
Pseudo-Bayes Factors

Stefano Cabras1, Walter Racugno1 and Laura Ventura2

1 Department of Mathematics, University of Cagliari
2 Department of Statistics, University of Padova

Compstat, 2010

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 1 / 15



Aims

Consider a sampling model p(y ; θ), with θ = (ψ, λ) ∈ Θ ⊆ Rp,
where

ψ is a scalar parameter of interest
λ is a p − 1 dimensional nuisance parameter.

We are interested in testing H0 : ψ ∈ Ψ0 against H1 : ψ ∈ Ψ1

Classical approach: use Bayes Factor (BF) based on the ratio of
integrated likelihoods. It requires

prior elicitation on λ;
calculation on a p-dimensional integral

Proposed approach: use a pseudo-BF based on a
pseudo-likelihood L∗(ψ), which is a function of ψ only.
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Classical Bayesian Hypothesis Testing (Kass, Raftery, 1995)

Test
H0 : ψ ∈ Ψ0 against H1 : ψ ∈ Ψ1,

with the Bayes Factor

BF =

∫
Ψ0

∫
Λ L(ψ, λ)π0(λ|ψ)π0(ψ) dλdψ∫

Ψ1

∫
Λ L(ψ, λ)π1(λ|ψ)π1(ψ) dλdψ

,

where

L(ψ, λ) = L(ψ, λ; y) is the full likelihood based on data y ;
πk (ψ) for ψ ∈ Ψk , k = 0,1 are priors under H0 and H1 respectively;
πk (λ|ψ) for ψ ∈ Ψk are priors on the nuisance parameter given ψ;

This approach

requires elicitation of priors πk (λ|ψ)

... critical when p is large and/or λ has not physical meaning;
needs p dimensional integrations on (Ψk ,Λ).
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Pseudo likelihoods (Pace, Salvan, 1997; Severini, 2000) in Bayesian
inference (Severini, 1999; Ventura et al., 2009; 2010)

Nuisance parameters λ are eliminated using a pseudo-likelihood
L∗(ψ).

Properties of L∗(ψ) are similar to those of a genuine likelihood
function.
Examples of L∗(ψ) are the conditional, marginal, profile and the
Modified Profile likelihoods (MPL)
Using L∗(ψ) as a true likelihood, a posterior distribution of ψ can
be considered

π∗(ψ|y) ∝ L∗(ψ)π(ψ),

where π(ψ) is a suitable prior on ψ only.
Advantages in using π∗(ψ|y):

no elicitation on λ;

no multi-dimensional integration over Λ.

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 4 / 15



Pseudo likelihoods (Pace, Salvan, 1997; Severini, 2000) in Bayesian
inference (Severini, 1999; Ventura et al., 2009; 2010)

Nuisance parameters λ are eliminated using a pseudo-likelihood
L∗(ψ).
Properties of L∗(ψ) are similar to those of a genuine likelihood
function.

Examples of L∗(ψ) are the conditional, marginal, profile and the
Modified Profile likelihoods (MPL)
Using L∗(ψ) as a true likelihood, a posterior distribution of ψ can
be considered

π∗(ψ|y) ∝ L∗(ψ)π(ψ),

where π(ψ) is a suitable prior on ψ only.
Advantages in using π∗(ψ|y):

no elicitation on λ;

no multi-dimensional integration over Λ.

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 4 / 15



Pseudo likelihoods (Pace, Salvan, 1997; Severini, 2000) in Bayesian
inference (Severini, 1999; Ventura et al., 2009; 2010)

Nuisance parameters λ are eliminated using a pseudo-likelihood
L∗(ψ).
Properties of L∗(ψ) are similar to those of a genuine likelihood
function.
Examples of L∗(ψ) are the conditional, marginal, profile and the
Modified Profile likelihoods (MPL)

Using L∗(ψ) as a true likelihood, a posterior distribution of ψ can
be considered

π∗(ψ|y) ∝ L∗(ψ)π(ψ),

where π(ψ) is a suitable prior on ψ only.
Advantages in using π∗(ψ|y):

no elicitation on λ;

no multi-dimensional integration over Λ.

