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Natural signals and images

Natural signals usually
occupy only a small fraction
within the signal space.

Example: natural images lie
on a submanifold within the
high-dimensional image
space.

Knowledge about this
submanifold is helpful in
many respects.
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Example: image reconstruction

90% of the pixels are missing.

Image dimension 600x400 = 240.000

Reconstruction by projection
onto the submanifold.

image 

Submanifold dim. ≈ 10.000
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Submanifold representation

wi 

Submanifold representation by
Vector Quantization.

Each point on the submanifold
is represented by its closest
reference vector wi ∈ RN .

The wi can be learned by
k-means, Neural Gas or many
others.

Image reconstruction through
the wi closest to the image.

Submanifold representation by
linear subspaces of zero
dimension.
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Submanifold representation

Wi 

Submanifold representation by
linear subspaces.

Each linear subspace of
dimension K is defined by
Wi ∈ RN×(K+1).

Each point on the submanifold
is represented by its closest
linear subspace Wi .

The Wi can be learned similar
to k-means or Neural Gas.

Image reconstruction through
the closest point on the closest
subspace.
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Compact description

To describe L linear subspaces of dimension K with individual
Wi we need L× N × (K + 1) parameters.

However, this description can be highly redundant.

For example, N subspaces of dimension N − 1 can be
described by O(N2) instead of N3 parameters.

A ”K out of M” structure can be much more compact.
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Compact description

N = 3, subspace dimension K = 2, number of subspaces L = 3

W1 = (w0
(1), w1

(1) , w2
(1))    W3 = (w0

(3), w1
(3) , w2

(3))   W2 = (w0
(2), w1

(2) , w2
(2))   

C = (c1, c2 , c3, c4)   
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Compact description by sparse coding

Forming K dimensional subspaces by choosing K vectors out
of a set (dictionary) C of M vectors allows to realize

L =

(
M

K

)
subspaces.

Finding the closest subspace to a given x requires to solve the
optimization problem

min
a
‖x− Ca‖22 subject to ‖a‖0 = K

Problem 1: NP-hard combinatorial optimization problem

Problem 2: How to choose C for a given K?
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Important Message

The manifold learning problem can be cast into the sparse
coding and compressive sensing framework.
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(Approximately) solving the NP-hard problem

Greedy Optimization

Directly tackle the problem by a pursuit method

Matching Pursuit
Orthogonal Matching Pursuit
Optimized Orthogonal Matching Pursuit

If x has a sparse enough (K << N) representation, and C
fulfills certain properties, the solution provided by the pursuit
methods will be the optimal solution (Donoho 2003).
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How to choose C (and K )?

Given data x1, . . . , xp, xi ∈ RN (like natural images) which are
supposed to lie on an unknown submanifold.

The goal is to find a C which provides a small average
reconstruction error for a K which is as small as possible.

Find C = (c1, . . . , cM) with cj ∈ RN and ai ∈ RM minimizing

E =
1

L

p∑
i=1

‖xi − Cai‖22

Constraints

ai : ‖ai‖0 = K

C : ‖cj‖ = 1 (without loss of generality)
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Predefined dictionaries for image data
How to chose C?

Overcomplete 8× 8
DCT-Dictionary

Overcomplete 8× 8
HAAR-Dictionary
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Learning dictionaries
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Learning dictionaries

The problem: find

min
C

∑
i

(
min

a
‖xi − Ca‖22 subject to ‖a‖0 = K

)
Current state-of-the-art solver:

MOD (Engan et al 1999)

K-SVD (Aharon et al 2006)

Our new approach:

Neural-Gas-like soft-competitive stochastic gradient descent.

Generalization of the Neural Gas to linear subspaces within
the sparse coding framework.
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What was Neural Gas?

With a randomly chosen data point x reference vectors for Vector
Quantization wi are updated according to

∆wjl = αte
− l
λt (x−wjl ) 0 = 1, ..., L− 1

wj0 is the reference vector closest to x
wj1 is the reference vector second closest to x

etc.
The update step decreases with the distance rank (reconstruction
error) of the reference vectors to the data point x.

Neural Gas performs soft-competitive stochastic gradient
descent on the Vector Quantization error function.

