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Evidence and generalisation

@ Link between evidence and generalisation hypothesised by
McKay

@ First formal link was obtained by S-T & Williamson (1997):
PAC Analysis of a Bayes Estimator

@ Bound on generalisation in terms of the volume of the
sphere that can be inscribed in the version space —
included a dependence on the dimensionality of the space

@ Used Luckiness framework — a data-dependent style of
frequentist bound also used to bound generalisation of
SVMs for which no dependence on the dimensionality is
needed, just on the margin
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Definitions
PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

PAC-Bayes Theorem

@ First version proved by McAllester in 1999
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@ First version proved by McAllester in 1999

@ Improved proof and bound due to Seeger in 2002 with
application to Gaussian processes
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PAC-Bayes Theorem

@ First version proved by McAllester in 1999

@ Improved proof and bound due to Seeger in 2002 with
application to Gaussian processes

@ Application to SVMs by Langford and S-T also in 2002
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Definitions
PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

PAC-Bayes Theorem

@ First version proved by McAllester in 1999

@ Improved proof and bound due to Seeger in 2002 with
application to Gaussian processes

@ Application to SVMs by Langford and S-T also in 2002
@ Excellent tutorial by Langford appeared in 2005 in JMLR
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Definitions
PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline
Applications

Definitions for main result
Prior and posterior distributions

@ The PAC-Bayes theorem involves a class of classifiers C
together with a prior distribution P and posterior Q over C
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Definitions
PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline
Applications

Definitions for main result
Prior and posterior distributions

@ The PAC-Bayes theorem involves a class of classifiers C
together with a prior distribution P and posterior Q over C
@ The distribution P must be chosen before learning, but the

bound holds for all choices of Q, hence Q does not need to
be the classical Bayesian posterior
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Definitions

PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

Definitions for main result
Prior and posterior distributions

@ The PAC-Bayes theorem involves a class of classifiers C
together with a prior distribution P and posterior Q over C

@ The distribution P must be chosen before learning, but the
bound holds for all choices of Q, hence Q does not need to
be the classical Bayesian posterior

@ The bound holds for all (prior) choices of P — hence it's
validity is not affected by a poor choice of P though the
quality of the resulting bound may be
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Definitions
PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline
Applications

Definitions for main result
Error measures

@ Being a frequentist (PAC) style result we assume an
unknown distribution D on the input space X.
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@ Being a frequentist (PAC) style result we assume an
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Definitions

PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

Definitions for main result
Error measures

@ Being a frequentist (PAC) style result we assume an
unknown distribution D on the input space X.
@ D is used to generate the labelled training samples i.i.d.,
ie. S~ DM
@ ltis also used to measure generalisation error ¢p of a
classifier c:
Cp = Pr(x,y)ND(C(X) 7& y)
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Definitions

PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

Definitions for main result
Error measures

@ Being a frequentist (PAC) style result we assume an
unknown distribution D on the input space X.

@ D is used to generate the labelled training samples i.i.d.,
ie. S~ DM

@ ltis also used to measure generalisation error ¢p of a
classifier c:

Cp = Pr(x,y)ND(C(X) 7& y)
@ The empirical generalisation error is denoted Cs:

Cs = % Z Ille(x) #y] where [[-] indicator function.
(x,y)eS
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Definitions
PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline
Applications

Definitions for main result
Assessing the posterior

@ The result is concerned with bounding the performance of
a probabilistic classifier that given a test input x chooses a
classifier ¢ ~ Q (the posterior) and returns c(x)
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Definitions
PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline
Applications

Definitions for main result
Assessing the posterior

@ The result is concerned with bounding the performance of
a probabilistic classifier that given a test input x chooses a
classifier ¢ ~ Q (the posterior) and returns c(x)

@ We are interested in the relation between two quantities:
Qp = E¢qlep]
the true error rate of the probabilistic classifier and
Qs = EcqlCs]

its empirical error rate
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Definitions

PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

Definitions for main result
Generalisation error

@ Note that this does not bound the posterior average but we
have

Pr(x,y)~D(Sgn (Ecvale(x)]) # ¥) < 2Qp.

since for any point x misclassified by sgn (E..q[c(X)]) the
probability of a random ¢ ~ Q misclassifying is at least 0.5.
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Definitions
PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

PAC-Bayes Theorem

@ Fix an arbitrary D, arbitrary prior P, and confidence §, then
with probability at least 1 — § over samples S ~ D™, all
posteriors Q satisfy

KL(Q||P)+In((m+1)/9)

KL(Qs/|Qp) < .

where KL is the KL divergence between distributions

KL(OHP) = ECNQ [In fjgg;}

with Qs and Qp considered as distributions on {0,+1}.
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Definitions

PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

Ingredients of proof (1/3)

IN

1 m+ 1
Prg..pm | Ec ~ = >1-9
15D ( “PPrg pm(Es = Cs) o >_
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Definitions

PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

Ingredients of proof (1/3)
(1)

1 m+ 1
Propm | Epoo = — < >1—-90
15~D < ¢ PPI‘S/NDm(Cs =Cg)~ O ) -

@ This follows from considering the expectation divided into
probability of particular empirical error for any c:

1

= Prs.pm(Cs = k - = 1.
Zk: rs-n (G )PrS’ND’"(CS’ =K

Prg pm(Cs = Cs')
Taking expectations wrt to ¢ and reversing the expectations

1
Egs.pnEcop = = =m+1
¢ PrS’ND’"(CS = CS/)

and the result follows from Markov’s inequality.
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Definitions

PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

Ingredients of proof (2/3)

EevoN gy —5s=t0) .
rSn;D (Cs=Cgr) > KL(QSHQD)
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Definitions

PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

Ingredients of proof (2/3)

EevoN gy —5s=t0) .
rSn;D (Cs=Cgr) > KL(QSHQD)

@ This follows by considering the probabilities that the two
empirical estimates are equal, applying the relative entropy
Chernoff bound and then using the concavity of the KL
divergence as a function of both arguments.
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Definitions

PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

Ingredients of proof (3/3)

@ Consider the distribution

Pa(c) = !

= P P(c)
Prg . pn(Cs = Cs)Eg~p

I N
Prg/ pm(ds=dg)
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Definitions

PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

Ingredients of proof (2/3)

o
A

KL(Q[Pa)

1

= KL(Q||P) —E¢c.qln = A

( H ) o~Q PrS/NDm(CS/ = CS)
1

Prg.pm(ds = dg)

+1In EdNP
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Definitions

PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

Ingredients of proof (3/3)

mKL(Qs[|@p) < Ecuqln

Prg..pm(Cs = Cs)

1
< KL(QHP) +InEg.p

I'S/NDm(as = cA!S/)

m+1

< KL(Q|P)+ =

with probability greater than 1 — 6.
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Definitions

PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

Finite Classes

@ If we take a finite class of functions hy, ..., hy with prior

distribution py, ..., py and assume that the posterior is
concentrated on a single function, the generalisation is
bounded by

—log(pi) +In((m +1)/9)
m

KL(etr(h;)[err(h;)) <
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Definitions

PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

Finite Classes

@ If we take a finite class of functions hy, ..., hy with prior

distribution py, ..., py and assume that the posterior is
concentrated on a single function, the generalisation is
bounded by

—log(pi) +In((m +1)/9)
m

KL(etr(h;)[err(h;)) <

@ This is the standard result for finite classes with the slight
refinement that it involves the KL divergence between
empirical and true error and the extra log(m + 1) term on
the rhs.
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Definitions
PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

Other extensions/applications

@ Matthias Seeger developed the theory for bounding the
error of a Gaussian process classifier.
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Definitions
PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

Other extensions/applications

@ Matthias Seeger developed the theory for bounding the
error of a Gaussian process classifier.