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 4 / 15



Pseudo likelihoods (Pace, Salvan, 1997; Severini, 2000) in Bayesian
inference (Severini, 1999; Ventura et al., 2009; 2010)

Nuisance parameters λ are eliminated using a pseudo-likelihood
L∗(ψ).
Properties of L∗(ψ) are similar to those of a genuine likelihood
function.
Examples of L∗(ψ) are the conditional, marginal, profile and the
Modified Profile likelihoods (MPL)
Using L∗(ψ) as a true likelihood, a posterior distribution of ψ can
be considered

π∗(ψ|y) ∝ L∗(ψ)π(ψ),

where π(ψ) is a suitable prior on ψ only.

Advantages in using π∗(ψ|y):

no elicitation on λ;

no multi-dimensional integration over Λ.

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 4 / 15



Pseudo likelihoods (Pace, Salvan, 1997; Severini, 2000) in Bayesian
inference (Severini, 1999; Ventura et al., 2009; 2010)

Nuisance parameters λ are eliminated using a pseudo-likelihood
L∗(ψ).
Properties of L∗(ψ) are similar to those of a genuine likelihood
function.
Examples of L∗(ψ) are the conditional, marginal, profile and the
Modified Profile likelihoods (MPL)
Using L∗(ψ) as a true likelihood, a posterior distribution of ψ can
be considered

π∗(ψ|y) ∝ L∗(ψ)π(ψ),

where π(ψ) is a suitable prior on ψ only.
Advantages in using π∗(ψ|y):

no elicitation on λ;

no multi-dimensional integration over Λ.

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 4 / 15



Pseudo likelihoods (Pace, Salvan, 1997; Severini, 2000) in Bayesian
inference (Severini, 1999; Ventura et al., 2009; 2010)

Nuisance parameters λ are eliminated using a pseudo-likelihood
L∗(ψ).
Properties of L∗(ψ) are similar to those of a genuine likelihood
function.
Examples of L∗(ψ) are the conditional, marginal, profile and the
Modified Profile likelihoods (MPL)
Using L∗(ψ) as a true likelihood, a posterior distribution of ψ can
be considered

π∗(ψ|y) ∝ L∗(ψ)π(ψ),

where π(ψ) is a suitable prior on ψ only.
Advantages in using π∗(ψ|y):

no elicitation on λ;

no multi-dimensional integration over Λ.

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 4 / 15



Pseudo likelihoods (Pace, Salvan, 1997; Severini, 2000) in Bayesian
inference (Severini, 1999; Ventura et al., 2009; 2010)

Nuisance parameters λ are eliminated using a pseudo-likelihood
L∗(ψ).
Properties of L∗(ψ) are similar to those of a genuine likelihood
function.
Examples of L∗(ψ) are the conditional, marginal, profile and the
Modified Profile likelihoods (MPL)
Using L∗(ψ) as a true likelihood, a posterior distribution of ψ can
be considered

π∗(ψ|y) ∝ L∗(ψ)π(ψ),

where π(ψ) is a suitable prior on ψ only.
Advantages in using π∗(ψ|y):

no elicitation on λ;

no multi-dimensional integration over Λ.

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 4 / 15



Pseudo likelihoods (Pace, Salvan, 1997; Severini, 2000) in Bayesian
inference (Severini, 1999; Ventura et al., 2009; 2010)

Nuisance parameters λ are eliminated using a pseudo-likelihood
L∗(ψ).
Properties of L∗(ψ) are similar to those of a genuine likelihood
function.
Examples of L∗(ψ) are the conditional, marginal, profile and the
Modified Profile likelihoods (MPL)
Using L∗(ψ) as a true likelihood, a posterior distribution of ψ can
be considered

π∗(ψ|y) ∝ L∗(ψ)π(ψ),

where π(ψ) is a suitable prior on ψ only.
Advantages in using π∗(ψ|y):

no elicitation on λ;
no multi-dimensional integration over Λ.

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 4 / 15



Pseudo-Bayes Factors BF ∗

We use π∗(ψ|y) in order to test H0 : ψ ∈ Ψ0 against H1 : ψ ∈ Ψ1.

