Choosing the Summary Statistics and the Acceptance Rate in Approximate Bayesian Computation (ABC)

Michael G.B. Blum

Laboratoire TIMC-IMAG, CNRS, Grenoble

COMPSTAT 2010; Thursday, August 26

A typical application of ABC in population genetics Estimating the time T since the out-of-Africa migration

Flowchart of ABC

Rejection algorithm for targeting $p(\phi|S)$

- Generate a parameter ϕ according to the prior distribution π ;
- Simulate data \mathcal{D}' according to the model $p(\mathcal{D}'|\phi)$;
- Ocmpute the summary statistic S' from D' and accept the simulation if d(S, S') < δ.</p>

Potential problem : the curse of dimensionality limits the number of statistics that rejection-ABC can handle.

Regression-adjustment for ABC

Beaumont, Zhang and Balding; Genetics 2002

Local linear regression

$$\phi_i|S_i=m(S_i)+\epsilon_i,$$

with a linear function for *m*.

Adjustment

$$\phi_i^* = \hat{m}(S) + \tilde{\epsilon}_i,$$

 \hat{m} is found with weighted least-squares.

Regression-adjustment for ABC

Weighted least-squares

$$\sum_{i=1}^{n} \{\phi_i - (\beta_0 + (S_i - S)^T \beta_1)\}^2 W_{i}$$

where
$$W_i \propto K(||S - S_i||/\delta)$$
.

Adjustment

$$\phi_i^* = \hat{\beta}_{\mathrm{LS}}^{\mathsf{0}} + \tilde{\epsilon}_i = \phi_i - (S_i - S)^T \hat{\beta}_{\mathrm{LS}}^{\mathsf{1}}.$$

<ロ> < (日) < (1) </p>

Regression-adjustment for ABC

Csilléry, Blum, Gaggiotti and François; TREE 2010

Asymptotic theorem for ABC

Blum; JASA 2010

 If there is a local homoscedastic relationship between φ and S,
Bias with regression adjustment < Bias with rejection only

2 But

Rate of convergence of the MSE = $\theta(n^{-4/(d+5)})$

d = dimension of the summary statistics

n = number of simulations

A Gaussian example to illustrate potential pitfalls with ABC

Toy example 1 : Estimation of σ^2

$$\sigma^2 \sim \operatorname{Inv} \chi^2(\mathrm{d.f.} = 1)$$

$$\mu \sim \mathcal{N}(0, \sigma^2)$$

$$N = 50$$

Summary statistics

$$(S^1, \dots, S^5) = (\bar{x}_N, s_N^2, u_1, u_2, u_3)$$

 $u_j \sim \mathcal{N}(0, 1), \ j = 1, 2, 3$

A Gaussian example to illustrate potential pitfalls with ABC

<ロ> <目> <目> <目> <目> <目> <目> <日> <のへの

Local Bayesian linear regression

Hjort; Book chapter 2003

Prior for the regression coefficients β

$$\beta \sim \mathcal{N}(\mathbf{0}, \alpha^{-1} I_{p+1})$$

The *Maximum a posteriori* minimizes the regularized weighted least-squares problem

$$E(\beta) = \frac{1}{2\tau^2} \sum_{i=1}^{n} (\phi_i - (S_i - S)^T \beta)^2 W_i + \frac{\alpha}{2} \beta^T \beta.$$

<ロ> <昂> < 三> < 三> < 三> < 三</p>

Local Bayesian linear regression

Posterior distribution of the regression coefficients

 $\beta \sim \mathcal{N}(\beta_{\text{MAP}}, V),$

$$\begin{aligned} \beta_{\text{MAP}} &= \tau^{-2} V X^{T} W_{\delta} \phi \\ V^{-1} &= (\alpha I_{p+1} + \tau^{-2} X^{T} W_{\delta} X). \end{aligned}$$