@ Olivier Catoni has extended the result to exchangeable
distributions enabling him to get a PAC-Bayes version of
Vapnik-Chervonenkis bounds.
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Definitions
PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

Other extensions/applications

@ Matthias Seeger developed the theory for bounding the
error of a Gaussian process classifier.

@ Olivier Catoni has extended the result to exchangeable
distributions enabling him to get a PAC-Bayes version of
Vapnik-Chervonenkis bounds.

@ Germain et al have extended to more general loss
functions than just binary.
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Definitions

PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

Other extensions/applications

@ Matthias Seeger developed the theory for bounding the
error of a Gaussian process classifier.

@ Olivier Catoni has extended the result to exchangeable
distributions enabling him to get a PAC-Bayes version of
Vapnik-Chervonenkis bounds.

@ Germain et al have extended to more general loss
functions than just binary.

@ David McAllester has extended the approach to structured
output learning.
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Definitions
PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

Linear classifiers and SVMs

@ Focus in on linear function application (Langford & ST)
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@ Focus in on linear function application (Langford & ST)
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Definitions
PAC-Bayes Theorem
PAC-Bayes Analysis Proof outline

Applications

Linear classifiers and SVMs

@ Focus in on linear function application (Langford & ST)
@ How the application is made
@ Extensions to learning the prior

@ Some results on UCI datasets to give an idea of what can
be achieved
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General Approach

Learning the prior

New prior for linear functions
Linear Classifiers Prior-SVM

Linear classifiers

@ We will choose the prior and posterior distributions to be
Gaussians with unit variance.
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General Approach

Learning the prior

New prior for linear functions
Linear Classifiers Prior-SVM

Linear classifiers

@ We will choose the prior and posterior distributions to be
Gaussians with unit variance.

@ The prior P will be centered at the origin with unit variance
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

Linear classifiers

@ We will choose the prior and posterior distributions to be
Gaussians with unit variance.

@ The prior P will be centered at the origin with unit variance

@ The specification of the centre for the posterior Q(w, 1) will
be by a unit vector w and a scale factor p.
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

PAC-Bayes Bound for SVM (1/2)

@ Prior P is Gaussian N(0, 1)

4R\ o
NV .
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

PAC-Bayes Bound for SVM (1/2)

@ Prior P is Gaussian N(0, 1)

P
™\
/ \ @ Posterior is in the direction w
\C_/ °
()
w
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

PAC-Bayes Bound for SVM (1/2)

@ Prior P is Gaussian N(0, 1)

@ Posterior is in the direction w

(-
L

@ at distance p from the origin

John Shawe-Taylor University College London Data Dependent Priors in PAC-Bayes Bounds



General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

PAC-Bayes Bound for SVM (1/2)

; \)
@ Prior P is Gaussian N (0,1)

@ Posterior is in the direction w

\
0
\J @ at distance . from the origin

@ Posterior Q is Gaussian
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

L(P||Q(w, 1z)) + In ™1
L(@s(w, ][ Qn(w. )] < SIS
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

st [ Ootw ) < KL AD LI
S W, D [l m

@ Qp(w, ) true performance of the stochastic classifier
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General Approach

Learning the prior
New prior for linear functions
Linear Classifiers Prior-SVM

PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

st [ Ootw ) < KL AD LI
S W, D [l m

@ Qp(w, ) true performance of the stochastic classifier

@ SVM is deterministic classifier that exactly corresponds to
sgn (Ecqw,[c(x)]) as centre of the Gaussian gives the
same classification as halfspace with more weight.
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

st [ Ootw ) < KL AD LI
S W, D [l m

@ Qp(w, ) true performance of the stochastic classifier

@ SVM is deterministic classifier that exactly corresponds to
sgn (Ecqw,[c(x)]) as centre of the Gaussian gives the
same classification as halfspace with more weight.