In our approach we only need:

a pseudo-likelihood L∗(ψ)
priors πk (ψ) for ψ ∈ Ψk , k = 0,1

We then define the Pseudo-Bayes Factor:

BF ∗ =

∫
Ψ0

L∗(ψ)π0(ψ) dψ∫
Ψ1

L∗(ψ)π1(ψ) dψ
=

∫
Ψ0
π∗0(ψ|y) dψ∫

Ψ1
π∗1(ψ|y) dψ

,

which needs only 1 dimensional integrations over Ψk .

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 5 / 15



Pseudo-Bayes Factors BF ∗

We use π∗(ψ|y) in order to test H0 : ψ ∈ Ψ0 against H1 : ψ ∈ Ψ1.

In our approach we only need:

a pseudo-likelihood L∗(ψ)
priors πk (ψ) for ψ ∈ Ψk , k = 0,1

We then define the Pseudo-Bayes Factor:

BF ∗ =

∫
Ψ0

L∗(ψ)π0(ψ) dψ∫
Ψ1

L∗(ψ)π1(ψ) dψ
=

∫
Ψ0
π∗0(ψ|y) dψ∫

Ψ1
π∗1(ψ|y) dψ

,

which needs only 1 dimensional integrations over Ψk .

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 5 / 15



Pseudo-Bayes Factors BF ∗

We use π∗(ψ|y) in order to test H0 : ψ ∈ Ψ0 against H1 : ψ ∈ Ψ1.

In our approach we only need:
a pseudo-likelihood L∗(ψ)

priors πk (ψ) for ψ ∈ Ψk , k = 0,1

We then define the Pseudo-Bayes Factor:

BF ∗ =

∫
Ψ0

L∗(ψ)π0(ψ) dψ∫
Ψ1

L∗(ψ)π1(ψ) dψ
=

∫
Ψ0
π∗0(ψ|y) dψ∫

Ψ1
π∗1(ψ|y) dψ

,

which needs only 1 dimensional integrations over Ψk .

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 5 / 15



Pseudo-Bayes Factors BF ∗

We use π∗(ψ|y) in order to test H0 : ψ ∈ Ψ0 against H1 : ψ ∈ Ψ1.

In our approach we only need:
a pseudo-likelihood L∗(ψ)
priors πk (ψ) for ψ ∈ Ψk , k = 0,1

We then define the Pseudo-Bayes Factor:

BF ∗ =

∫
Ψ0

L∗(ψ)π0(ψ) dψ∫
Ψ1

L∗(ψ)π1(ψ) dψ
=

∫
Ψ0
π∗0(ψ|y) dψ∫

Ψ1
π∗1(ψ|y) dψ

,

which needs only 1 dimensional integrations over Ψk .

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 5 / 15



Pseudo-Bayes Factors BF ∗

We use π∗(ψ|y) in order to test H0 : ψ ∈ Ψ0 against H1 : ψ ∈ Ψ1.

In our approach we only need:
a pseudo-likelihood L∗(ψ)
priors πk (ψ) for ψ ∈ Ψk , k = 0,1

We then define the Pseudo-Bayes Factor:

BF ∗ =

∫
Ψ0

L∗(ψ)π0(ψ) dψ∫
Ψ1

L∗(ψ)π1(ψ) dψ
=

∫
Ψ0
π∗0(ψ|y) dψ∫

Ψ1
π∗1(ψ|y) dψ

,

which needs only 1 dimensional integrations over Ψk .

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 5 / 15



Comparison of BF ∗ versus BF

The null model H0 is favored when BF ∗ > 1 o (BF > 1).

To evaluate the behavior of BF ∗ we compare it versus BF in terms
of the corresponding the Frequentist Risks, R∗(ψ, λ) and R(ψ, λ),
where

R∗(ψ, λ) = Pr(BF ∗(y) < 1|H0) + Pr(BF ∗(y) > 1|H1)

R(ψ, λ) = Pr(BF (y) < 1|H0) + Pr(BF (y) > 1|H1)

If R∗(ψ, λ) < R(ψ, λ) then, at point (ψ, λ), BF ∗ outperforms BF .
In the next examples we assume a favorable scenario for BF :
πk (λ|ψ) = π(λ) for k = 0,1, with π(λ) concentrated on the true
values.
Both R∗(ψ, λ) and R(ψ, λ) are approximated by Monte Carlo
simulations.
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Examples

We discuss two examples:

1 stress-strength model;
2 logistic regression.

