda) \pi_1(\lambda | \psi) \pi_1(\psi) \, d\lambda \, d\psi},$$

where

- L(ψ, λ) = L(ψ, λ; y) is the full likelihood based on data y;
- $\pi_k(\psi)$ for $\psi \in \Psi_k$, k = 0, 1 are priors under H_0 and H_1 respectively;
- π_k(λ|ψ) for ψ ∈ Ψ_k are priors on the nuisance parameter given ψ;
- This approach
 - requires elicitation of priors $\pi_k(\lambda|\psi)$

$$H_0: \psi \in \Psi_0$$
 against $H_1: \psi \in \Psi_1$,

with the Bayes Factor

$$BF = \frac{\int_{\Psi_0} \int_{\Lambda} L(\psi, \lambda) \pi_0(\lambda | \psi) \pi_0(\psi) \, d\lambda \, d\psi}{\int_{\Psi_1} \int_{\Lambda} L(\psi, \lambda) \pi_1(\lambda | \psi) \pi_1(\psi) \, d\lambda \, d\psi},$$

where

- L(ψ, λ) = L(ψ, λ; y) is the full likelihood based on data y;
- $\pi_k(\psi)$ for $\psi \in \Psi_k$, k = 0, 1 are priors under H_0 and H_1 respectively;
- π_k(λ|ψ) for ψ ∈ Ψ_k are priors on the nuisance parameter given ψ;
- This approach
 - requires elicitation of priors $\pi_k(\lambda|\psi)$

$$H_0: \psi \in \Psi_0$$
 against $H_1: \psi \in \Psi_1$,

with the Bayes Factor

$$BF = \frac{\int_{\Psi_0} \int_{\Lambda} L(\psi, \lambda) \pi_0(\lambda | \psi) \pi_0(\psi) \, d\lambda \, d\psi}{\int_{\Psi_1} \int_{\Lambda} L(\psi, \lambda) \pi_1(\lambda | \psi) \pi_1(\psi) \, d\lambda \, d\psi},$$

where

- L(ψ, λ) = L(ψ, λ; y) is the full likelihood based on data y;
- $\pi_k(\psi)$ for $\psi \in \Psi_k$, k = 0, 1 are priors under H_0 and H_1 respectively;
- π_k(λ|ψ) for ψ ∈ Ψ_k are priors on the nuisance parameter given ψ;

This approach

- requires elicitation of priors $\pi_k(\lambda|\psi)$
 - ... critical when p is large and/or λ has not physical meaning;

$$H_0: \psi \in \Psi_0$$
 against $H_1: \psi \in \Psi_1$,

with the Bayes Factor

$$BF = \frac{\int_{\Psi_0} \int_{\Lambda} L(\psi, \lambda) \pi_0(\lambda | \psi) \pi_0(\psi) \, d\lambda \, d\psi}{\int_{\Psi_1} \int_{\Lambda} L(\psi, \lambda) \pi_1(\lambda | \psi) \pi_1(\psi) \, d\lambda \, d\psi},$$

where

- L(ψ, λ) = L(ψ, λ; y) is the full likelihood based on data y;
- $\pi_k(\psi)$ for $\psi \in \Psi_k$, k = 0, 1 are priors under H_0 and H_1 respectively;
- π_k(λ|ψ) for ψ ∈ Ψ_k are priors on the nuisance parameter given ψ;

• This approach

- requires elicitation of priors $\pi_k(\lambda|\psi)$
 - ... critical when p is large and/or λ has not physical meaning;
- needs *p* dimensional integrations on (Ψ_k, Λ) .

 Nuisance parameters λ are eliminated using a pseudo-likelihood L*(ψ).

- Nuisance parameters λ are eliminated using a pseudo-likelihood L*(ψ).
- Properties of L^{*}(ψ) are similar to those of a genuine likelihood function.