@ Hence its error bounded by 2Qp(w, ), since as observed
above if x misclassified at least half of ¢ ~ Q err.
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL( Qs(w.1) | Qo p)) < KEPIQUY.10) I %57
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General Approach
Learning the prior

New prior for linear functions

Linear Classifiers Prior-SVM

PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL( Qs(w.1) | Qo p)) < KEPIQUY.10) I %57

@ Qg(w, ;1) stochastic measure of the training error

QS(Wv M) = Em[F_(M’Y(Xv y))]
Y%, y) = (yw' o(x))/([¢(x)][w])

o 1 t 2
Ft:1—/ e X /?dx
(1) o
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

3 (KL(P[Q(w, 1)) |+ In £t
) m
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

3 (KL(P[Q(w, 1)) |+ In £t
) m

@ Prior P = Gaussian centered on the origin
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

m

@ Prior P = Gaussian centered on the origin

@ Posterior Q = Gaussian along w at a distance p from the
origin
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

m

@ Prior P = Gaussian centered on the origin

@ Posterior Q = Gaussian along w at a distance p from the
origin

® KL(P|Q) = 1i?/2
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL(P||Q(w, 1)) + In 21
KL(Qs(w, 1) Qp(w, 1)) <

m
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL(P||Q(w, 1)) + In 21
KL(Qs(w, 1) Qp(w, 1)) <

m

@ J is the confidence
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL(P||Q(w, 1)) + In 21
KL(Qs(w, 1) Qp(w, 1)) <

m

@ J is the confidence

@ The bound holds with probability 1 — ¢ over the random
i.i.d. selection of the training data.
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

Learning the prior (1/3)

@ Bound depends on the distance between prior and
posterior
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

Learning the prior (1/3)

@ Bound depends on the distance between prior and
posterior

@ Better prior (closer to posterior) would lead to tighter
bound
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

Learning the prior (1/3)

@ Bound depends on the distance between prior and
posterior

@ Better prior (closer to posterior) would lead to tighter
bound

@ Learn the prior P with part of the data
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General Approach
Learning the prior

New prior for linear functions
Linear Classifiers Prior-SVM

Learning the prior (1/3)

@ Bound depends on the distance between prior and
posterior

@ Better prior (closer to posterior) would lead to tighter
bound

@ Learn the prior P with part of the data
@ Introduce the learnt prior in the bound
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

Learning the prior (1/3)

@ Bound depends on the distance between prior and
posterior

@ Better prior (closer to posterior) would lead to tighter
bound

@ Learn the prior P with part of the data
@ Introduce the learnt prior in the bound
@ Compute stochastic error with remaining data
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Linear Classifiers

General Approach
Learning the prior
New prior for linear functions

Prior-SVM

New prior for the SVM (3/3)

John Shawe-Taylor University College London

@ Solve SVM with subset of patterns
°
°

Data Dependent Pri



General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

New prior for the SVM (3/3)

@ Solve SVM with subset of patterns
@ Prior in the direction w,
°
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

New prior for the SVM (3/3)

Q @ Solve SVM with subset of patterns
@ Prior in the direction w,

@ Posterior like PAC-Bayes Bound

o
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

New prior for the SVM (3/3)

W
@ Solve SVM with subset of patterns
distance @ Prior in the direction w,
between
distributions

@ Posterior like PAC-Bayes Bound
@ New bound proportional to KL(P||Q)
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

New Bound for the SVM (2/3)

SVM performance may be tightly bounded by

(m=r+1)J

. 0.5(|w — nw,|[2 + In ¢
L (@s(w. [ Qo) < S =12 5
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

New Bound for the SVM (2/3)

SVM performance may be tightly bounded by

m—r+1)J

. 0.5(|w — nw,|[2 + In ¢
L (@s(w. [ Qo) < S =12 5

@ Qp(w, ) true performance of the classifier
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