We mainly focus on the Modified Profile Likelihood (Severini, 2000)

Lmp(ψ) = Lp(ψ)
|jλλ(ψ, λ̂ψ)|1/2

|I(ψ, λ̂ψ; θ̂)|
,

where Lp(ψ) = L(ψ, λ̂ψ), θ̂ is the MLE for θ, λ̂ψ is the conditional MLE of
λ and

I(ψ,λ;θ0) = Eθ0 (`λ(ψ,λ)`λ(ψ0,λ0)T ) ,

with θ0 = (ψ0,λ0) and `λ(ψ,λ) = ∂`(ψ,λ)/∂λ.
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Example 1. Stress-strength model (Kotz et al., 2003)

Let X ∼ Exp(α) and Y ∼ Exp(β) be random variables. Interest is
on

ψ = Pr(X < Y ) = α/(α + β)

with λ = α.

Given random samples of size n and m from from X and Y
respectively, we test H0 : ψ < 1/2 against H1 : ψ > 1/2, ∀λ > 0
assuming the following priors

π0(ψ) = U(0,1/2)
π1(ψ) = U(1/2,1)
π(λ) = Gamma(1,1)

The MPL is Lmp(ψ) = −(n + m − 2) log
(

sx + sy
1−ψ
ψ

)
+ m log 1−ψ

ψ ,

where sx =
∑

xi and sy =
∑

yi .
Both BF ∗ and BF are evaluated numerically.
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Example 1. Stress-strength model (Kotz et al., 2003)

R R∗

λ = 0.5 λ = 2.5 λ = 0.5 λ = 2.5
ψ = 0.4 10% 33 % 21% 23 %
ψ = 0.6 29% 22 % 21% 26 %

Table: Values of risks (with n = m = 5).

For some (ψ, λ), R < R∗ just because prior π(λ) = Gamma(1,1)
gives high probability to the “true” values of λ.

However, R is much more sensitive to λ than R∗.
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Example 1. Stress-strength model (Kotz et al., 2003)
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Figure: Values of R(ψ, λ)− R∗(ψ, λ) for n = m = 2,5,10,20.
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Example 2. Logistic Regression

The logistic regression model has likelihood function

L(β) = exp


n∑

i=1

yi

p∑
j=1

βjxij −
n∑

i=1

log
(

1 + e
∑p

j=1 βj xij
)

with β = (β1, . . . , βp) unknown regression coefficient and xij fixed
constants, i = 1, . . . ,n and j = 1, . . . ,p.

Assume ψ = βp and let λ = (β1, . . . , βp−1) be the nuisance
parameter.
Interest on testing H0 : ψ > 0 against H1 : ψ < 0, ∀λ assuming the
following priors:

π0(ψ) = TruncNormal(0,1, ψ = 0, ψ =∞);
π1(ψ) = TruncNormal(0,1, ψ = −∞, ψ = 0);
π(λ) = π(β1) · . . . · π(βp−1), π(βj ) = N(0,1012), j = 1,2, . . . ,p − 1.
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Example 2. Logistic Regression - Urine data (Davison, Hinkley, 1997).

For illustration, we analyze the presence/absence of calcium
oxalate crystals in urine samples Y together with the values of
p = 6 quantitative covariates on n = 77 individuals.

Assume that ψ is the coefficient of the effect of the variable urea
concentration.
The weights of evidence (Good, 1985), W = log BF and
W ∗ = log BF ∗, are

W and W ∗

BF based on L(β) 4.2
BF ∗ based on Lmp(ψ) 4.2

According to the Jeffreys’ scale, the evidence is substantial in favor of
positive effect of urea concentration.
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Example 2. Logistic Regression - p large.

In order to assess the behaviour of BF ∗, with respect to large p, we
evaluate the corresponding W ∗ in 1000 data sets with p = 20
coefficients

, with 5 positive, 5 negative and 10 zero coefficients.
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Weight of Evidence based on 
 Modified Profile Likelihood
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Figure: Empirical mean W ∗ for the sign of 20 coefficients.
(Horizontal dashed lines are the levels of strong evidence).
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Conclusions

The use of pseudo-Bayes factor BF ∗ may be of potential interest
in situations with many nuisance parameters having a weak
physical meaning.