- Nuisance parameters λ are eliminated using a pseudo-likelihood L*(ψ).
- Properties of L^{*}(ψ) are similar to those of a genuine likelihood function.
- Examples of L^{*}(ψ) are the conditional, marginal, profile and the Modified Profile likelihoods (MPL)

- Nuisance parameters λ are eliminated using a pseudo-likelihood L*(ψ).
- Properties of L^{*}(ψ) are similar to those of a genuine likelihood function.
- Examples of L^{*}(ψ) are the conditional, marginal, profile and the Modified Profile likelihoods (MPL)
- Using $L^*(\psi)$ as a true likelihood, a posterior distribution of ψ can be considered

 $\pi^*(\psi|\mathbf{y}) \propto L^*(\psi)\pi(\psi),$

- Nuisance parameters λ are eliminated using a pseudo-likelihood L*(ψ).
- Properties of L^{*}(ψ) are similar to those of a genuine likelihood function.
- Examples of L^{*}(ψ) are the conditional, marginal, profile and the Modified Profile likelihoods (MPL)
- Using $L^*(\psi)$ as a true likelihood, a posterior distribution of ψ can be considered

 $\pi^*(\psi|\mathbf{y}) \propto L^*(\psi)\pi(\psi),$

where $\pi(\psi)$ is a suitable prior on ψ only.

• Advantages in using $\pi^*(\psi|\mathbf{y})$:

- Nuisance parameters λ are eliminated using a pseudo-likelihood L*(ψ).
- Properties of L^{*}(ψ) are similar to those of a genuine likelihood function.
- Examples of L^{*}(ψ) are the conditional, marginal, profile and the Modified Profile likelihoods (MPL)
- Using $L^*(\psi)$ as a true likelihood, a posterior distribution of ψ can be considered

 $\pi^*(\psi|\mathbf{y}) \propto L^*(\psi)\pi(\psi),$

- Advantages in using $\pi^*(\psi|\mathbf{y})$:
 - no elicitation on λ ;

- Nuisance parameters λ are eliminated using a pseudo-likelihood L*(ψ).
- Properties of L^{*}(ψ) are similar to those of a genuine likelihood function.
- Examples of L^{*}(ψ) are the conditional, marginal, profile and the Modified Profile likelihoods (MPL)
- Using $L^*(\psi)$ as a true likelihood, a posterior distribution of ψ can be considered

 $\pi^*(\psi|\mathbf{y}) \propto L^*(\psi)\pi(\psi),$

- Advantages in using $\pi^*(\psi|\mathbf{y})$:
 - no elicitation on λ ;

- Nuisance parameters λ are eliminated using a pseudo-likelihood L*(ψ).
- Properties of L^{*}(ψ) are similar to those of a genuine likelihood function.
- Examples of L^{*}(ψ) are the conditional, marginal, profile and the Modified Profile likelihoods (MPL)
- Using $L^*(\psi)$ as a true likelihood, a posterior distribution of ψ can be considered

 $\pi^*(\psi|\mathbf{y}) \propto L^*(\psi)\pi(\psi),$

- Advantages in using $\pi^*(\psi|\mathbf{y})$:
 - no elicitation on λ ;
 - no multi-dimensional integration over Λ.

• We use $\pi^*(\psi|\mathbf{y})$ in order to test $H_0: \psi \in \Psi_0$ against $H_1: \psi \in \Psi_1$.

- We use $\pi^*(\psi|\mathbf{y})$ in order to test $H_0: \psi \in \Psi_0$ against $H_1: \psi \in \Psi_1$.
- In our approach we only need:

- We use $\pi^*(\psi|\mathbf{y})$ in order to test $H_0: \psi \in \Psi_0$ against $H_1: \psi \in \Psi_1$.
- In our approach we only need:
 - a pseudo-likelihood $L^*(\psi)$

- We use $\pi^*(\psi|\mathbf{y})$ in order to test $H_0: \psi \in \Psi_0$ against $H_1: \psi \in \Psi_1$.
- In our approach we only need:
 - a pseudo-likelihood $L^*(\psi)$
 - priors $\pi_k(\psi)$ for $\psi \in \Psi_k$, k = 0, 1

• We use $\pi^*(\psi|\mathbf{y})$ in order to test $H_0: \psi \in \Psi_0$ against $H_1: \psi \in \Psi_1$.

