Choosing the Summary Statistics and the Acceptance Rate in Approximate Bayesian Computation (ABC)

Michael G.B. Blum

Laboratoire TIMC-IMAG, CNRS, Grenoble
COMPSTAT 2010; Thursday, August 26

A typical application of ABC in population genetics Estimating the time T since the out-of-Africa migration

(a) Model of human origins

(b) Data

Flowchart of ABC

Rejection algorithm for targeting $p(\phi \mid S)$

(1) Generate a parameter ϕ according to the prior distribution π;
(2) Simulate data \mathcal{D}^{\prime} according to the model $p\left(\mathcal{D}^{\prime} \mid \phi\right)$;
(0) Compute the summary statistic S^{\prime} from \mathcal{D}^{\prime} and accept the simulation if $d\left(S, S^{\prime}\right)<\delta$.

Potential problem : the curse of dimensionality limits the number of statistics that rejection-ABC can handle.

Regression-adjustment for ABC

```
Beaumont, Zhang and Balding; Genetics 2002
```

- Local linear regression

$$
\phi_{i} \mid S_{i}=m\left(S_{i}\right)+\epsilon_{i},
$$

with a linear function for m.

- Adjustment

$$
\phi_{i}^{*}=\hat{m}(S)+\tilde{\epsilon}_{i},
$$

\hat{m} is found with weighted least-squares.

Regression-adjustment for ABC

- Weighted least-squares

$$
\sum_{i=1}^{n}\left\{\phi_{i}-\left(\beta_{0}+\left(S_{i}-S\right)^{T} \beta_{1}\right)\right\}^{2} W_{i}
$$

where $W_{i} \propto K\left(\left\|S-S_{i}\right\| / \delta\right)$.

- Adjustment

$$
\phi_{i}^{*}=\hat{\beta}_{\mathrm{LS}}^{0}+\tilde{\epsilon}_{i}=\phi_{i}-\left(S_{i}-S\right)^{T} \hat{\beta}_{\mathrm{LS}}^{1} .
$$

Regression-adjustment for ABC

$$
\text { Csilléry, Blum, Gaggiotti and François; TREE } 2010
$$

Asymptotic theorem for ABC
 Blum; JASA 2010

(1) If there is a local homoscedastic relationship between ϕ and S,
Bias with regression adjustment < Bias with rejection only
(2) But

Rate of convergence of the MSE $=\theta\left(n^{-4 /(d+5)}\right)$
$d=$ dimension of the summary statistics
$n=$ number of simulations

A Gaussian example to illustrate potential pitfalls with ABC

Toy example 1 : Estimation of σ^{2}

$$
\begin{aligned}
\sigma^{2} & \sim \operatorname{Inv} \chi^{2}(\text { d.f. }=1) \\
\mu & \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
N & =50
\end{aligned}
$$

Summary statistics

$$
\begin{gathered}
\left(S^{1}, \ldots, S^{5}\right)=\left(\bar{x}_{N}, s_{N}^{2}, u_{1}, u_{2}, u_{3}\right) \\
u_{j} \sim \mathcal{N}(0,1), j=1,2,3
\end{gathered}
$$

A Gaussian example to illustrate potential pitfalls with ABC

1 summary statistic

5 summary statistics

Local Bayesian linear regression

```
Hjort; Book chapter 2003
```

Prior for the regression coefficients β

$$
\beta \sim \mathcal{N}\left(0, \alpha^{-1} I_{p+1}\right)
$$

The Maximum a posteriori minimizes the regularized weighted least-squares problem

$$
E(\beta)=\frac{1}{2 \tau^{2}} \sum_{i=1}^{n}\left(\phi_{i}-\left(S_{i}-S\right)^{T} \beta\right)^{2} W_{i}+\frac{\alpha}{2} \beta^{T} \beta
$$

Local Bayesian linear regression

Posterior distribution of the regression coefficients

$$
\begin{gathered}
\beta \sim \mathcal{N}\left(\beta_{\mathrm{MAP}}, V\right) \\
\beta_{\mathrm{MAP}}=\tau^{-2} V X^{T} W_{\delta} \phi \\
V^{-1}=\left(\alpha I_{p+1}+\tau^{-2} X^{\top} W_{\delta} X\right)
\end{gathered}
$$