For the analyzed examples we obtained that:

in general, R∗(ψ, λ) < R(ψ, λ)
R∗ is almost constant with respect to λ

Main advantages of BF ∗:

avoid elicitation of priors on nuisance parameters
no multidimensional integrations.

BF ∗ may be also obtained for semi-parametric models or complex
models, when the L(ψ, λ) is difficult or even impossible to
compute,

in fact, it is possible to resort to quasi-profile likelihoods
(Ventura et al., 2010), empirical likelihoods and composite
likelihoods (Pauli et al., 2010).

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 14 / 15



Conclusions

The use of pseudo-Bayes factor BF ∗ may be of potential interest
in situations with many nuisance parameters having a weak
physical meaning.
For the analyzed examples we obtained that:

in general, R∗(ψ, λ) < R(ψ, λ)
R∗ is almost constant with respect to λ

Main advantages of BF ∗:

avoid elicitation of priors on nuisance parameters
no multidimensional integrations.

BF ∗ may be also obtained for semi-parametric models or complex
models, when the L(ψ, λ) is difficult or even impossible to
compute,

in fact, it is possible to resort to quasi-profile likelihoods
(Ventura et al., 2010), empirical likelihoods and composite
likelihoods (Pauli et al., 2010).

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 14 / 15



Conclusions

The use of pseudo-Bayes factor BF ∗ may be of potential interest
in situations with many nuisance parameters having a weak
physical meaning.
For the analyzed examples we obtained that:

in general, R∗(ψ, λ) < R(ψ, λ)

R∗ is almost constant with respect to λ
Main advantages of BF ∗:

avoid elicitation of priors on nuisance parameters
no multidimensional integrations.

BF ∗ may be also obtained for semi-parametric models or complex
models, when the L(ψ, λ) is difficult or even impossible to
compute,

in fact, it is possible to resort to quasi-profile likelihoods
(Ventura et al., 2010), empirical likelihoods and composite
likelihoods (Pauli et al., 2010).

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 14 / 15



Conclusions

The use of pseudo-Bayes factor BF ∗ may be of potential interest
in situations with many nuisance parameters having a weak
physical meaning.
For the analyzed examples we obtained that:

in general, R∗(ψ, λ) < R(ψ, λ)
R∗ is almost constant with respect to λ

Main advantages of BF ∗:

avoid elicitation of priors on nuisance parameters
no multidimensional integrations.

BF ∗ may be also obtained for semi-parametric models or complex
models, when the L(ψ, λ) is difficult or even impossible to
compute,

in fact, it is possible to resort to quasi-profile likelihoods
(Ventura et al., 2010), empirical likelihoods and composite
likelihoods (Pauli et al., 2010).

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 14 / 15



Conclusions

The use of pseudo-Bayes factor BF ∗ may be of potential interest
in situations with many nuisance parameters having a weak
physical meaning.
For the analyzed examples we obtained that:

in general, R∗(ψ, λ) < R(ψ, λ)
R∗ is almost constant with respect to λ

Main advantages of BF ∗:

avoid elicitation of priors on nuisance parameters
no multidimensional integrations.

BF ∗ may be also obtained for semi-parametric models or complex
models, when the L(ψ, λ) is difficult or even impossible to
compute,

in fact, it is possible to resort to quasi-profile likelihoods
(Ventura et al., 2010), empirical likelihoods and composite
likelihoods (Pauli et al., 2010).

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 14 / 15



Conclusions

The use of pseudo-Bayes factor BF ∗ may be of potential interest
in situations with many nuisance parameters having a weak
physical meaning.
For the analyzed examples we obtained that:

in general, R∗(ψ, λ) < R(ψ, λ)
R∗ is almost constant with respect to λ

Main advantages of BF ∗:
avoid elicitation of priors on nuisance parameters

no multidimensional integrations.

BF ∗ may be also obtained for semi-parametric models or complex
models, when the L(ψ, λ) is difficult or even impossible to
compute,

in fact, it is possible to resort to quasi-profile likelihoods
(Ventura et al., 2010), empirical likelihoods and composite
likelihoods (Pauli et al., 2010).