- In our approach we only need:
 - a pseudo-likelihood $L^*(\psi)$
 - priors $\pi_k(\psi)$ for $\psi \in \Psi_k$, k = 0, 1
- We then define the Pseudo-Bayes Factor:

$$BF^* = \frac{\int_{\Psi_0} L^*(\psi) \pi_0(\psi) \, d\psi}{\int_{\Psi_1} L^*(\psi) \pi_1(\psi) \, d\psi} = \frac{\int_{\Psi_0} \pi_0^*(\psi|\boldsymbol{y}) \, d\psi}{\int_{\Psi_1} \pi_1^*(\psi|\boldsymbol{y}) \, d\psi},$$

which needs only 1 dimensional integrations over Ψ_k .

• The null model H_0 is favored when $BF^* > 1$ o (BF > 1).

- The null model H_0 is favored when $BF^* > 1$ o (BF > 1).
- To evaluate the behavior of *BF*^{*} we compare it versus *BF* in terms of the corresponding the Frequentist Risks, *R*^{*}(ψ, λ) and *R*(ψ, λ), where

$$\begin{array}{lll} R^*(\psi,\lambda) &=& \mathsf{Pr}(BF^*(\boldsymbol{y}) < 1|H_0) + \mathsf{Pr}(BF^*(\boldsymbol{y}) > 1|H_1) \\ R(\psi,\lambda) &=& \mathsf{Pr}(BF(\boldsymbol{y}) < 1|H_0) + \mathsf{Pr}(BF(\boldsymbol{y}) > 1|H_1) \end{array}$$

- The null model H_0 is favored when $BF^* > 1$ o (BF > 1).
- To evaluate the behavior of *BF*^{*} we compare it versus *BF* in terms of the corresponding the Frequentist Risks, *R*^{*}(ψ, λ) and *R*(ψ, λ), where

$$\begin{array}{lll} R^*(\psi,\lambda) &=& \mathsf{Pr}(BF^*(\boldsymbol{y}) < 1|H_0) + \mathsf{Pr}(BF^*(\boldsymbol{y}) > 1|H_1) \\ R(\psi,\lambda) &=& \mathsf{Pr}(BF(\boldsymbol{y}) < 1|H_0) + \mathsf{Pr}(BF(\boldsymbol{y}) > 1|H_1) \end{array}$$

If R^{*}(ψ, λ) < R(ψ, λ) then, at point (ψ, λ), BF^{*} outperforms BF.

- The null model H_0 is favored when $BF^* > 1$ o (BF > 1).
- To evaluate the behavior of *BF*^{*} we compare it versus *BF* in terms of the corresponding the Frequentist Risks, *R*^{*}(ψ, λ) and *R*(ψ, λ), where

$$\begin{array}{lll} R^*(\psi,\lambda) &=& \mathsf{Pr}(BF^*(\boldsymbol{y}) < 1|H_0) + \mathsf{Pr}(BF^*(\boldsymbol{y}) > 1|H_1) \\ R(\psi,\lambda) &=& \mathsf{Pr}(BF(\boldsymbol{y}) < 1|H_0) + \mathsf{Pr}(BF(\boldsymbol{y}) > 1|H_1) \end{array}$$

- If $R^*(\psi, \lambda) < R(\psi, \lambda)$ then, at point (ψ, λ) , BF^* outperforms BF.
- In the next examples we assume a favorable scenario for *BF*: $\pi_k(\lambda|\psi) = \pi(\lambda)$ for k = 0, 1, with $\pi(\lambda)$ concentrated on the true values.
- The null model H_0 is favored when $BF^* > 1$ o (BF > 1).
- To evaluate the behavior of *BF*^{*} we compare it versus *BF* in terms of the corresponding the Frequentist Risks, *R*^{*}(ψ, λ) and *R*(ψ, λ), where

$$\begin{array}{lll} R^*(\psi,\lambda) &=& \mathsf{Pr}(BF^*(\boldsymbol{y}) < 1|H_0) + \mathsf{Pr}(BF^*(\boldsymbol{y}) > 1|H_1) \\ R(\psi,\lambda) &=& \mathsf{Pr}(BF(\boldsymbol{y}) < 1|H_0) + \mathsf{Pr}(BF(\boldsymbol{y}) > 1|H_1) \end{array}$$

- If $R^*(\psi, \lambda) < R(\psi, \lambda)$ then, at point (ψ, λ) , BF^* outperforms BF.
- In the next examples we assume a favorable scenario for *BF*: $\pi_k(\lambda|\psi) = \pi(\lambda)$ for k = 0, 1, with $\pi(\lambda)$ concentrated on the true values.
- Both R^{*}(ψ, λ) and R(ψ, λ) are approximated by Monte Carlo simulations.