Regression-adjustment for ABC

$$
\phi_{i}^{*}=\phi_{i}-\left(S_{i}-S\right)^{T} \hat{\beta}_{\mathrm{MAP}}^{1}
$$

The evidence function as an omnibus criterion

Empirical Bayes /Evidence approximation

$$
p\left(\phi \mid \tau^{2}, \alpha, p_{\delta}\right)=\int\left(\Pi_{i=1}^{n} p\left(\phi_{i} \mid \beta, \tau^{2}\right)^{W_{i}}\right) p(\beta \mid \alpha) d \beta,
$$

α is the precision hyperparameter
τ is the variance of the residuals
p_{δ} is the percentage of accepted simulations.
Maximizing the evidence for
(1) choosing p_{δ}
(2) choosing the set of summary statistics

The evidence function as an omnibus criterion

A closed-formed formula

$$
\begin{aligned}
\log p\left(\phi \mid \tau^{2}, \alpha, p_{\delta}\right)= & \frac{p+1}{2} \log \alpha-\frac{N_{W}}{2} \log \tau^{2}-E\left(\beta_{\mathrm{MAP}}\right) \\
& -\frac{1}{2} \log \left|V^{-1}\right|-\frac{N_{W}}{2} \log 2 \pi,
\end{aligned}
$$

where $N_{W}=\sum W_{i}$.

The evidence function as an omnibus criterion

The evidence as a function of the tolerance rate

$$
\log p\left(\phi \mid p_{\delta}\right)=\max _{(\alpha, \tau)} \log p\left(\phi \mid \tau^{2}, \alpha, p_{\delta}\right) .
$$

The evidence as a function of the set of summary statistics

$$
\log p(\phi \mid S)=\max _{\left(\alpha, \tau, p_{\delta}\right)} \log p\left(\phi \mid \tau^{2}, \alpha, p_{\delta}\right) .
$$

Iterative algorithm for maximizing the evidence w.r.t. α and τ

Updating the value of the hyperparameter

$$
\alpha=\frac{\gamma}{\beta_{\mathrm{MAP}}^{T} \beta_{\mathrm{MAP}}},
$$

where γ is the effective number of summary statistics.

$$
\begin{gathered}
\gamma=(p+1)-\alpha \operatorname{Tr}(V) \\
\tau^{2}=\frac{\sum_{i=1}^{n}\left(\phi_{i}-\left(S_{i}-S\right)^{T} \beta\right)^{2} W_{i}}{N_{W}-\gamma}
\end{gathered}
$$

Using the evidence for choosing p_{δ}

Toy example 2

$$
\begin{aligned}
& \phi \sim \mathcal{U}_{-c, c}, \quad c \in \mathbb{R} \\
& S \sim \mathcal{N}\left(\frac{e^{\phi}}{1+e^{\phi}}, \sigma^{2}=(.05)^{2}\right),
\end{aligned}
$$

Using the evidence for choosing p_{δ}

Using the evidence for choosing the summary statistics

$$
\text { Toy example } 1:\left(S^{1}, \ldots, S^{5}\right)=\left(\bar{x}_{N}, s_{N}^{2}, u_{1}, u_{2}, u_{3}\right)
$$

Transformation of the statistics can matter

Left Panel

$$
S^{1}=\log s_{N}^{2} \text { or }\left(S^{1}, \ldots, S^{5}\right)=\left(\bar{x}_{N}, \log s^{2}{ }_{N}, u_{1}, u_{2}, u_{3}\right)
$$

Right Panel

$$
S^{1}=s_{N}^{2} \text { or }\left(S^{1}, \ldots, S^{5}\right)=\left(\bar{x}_{N}, s_{N}^{2}, u_{1}, u_{2}, u_{3}\right)
$$

Log of the empirical variance

Original scale

Pros and cons

Cons

- Quite complicated
- Model (variable) selection for regression but not for density estimation

Pros

- Similar methodology without regression adjustment
- Omnibus criterion (Choice of the summary statistics, of the tolerance rate p_{δ})
- Shrinkage of regression coefficients

Thanks all for your attention

