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A typical application of ABC in population genetics
Estimating the time T since the out-of-Africa migration

T
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Africanon-Africa
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Single Origin Population
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(a) Model of human
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Flowchart of ABC
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Rejection algorithm for targeting p(φ|S)

1 Generate a parameter φ according to the prior distribution
π ;

2 Simulate data D′ according to the model p(D′|φ) ;
3 Compute the summary statistic S′ from D′ and accept the

simulation if d(S,S′) < δ.

Potential problem : the curse of dimensionality limits the
number of statistics that rejection-ABC can handle.
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Regression-adjustment for ABC
Beaumont, Zhang and Balding; Genetics 2002

Local linear regression

φi |Si = m(Si) + εi ,

with a linear function for m.
Adjustment

φ∗i = m̂(S) + ε̃i ,

m̂ is found with weighted least-squares.

http://www.genetics.org/cgi/content/abstract/162/4/2025
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Regression-adjustment for ABC

Weighted least-squares

n∑
i=1

{φi − (β0 + (Si − S)Tβ1)}2Wi ,

where Wi ∝ K (||S − Si ||/δ).
Adjustment

φ∗i = β̂0
LS + ε̃i = φi − (Si − S)T β̂1

LS.
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Regression-adjustment for ABC

φi

φi
*

Csilléry, Blum, Gaggiotti and François; TREE 2010

http://www.cell.com/trends/ecology-evolution/abstract/S0169-5347(10)00066-2
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Asymptotic theorem for ABC
Blum; JASA 2010

1 If there is a local homoscedastic relationship between φ
and S,
Bias with regression adjustment < Bias with rejection only

2 But
Rate of convergence of the MSE = θ(n−4/(d+5))
d = dimension of the summary statistics
n = number of simulations

http://fr.arxiv.org/abs/0904.0635
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A Gaussian example to illustrate potential pitfalls with
ABC

Toy example 1 : Estimation of σ2

σ2 ∼ Invχ2(d.f. = 1)

µ ∼ N (0, σ2)

N = 50

Summary statistics

(S1, . . . ,S5) = (x̄N , s2
N ,u1,u2,u3)

uj ∼ N (0,1), j = 1,2,3
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A Gaussian example to illustrate potential pitfalls with
ABC
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Local Bayesian linear regression
Hjort; Book chapter 2003

Prior for the regression coefficients β

β ∼ N (0, α−1Ip+1)

The Maximum a posteriori minimizes the regularized weighted
least-squares problem

E(β) =
1

2τ2

n∑
i=1

(φi − (Si − S)Tβ)2Wi +
α

2
βTβ.

http://webdoc.sub.gwdg.de/ebook/serien/e/uio_statistical_rr/09-03.pdf
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Local Bayesian linear regression

Posterior distribution of the regression coefficients

β ∼ N (βMAP,V ),

βMAP = τ−2VX T Wδφ

V−1 = (αIp+1 + τ−2X T WδX ).

Regression-adjustment for ABC

φ∗i = φi − (Si − S)T β̂1
MAP.
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The evidence function as an omnibus criterion

Empirical Bayes /Evidence approximation

p(φ|τ2, α, pδ) =

∫ (
Πn

i=1p(φi |β, τ2)Wi
)

p(β|α) dβ,

α is the precision hyperparameter
τ is the variance of the residuals
pδ is the percentage of accepted simulations.

Maximizing the evidence for
1 choosing pδ
2 choosing the set of summary statistics
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The evidence function as an omnibus criterion

A closed-formed formula

log p(φ|τ2, α, pδ) =
p + 1

2
logα− NW

2
log τ2 − E(βMAP)

−1
2

log |V−1| − NW

2
log 2π,

where NW =
∑

Wi .
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The evidence function as an omnibus criterion

The evidence as a function of the tolerance rate

log p(φ|pδ) = max
(α,τ)

log p(φ|τ2, α, pδ).

The evidence as a function of the set of summary statistics

log p(φ|S) = max
(α,τ,pδ)

log p(φ|τ2, α, pδ).
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Iterative algorithm for maximizing the evidence w.r.t. α
and τ

Updating the value of the hyperparameter

α =
γ

βT
MAPβMAP

,

where γ is the effective number of summary statistics.

γ = (p + 1)− αTr(V ).

τ2 =

∑n
i=1(φi − (Si − S)Tβ)2Wi

NW − γ
.
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Using the evidence for choosing pδ

Toy example 2

φ ∼ U−c,c , c ∈ R,

S ∼ N
(

eφ

1 + eφ
, σ2 = (.05)2

)
,
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Using the evidence for choosing pδ

−
3

−
1

0
1

2
3

c=3

S

φφ

0.0 0.2 0.4 0.6 0.8 1.0

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

Accepted
Rejected

−
4

−
2

0
2

4

c=5

S

φφ

0.0 0.2 0.4 0.6 0.8 1.0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

−
10

−
5

0
5

10

c=10

S

φφ

0.0 0.2 0.4 0.6 0.8 1.0

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

−
40

0
20

40

c=50

S

φφ

0.0 0.2 0.4 0.6 0.8 1.0

●

●

●
●

●

●

●
●

●
●

●●

●

●

●●
●

●
●

●●
●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●



Introduction Standard algorithms Potential pitfalls with ABC Local Bayesian linear regression Conclusion

Using the evidence for choosing the summary
statistics

Toy example 1 : (S1, . . . ,S5) = (x̄N , s2
N ,u1,u2,u3)

1 5 1 5 1 5

Number of summary statistics
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of the posterior

97.5% quantile
of the posterior

Choice of a set of
statistics with the

evidence

Variance only Other
100 0
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Transformation of the statistics can matter

Left Panel

S1 = log s2
N or (S1, . . . ,S5) = (x̄N , log s2

N ,u1,u2,u3)

Right Panel

S1 = s2
N or (S1, . . . ,S5) = (x̄N , s2

N ,u1,u2,u3)
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Log of the empirical variance Original scale
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Pros and cons

Cons
Quite complicated
Model (variable) selection for regression but not for density
estimation

Pros
Similar methodology without regression adjustment
Omnibus criterion (Choice of the summary statistics, of the
tolerance rate pδ)
Shrinkage of regression coefficients
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Thanks all for your attention
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