• We discuss two examples:

- We discuss two examples:
 - stress-strength model;

- We discuss two examples:
 - stress-strength model;
 - Iogistic regression.

- We discuss two examples:
 - stress-strength model;
 - Iogistic regression.

• We mainly focus on the Modified Profile Likelihood (Severini, 2000)

$$L_{mp}(\psi) = L_p(\psi) \frac{|\dot{j}_{\lambda\lambda}(\psi, \hat{\lambda}_{\psi})|^{1/2}}{|I(\psi, \hat{\lambda}_{\psi}; \hat{\theta})|} ,$$

where $L_{\rho}(\psi) = L(\psi, \hat{\lambda}_{\psi})$, $\hat{\theta}$ is the MLE for θ , $\hat{\lambda}_{\psi}$ is the conditional MLE of λ and

$$I(\psi, \lambda; \theta_0) = E_{\theta_0}(\ell_{\lambda}(\psi, \lambda)\ell_{\lambda}(\psi_0, \lambda_0)^{\mathsf{T}}),$$

with $\theta_0 = (\psi_0, \lambda_0)$ and $\ell_{\lambda}(\psi, \lambda) = \partial \ell(\psi, \lambda) / \partial \lambda$.

Example 1. Stress-strength model (Kotz et al., 2003)

Let X ~ Exp(α) and Y ~ Exp(β) be random variables. Interest is on

$$\psi = \Pr(X < Y) = \alpha/(\alpha + \beta)$$

with $\lambda = \alpha$.

$$\psi = \Pr(X < Y) = \alpha/(\alpha + \beta)$$

with $\lambda = \alpha$.

Given random samples of size *n* and *m* from from X and Y respectively, we test H₀ : ψ < 1/2 against H₁ : ψ > 1/2, ∀λ > 0 assuming the following priors

$$\psi = \Pr(X < Y) = \alpha/(\alpha + \beta)$$

with $\lambda = \alpha$.

• Given random samples of size *n* and *m* from from *X* and *Y* respectively, we test $H_0: \psi < 1/2$ against $H_1: \psi > 1/2, \forall \lambda > 0$ assuming the following priors

•
$$\pi_0(\psi) = U(0, 1/2)$$

$$\psi = \Pr(X < Y) = \alpha/(\alpha + \beta)$$

with $\lambda = \alpha$.

Given random samples of size *n* and *m* from from X and Y respectively, we test H₀ : ψ < 1/2 against H₁ : ψ > 1/2, ∀λ > 0 assuming the following priors

•
$$\pi_1(\psi) = U(1/2, 1)$$

$$\psi = \Pr(X < Y) = \alpha/(\alpha + \beta)$$

with $\lambda = \alpha$.

• Given random samples of size *n* and *m* from from *X* and *Y* respectively, we test $H_0: \psi < 1/2$ against $H_1: \psi > 1/2, \forall \lambda > 0$ assuming the following priors

•
$$\pi_1(\psi) = U(1/2, 1)$$

•
$$\pi(\lambda) = Gamma(1, 1)$$

$$\psi = \Pr(X < Y) = \alpha/(\alpha + \beta)$$

with $\lambda = \alpha$.

Given random samples of size *n* and *m* from from X and Y respectively, we test H₀ : ψ < 1/2 against H₁ : ψ > 1/2, ∀λ > 0 assuming the following priors

•
$$\pi_0(\psi) = U(0, 1/2)$$

• $\pi_1(\psi) = U(1/2, 1)$

• $\pi(\lambda) = Gamma(1, 1)$

• The MPL is
$$L_{mp}(\psi) = -(n+m-2)\log\left(s_x + s_y \frac{1-\psi}{\psi}\right) + m\log\frac{1-\psi}{\psi}$$
,
where $s_x = \sum x_i$ and $s_y = \sum y_i$.

$$\psi = \Pr(X < Y) = \alpha/(\alpha + \beta)$$

with $\lambda = \alpha$.