Regression-adjustment for ABC

$$\phi_i^* = \phi_i - (S_i - S)^T \hat{\beta}_{\text{MAP}}^1.$$

<ロ> <四> <日> <日> <日> <日> <日> <日> <日> <日</p>

The evidence function as an omnibus criterion

Empirical Bayes /Evidence approximation

$$\boldsymbol{p}(\phi|\tau^2, \alpha, \boldsymbol{p}_{\delta}) = \int \left(\prod_{i=1}^n \boldsymbol{p}(\phi_i|\beta, \tau^2)^{W_i} \right) \boldsymbol{p}(\beta|\alpha) \, \boldsymbol{d}\beta,$$

 α is the precision hyperparameter τ is the variance of the residuals p_{δ} is the percentage of accepted simulations.

Maximizing the evidence for

- choosing p_{δ}
- Choosing the set of summary statistics

The evidence function as an omnibus criterion

A closed-formed formula

$$\log p(\phi | \tau^{2}, \alpha, p_{\delta}) = \frac{p+1}{2} \log \alpha - \frac{N_{W}}{2} \log \tau^{2} - E(\beta_{\text{MAP}}) \\ -\frac{1}{2} \log |V^{-1}| - \frac{N_{W}}{2} \log 2\pi,$$

where $N_W = \sum W_i$.

The evidence function as an omnibus criterion

The evidence as a function of the tolerance rate

$$\log p(\phi|p_{\delta}) = \max_{(\alpha,\tau)} \log p(\phi|\tau^2, \alpha, p_{\delta}).$$

The evidence as a function of the set of summary statistics

$$\log p(\phi|S) = \max_{(\alpha,\tau,p_{\delta})} \log p(\phi|\tau^2, \alpha, p_{\delta}).$$

Iterative algorithm for maximizing the evidence w.r.t. α and τ

Updating the value of the hyperparameter

$$\alpha = \frac{\gamma}{\beta_{\mathrm{MAP}}^{\mathrm{T}}\beta_{\mathrm{MAP}}},$$

where γ is the effective number of summary statistics.

$$\gamma = (\boldsymbol{p} + 1) - \alpha \operatorname{Tr}(\boldsymbol{V}).$$
$$\tau^{2} = \frac{\sum_{i=1}^{n} (\phi_{i} - (\boldsymbol{S}_{i} - \boldsymbol{S})^{T} \boldsymbol{\beta})^{2} \boldsymbol{W}_{i}}{\boldsymbol{N}_{W} - \gamma}.$$

<ロ> <昂> < 三> < 三> < 三> < 三</p>

Using the evidence for choosing p_{δ}

Toy example 2

$$\begin{array}{ll} \phi & \sim & \mathcal{U}_{-c,c}, \quad c \in \mathbb{R}, \\ S & \sim & \mathcal{N}\left(\frac{e^{\phi}}{1+e^{\phi}}, \sigma^2 = (.05)^2\right), \end{array}$$

<ロ> < 畳 > < 三 > < 三 > < 三 > < ○</p>

Using the evidence for choosing p_{δ}

Using the evidence for choosing the summary statistics

Toy example 1 :
$$(S^1, ..., S^5) = (\bar{x}_N, s_N^2, u_1, u_2, u_3)$$

Transformation of the statistics can matter

Left Panel

$$S^1 = \log s_N^2$$
 or $(S^1, \dots, S^5) = (ar{x}_N, \log s^2{}_N, u_1, u_2, u_3)$

Right Panel

$$S^1 = s_N^2$$
 or $(S^1, \dots, S^5) = (\bar{x}_N, s_N^2, u_1, u_2, u_3)$

ロ > < 母 > < ヨ > < ヨ > シュ の < で

Pros and cons

Cons

- Quite complicated
- Model (variable) selection for regression but not for density estimation

Pros

- Similar methodology without regression adjustment
- Omnibus criterion (Choice of the summary statistics, of the tolerance rate *p*_δ)
- Shrinkage of regression coefficients

Thanks all for your attention