Neural Gas provides very good and robust solutions to the
Vector Quantization problem.
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Generalization to linear subspaces

With a randomly chosen data point x the linear subspaces Wi are
updated according to

∆Wjl = αte
− l
λt (x−Wjl ajl )a

T
jl

l = 0, ..., L− 1

with
ajl = arg min

a
‖x−Wjl a‖

2
2

Wj0 is the linear subspace closest to x
Wj1 is the linear subspace second closest to x

etc.

The update step decreases with the distance rank (reconstruction
error) of the linear subspace to the data point x.
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Within the sparse coding framework

For a randomly chosen sample x determine

aj0 = arg min
a
‖x− Ca‖22 subject to ‖a‖0 = K

and a bag of further good solutions.

Sort the solutions according to the obtained reconstruction
error:

‖x−Caj0‖ ≤ ‖x−Caj1‖ ≤ · · · ≤ ‖x−Cajl‖ ≤ · · · ≤ ‖x−CajL−1
‖

Update the dictionary by soft-competitive stochastic gradient
descent:

∆C = αt

L∑
l=0

e
− l
λt (x− Cajl )a

T
jl
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Bag of Pursuits (BOP)

For finding a bag of good solutions we developed the so-called ”bag
of pursuits (BOP)” which

is derived from Optimized Orthogonal Matching Pursuit

provides a set of good choices for a with ‖a‖0 = K instead of
a single solution

expands the set of solutions in a tree-like fashion

and can be directly combined with the Neural-Gas-like stochastic
gradient descent for learning dictionaries.
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Bag of Pursuits (BOP)

2 4 3 1

3 4 1

5 3241

2 3 1

2 4 3 5

Residual ε = y

‖ε‖ ≤ δ ⇒ STOP

‖ε‖ ≤ δ ⇒ STOP ‖ε‖ ≤ δ ⇒ STOP

sort according to (rTi ε)
2

sort according to (rTi ε)
2

ri = ri − (rT2 ri )ri

ri = ri − (rT3 )ri ri = ri − (rT2 ri )ri

ε
=
ε
−

(r
T 2
ε)
ε

ε
=
ε
−

(r
T 5
ε)
ε ε

=
ε
−

(r T1
ε)ε

ε
=
ε
−

(r T4
ε)ε

sort according to (rTi ε)
2

sort according to (rTi ε)
2

ε = ε− (rT2 ε)ε

sort according to (rTi ε)
2

ε = ε− (rT2 ε)ε

r i
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T 5
r i
)r

i

r
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i

r i
=
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)r
i

r
i
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r
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r
i )r

i

ε = ε− (rT3 ε)ε

Dictionary R = (r1, . . . , r5) = D, ‖ri‖ = 1
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Synthetical experiments

Do we really find the “correct” dictionary?

Generate synthetical dictionaries C true ∈ R20×50 and data
x1, . . . , x1500 ∈ R20 that are linear combinations of C true:

xi = C truebi .

Each bi has k non-zero entries. The positions of the non-zero
entries are chosen according to three different scenarios.
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Synthetical experiments
Scenarios

Random dictionary elements

Chose uniformly k different dictionary elements

Independent subspaces

Define b50/kc disjoint groups of k dictionary elements

Uniformly chose one of the groups

Dependent subspaces

Uniformly select k − 1 dictionary elements.

Use 50− k + 1 groups of dictionary elements where each
group consists of the k − 1 selected dictionary elements plus
one further dictionary element.
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Results
Random dictionary elements

Hard-competitive
without BOP
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Soft-competitive with
BOP
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Results
Independent subspaces

Hard-competitive
without BOP
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Soft-competitive with
BOP
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Results
Dependent subspaces

Hard-competitive
without BOP
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with BOP
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Soft-competitive with
BOP
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Learning dictionaries for image reconstruction

Not whole images are used for learning but 8× 8 patches (N = 64)

Use random 8× 8 patches of this image
... to learn this image
specific dictionary C

25 / 27 Thomas Martinetz Bag of Pursuits and Neural Gas for Improved Sparse Coding



Image reconstruction

For each 8× 8 patch of the image we obtain an estimation by
taking the closest point on the closest subspace

The estimated pixel value at each image position is obtained
as the mean value of all estimated patches at that position
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Image reconstruction results

overcomplete DCT-dictionary learned dictionary

overcomplete HAAR-dictionary original image
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