Given random samples of size *n* and *m* from from X and Y respectively, we test H₀ : ψ < 1/2 against H₁ : ψ > 1/2, ∀λ > 0 assuming the following priors

•
$$\pi_1(\psi) = U(1/2,1)$$

- $\pi(\lambda) = Gamma(1, 1)$
- The MPL is $L_{mp}(\psi) = -(n+m-2)\log\left(s_x + s_y \frac{1-\psi}{\psi}\right) + m\log\frac{1-\psi}{\psi}$, where $s_x = \sum x_i$ and $s_y = \sum y_i$.
- Both *BF** and *BF* are evaluated numerically.

R

$$R^*$$
 $\lambda = 0.5$
 $\lambda = 2.5$
 $\lambda = 0.5$
 $\lambda = 2.5$
 $\psi = 0.4$
 10%
 33%
 21%
 23%

 $\psi = 0.6$
 29%
 22%
 21%
 26%

 Table: Values of risks (with $n = m = 5$).

For some (ψ, λ), R < R* just because prior π(λ) = Gamma(1, 1) gives high probability to the "true" values of λ.

R

$$R^*$$
 $\lambda = 0.5$
 $\lambda = 2.5$
 $\lambda = 0.5$
 $\lambda = 2.5$
 $\psi = 0.4$
 10%
 33 %
 21%
 23 %

 $\psi = 0.6$
 29%
 22 %
 21%
 26 %

 Table: Values of risks (with $n = m = 5$).

- For some (ψ, λ), R < R* just because prior π(λ) = Gamma(1, 1) gives high probability to the "true" values of λ.
- However, R is much more sensitive to λ than R^* .

Example 1. Stress-strength model (Kotz et al., 2003)

BF Risk - BFP Risk, n=2

BF Risk - BFP Risk, n=5

Figure: Values of $R(\psi, \lambda) - R^*(\psi, \lambda)$ for n = m = 2, 5, 10, 20.

Cabras et al. (CAG-PAD)

$$L(\beta) = \exp\left\{\sum_{i=1}^{n} y_i \sum_{j=1}^{p} \beta_j x_{ij} - \sum_{i=1}^{n} \log\left(1 + e^{\sum_{j=1}^{p} \beta_j x_{ij}}\right)\right\}$$

$$L(\beta) = \exp\left\{\sum_{i=1}^{n} y_i \sum_{j=1}^{p} \beta_j x_{ij} - \sum_{i=1}^{n} \log\left(1 + e^{\sum_{j=1}^{p} \beta_j x_{ij}}\right)\right\}$$

with $\beta = (\beta_1, \dots, \beta_p)$ unknown regression coefficient and x_{ij} fixed constants, $i = 1, \dots, n$ and $j = 1, \dots, p$.

Assume ψ = β_p and let λ = (β₁,..., β_{p-1}) be the nuisance parameter.

$$L(\beta) = \exp\left\{\sum_{i=1}^{n} y_i \sum_{j=1}^{p} \beta_j x_{ij} - \sum_{i=1}^{n} \log\left(1 + e^{\sum_{j=1}^{p} \beta_j x_{ij}}\right)\right\}$$

- Assume ψ = β_p and let λ = (β₁,..., β_{p-1}) be the nuisance parameter.
- Interest on testing H₀: ψ > 0 against H₁: ψ < 0, ∀λ assuming the following priors:

$$L(\beta) = \exp\left\{\sum_{i=1}^{n} y_i \sum_{j=1}^{p} \beta_j x_{ij} - \sum_{i=1}^{n} \log\left(1 + e^{\sum_{j=1}^{p} \beta_j x_{ij}}\right)\right\}$$

- Assume ψ = β_p and let λ = (β₁,..., β_{p-1}) be the nuisance parameter.
- Interest on testing H₀: ψ > 0 against H₁: ψ < 0, ∀λ assuming the following priors:

•
$$\pi_0(\psi) = \text{TruncNormal}(0, 1, \underline{\psi} = 0, \overline{\psi} = \infty);$$

$$L(\beta) = \exp\left\{\sum_{i=1}^{n} y_i \sum_{j=1}^{p} \beta_j x_{ij} - \sum_{i=1}^{n} \log\left(1 + e^{\sum_{j=1}^{p} \beta_j x_{ij}}\right)\right\}$$