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 14 / 15



Conclusions

The use of pseudo-Bayes factor BF ∗ may be of potential interest
in situations with many nuisance parameters having a weak
physical meaning.
For the analyzed examples we obtained that:

in general, R∗(ψ, λ) < R(ψ, λ)
R∗ is almost constant with respect to λ

Main advantages of BF ∗:
avoid elicitation of priors on nuisance parameters
no multidimensional integrations.

BF ∗ may be also obtained for semi-parametric models or complex
models, when the L(ψ, λ) is difficult or even impossible to
compute,

in fact, it is possible to resort to quasi-profile likelihoods
(Ventura et al., 2010), empirical likelihoods and composite
likelihoods (Pauli et al., 2010).

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 14 / 15



Conclusions

The use of pseudo-Bayes factor BF ∗ may be of potential interest
in situations with many nuisance parameters having a weak
physical meaning.
For the analyzed examples we obtained that:

in general, R∗(ψ, λ) < R(ψ, λ)
R∗ is almost constant with respect to λ

Main advantages of BF ∗:
avoid elicitation of priors on nuisance parameters
no multidimensional integrations.

BF ∗ may be also obtained for semi-parametric models or complex
models, when the L(ψ, λ) is difficult or even impossible to
compute,

in fact, it is possible to resort to quasi-profile likelihoods
(Ventura et al., 2010), empirical likelihoods and composite
likelihoods (Pauli et al., 2010).

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 14 / 15



Conclusions

The use of pseudo-Bayes factor BF ∗ may be of potential interest
in situations with many nuisance parameters having a weak
physical meaning.
For the analyzed examples we obtained that:

in general, R∗(ψ, λ) < R(ψ, λ)
R∗ is almost constant with respect to λ

Main advantages of BF ∗:
avoid elicitation of priors on nuisance parameters
no multidimensional integrations.

BF ∗ may be also obtained for semi-parametric models or complex
models, when the L(ψ, λ) is difficult or even impossible to
compute,

in fact, it is possible to resort to quasi-profile likelihoods
(Ventura et al., 2010), empirical likelihoods and composite
likelihoods (Pauli et al., 2010).

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 14 / 15



Conclusions

The use of pseudo-Bayes factor BF ∗ may be of potential interest
in situations with many nuisance parameters having a weak
physical meaning.
For the analyzed examples we obtained that:

in general, R∗(ψ, λ) < R(ψ, λ)
R∗ is almost constant with respect to λ

Main advantages of BF ∗:
avoid elicitation of priors on nuisance parameters
no multidimensional integrations.

BF ∗ may be also obtained for semi-parametric models or complex
models, when the L(ψ, λ) is difficult or even impossible to
compute, in fact, it is possible to resort to quasi-profile likelihoods
(Ventura et al., 2010), empirical likelihoods and composite
likelihoods (Pauli et al., 2010).

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 14 / 15



Some references

BRAZZALE, A.R., DAVISON, A.C. and REID, N. (2007): Applied Asymptotics. Cambridge
University Press, Cambridge.

DAVISON, A.C. and HINKLEY, D.V. (1997): Bootstrap Methods and Their Application.
Cambridge University Press, Cambridge.

GOOD, I.J. (1985): Weight of evidence: A brief survey. Bayesian Statistics 2, 249–269.

KASS, R.E. and RAFTERY, A.E. (1995): Bayes factors. JASA 90 (430), 773–795.

KOTZ, S., LUMELSKII, Y. and PENSKY, M. (2003): The Stress-Strength Model and its
Generalizations. World Scientific, Singapore.

PACE, L. and SALVAN, A. (1997): Principles of Statistical Inference from a Neo-Fisherian
Perspective. World Scientific, Singapore.

PAULI, F., VENTURA, L., and RACUGNO, W. (2010): Bayesian composite marginal
likelihoods, Stat. Sinica, to appear.

SEVERINI, T.A. (2000): Likelihood Methods in Statistics. Oxford University Press.

VENTURA, L., CABRAS, S. and RACUGNO, W. (2009): Prior distributions from
pseudo-likelihoods in the presence of nuisance parameters, JASA 104 (486), 768–777.

VENTURA, L., CABRAS, S. and RACUGNO, W. (2010): Default prior distributions from
quasi- and quasi-profile likelihoods. JSPI to appear.

Cabras et al. (CAG-PAD) Pseudo-Bayes Factors Paris, 2010 15 / 15