- Assume ψ = β_p and let λ = (β₁,..., β_{p-1}) be the nuisance parameter.
- Interest on testing H₀: ψ > 0 against H₁: ψ < 0, ∀λ assuming the following priors:
 - $\pi_0(\psi) = \text{TruncNormal}(0, 1, \psi = 0, \overline{\psi} = \infty);$
 - $\pi_1(\psi) = \text{TruncNormal}(0, 1, \underline{\psi} = -\infty, \overline{\psi} = 0);$

$$L(\beta) = \exp\left\{\sum_{i=1}^{n} y_i \sum_{j=1}^{p} \beta_j x_{ij} - \sum_{i=1}^{n} \log\left(1 + e^{\sum_{j=1}^{p} \beta_j x_{ij}}\right)\right\}$$

- Assume ψ = β_p and let λ = (β₁,..., β_{p-1}) be the nuisance parameter.
- Interest on testing H₀: ψ > 0 against H₁: ψ < 0, ∀λ assuming the following priors:
 - $\pi_0(\psi) = \text{TruncNormal}(0, 1, \underline{\psi} = 0, \overline{\psi} = \infty);$
 - $\pi_1(\psi) = TruncNormal(0, 1, \psi = -\infty, \overline{\psi} = 0);$
 - $\pi(\lambda) = \pi(\beta_1) \cdot \ldots \cdot \pi(\beta_{p-1}), \quad \pi(\beta_j) = N(0, 10^{12}), \quad j = 1, 2, \ldots, p-1.$

 For illustration, we analyze the presence/absence of calcium oxalate crystals in urine samples Y together with the values of p = 6 quantitative covariates on n = 77 individuals.

- For illustration, we analyze the presence/absence of calcium oxalate crystals in urine samples Y together with the values of p = 6 quantitative covariates on n = 77 individuals.
- Assume that ψ is the coefficient of the effect of the variable urea concentration.

- For illustration, we analyze the presence/absence of calcium oxalate crystals in urine samples Y together with the values of p = 6 quantitative covariates on n = 77 individuals.
- Assume that ψ is the coefficient of the effect of the variable urea concentration.
- The weights of evidence (Good, 1985), W = log BF and W* = log BF*, are

W and W^*

<i>BF</i> based on $L(\beta)$	4.2	
BF^* based on $L_{mp}(\psi)$	4.2	

According to the Jeffreys' scale, the evidence is substantial in favor of positive effect of urea concentration.

Example 2. Logistic Regression - *p* **large.**

In order to assess the behaviour of BF^* , with respect to large p, we evaluate the corresponding W^* in 1000 data sets with p = 20 coefficients

Example 2. Logistic Regression - *p* **large.**

In order to assess the behaviour of BF^* , with respect to large *p*, we evaluate the corresponding W^* in 1000 data sets with p = 20 coefficients, with 5 positive, 5 negative and 10 zero coefficients.

Figure: Empirical mean W^* for the sign of 20 coefficients. (Horizontal dashed lines are the levels of strong evidence).

Cabras et al. (CAG-PAD)

Pseudo-Bayes Factors

• The use of pseudo-Bayes factor *BF** may be of potential interest in situations with many nuisance parameters having a weak physical meaning.

- The use of pseudo-Bayes factor *BF** may be of potential interest in situations with many nuisance parameters having a weak physical meaning.
- For the analyzed examples we obtained that:

- The use of pseudo-Bayes factor *BF** may be of potential interest in situations with many nuisance parameters having a weak physical meaning.
- For the analyzed examples we obtained that:
 - in general, $R^*(\psi, \lambda) < R(\psi, \lambda)$

- The use of pseudo-Bayes factor *BF** may be of potential interest in situations with many nuisance parameters having a weak physical meaning.
- For the analyzed examples we obtained that:
 - in general, $R^*(\psi, \lambda) < R(\psi, \lambda)$
 - R^{*} is almost constant with respect to λ

- The use of pseudo-Bayes factor *BF** may be of potential interest in situations with many nuisance parameters having a weak physical meaning.
- For the analyzed examples we obtained that:
 - in general, $R^*(\psi, \lambda) < R(\psi, \lambda)$
 - R* is almost constant with respect to λ
- Main advantages of BF*:

- The use of pseudo-Bayes factor *BF** may be of potential interest in situations with many nuisance parameters having a weak physical meaning.
- For the analyzed examples we obtained that:
 - in general, $R^*(\psi, \lambda) < R(\psi, \lambda)$
 - R* is almost constant with respect to λ
- Main advantages of BF*:
 - avoid elicitation of priors on nuisance parameters

- The use of pseudo-Bayes factor BF* may be of potential interest in situations with many nuisance parameters having a weak physical meaning.
- For the analyzed examples we obtained that:
 - in general, $R^*(\psi, \lambda) < R(\psi, \lambda)$
 - R* is almost constant with respect to λ
- Main advantages of BF*:
 - avoid elicitation of priors on nuisance parameters
 - no multidimensional integrations.

- The use of pseudo-Bayes factor BF* may be of potential interest in situations with many nuisance parameters having a weak physical meaning.
- For the analyzed examples we obtained that:
 - in general, $R^*(\psi, \lambda) < R(\psi, \lambda)$
 - R^* is almost constant with respect to λ
- Main advantages of BF*:
 - avoid elicitation of priors on nuisance parameters
 - no multidimensional integrations.
- BF* may be also obtained for semi-parametric models or complex models, when the L(ψ, λ) is difficult or even impossible to compute,

- The use of pseudo-Bayes factor BF* may be of potential interest in situations with many nuisance parameters having a weak physical meaning.
- For the analyzed examples we obtained that:
 - in general, $R^*(\psi, \lambda) < R(\psi, \lambda)$
 - R^* is almost constant with respect to λ
- Main advantages of BF*:
 - avoid elicitation of priors on nuisance parameters
 - no multidimensional integrations.
- BF* may be also obtained for semi-parametric models or complex models, when the L(ψ, λ) is difficult or even impossible to compute,

- The use of pseudo-Bayes factor *BF** may be of potential interest in situations with many nuisance parameters having a weak physical meaning.
- For the analyzed examples we obtained that:
 - in general, $R^*(\psi, \lambda) < R(\psi, \lambda)$
 - R^* is almost constant with respect to λ
- Main advantages of BF*:
 - avoid elicitation of priors on nuisance parameters
 - no multidimensional integrations.
- *BF** may be also obtained for semi-parametric models or complex models, when the L(ψ, λ) is difficult or even impossible to compute, in fact, it is possible to resort to quasi-profile likelihoods (Ventura *et al.*, 2010), empirical likelihoods and composite likelihoods (Pauli *et al.*, 2010).
- BRAZZALE, A.R., DAVISON, A.C. and REID, N. (2007): Applied Asymptotics. Cambridge University Press, Cambridge.
- DAVISON, A.C. and HINKLEY, D.V. (1997): Bootstrap Methods and Their Application. Cambridge University Press, Cambridge.
- GOOD, I.J. (1985): Weight of evidence: A brief survey. *Bayesian Statistics 2, 249–269*.
- KASS, R.E. and RAFTERY, A.E. (1995): Bayes factors. JASA 90 (430), 773-795.
- KOTZ, S., LUMELSKII, Y. and PENSKY, M. (2003): The Stress-Strength Model and its Generalizations. World Scientific, Singapore.
- PACE, L. and SALVAN, A. (1997): *Principles of Statistical Inference from a Neo-Fisherian Perspective.* World Scientific, Singapore.
- PAULI, F., VENTURA, L., and RACUGNO, W. (2010): Bayesian composite marginal likelihoods, Stat. Sinica, to appear.
- SEVERINI, T.A. (2000): Likelihood Methods in Statistics. Oxford University Press.
- VENTURA, L., CABRAS, S. and RACUGNO, W. (2009): Prior distributions from pseudo-likelihoods in the presence of nuisance parameters, JASA 104 (486), 768–777.
- VENTURA, L., CABRAS, S. and RACUGNO, W. (2010): Default prior distributions from quasi- and quasi-profile likelihoods. *JSPI* to appear.