New Bound for the SVM (2/3)

SVM performance may be tightly bounded by

. 0.5(uw — nw, |2 + In (7=2E1)

KL(| Qs(w, 1) [|Qp(w, 1)) < m_r
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

New Bound for the SVM (2/3)

SVM performance may be tightly bounded by

. 0.5]uw — w2 + In {72

KL( Qs(w, 1) [|Qp(w, 1)) <

m-—r

@ Qs(w, ) stochastic measure of the training error on remaining
data

@( w, M)s = Emfr['l-(lf)/(xﬂ y))]
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

New Bound for the SVM (2/3)

SVM performance may be tightly bounded by

‘ 0.5)| uw — nw, |2 | + In (P=31)

KL(Qs(w, )| Qp(w, 1)) <

m-—r
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General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

New Bound for the SVM (2/3)

SVM performance may be tightly bounded by

‘ 0.5)| uw — nw, |2 | + In (P=31)

KL(Qs(w, )| Qp(w, 1)) <

m-—r

@ 0.5|uw — nw,||? distance between prior and posterior
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New Bound for the SVM (2/3)

SVM performance may be tightly bounded by

0.5(uw — nw, |2 + In (P=CE1)

KL(Qs(w, u)[|Qp(w, 1)) <

@ Penalty term only dependent on the remaining data m — r
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Prior-SVM

@ New bound proportional to ||uw — nw,||?

@ Classifier that optimises the bound
@ Optimisation problem to determine the p-SVM

m—r

. 1 5
min | =||w —w C i
i [gw - w36
st yw o(x)>1-¢ i=1,....m—r
§& >0 i=1,....m—r
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Prior-SVM

@ New bound proportional to ||uw — nw,||?

@ Classifier that optimises the bound
@ Optimisation problem to determine the p-SVM

) 1 5 m—r
min | =||w —w C i
i [gw - w36
st yw o(x)>1-¢ i=1,....m—r
§& >0 i=1,....m—r

@ The p-SVM is only solved with the remaining points
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@ Determine the prior with a subset of the training examples
to obtain w,

John Shawe-Taylor University College London Data Dependent Priors in PAC-Bayes Bounds



General Approach

Learning the prior

New prior for linear functions
Linear Classifiers Prior-SVM

Bound for p-SVM

@ Determine the prior with a subset of the training examples
to obtain w,

© Solve p-SVM and obtain w

John Shawe-Taylor University College London Data Dependent Priors in PAC-Bayes Bounds



General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

Bound for p-SVM

@ Determine the prior with a subset of the training examples
to obtain w,

© Solve p-SVM and obtain w
© Margin for the stochastic classifier Qs

oy ywTelx)
5 = emwy T
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Bound for p-SVM

@ Determine the prior with a subset of the training examples
to obtain w,

© Solve p-SVM and obtain w
© Margin for the stochastic classifier Qs

oy YW e(x))
Y59 = Tt Twl

© Linear search to obtain the optimal value of x. This
introduces an insignificant extra penalty term
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n-Prior-SVM

@ Consider using a prior distribution P that is elongated in
the direction of w,
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n-Prior-SVM

@ Consider using a prior distribution P that is elongated in
the direction of w,

@ This will mean that there is low penalty for large projections
onto this direction

@ Translates into an optimisation:

min vaHZ +C Z &

7777§I
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n-Prior-SVM

@ Consider using a prior distribution P that is elongated in
the direction of w,

@ This will mean that there is low penalty for large projections
onto this direction

@ Translates into an optimisation:

min vaHZ +C Z &

@ subject to

Yiv+mw)To(x)>1-¢  i=1,....m—r
&>0  i=1,....m-r

John Shawe-Taylor University College London Data Dependent Priors in PAC-Bayes Bounds



General Approach
Learning the prior
New prior for linear functions

Linear Classifiers Prior-SVM

Bound for n-prior-SVM

@ Prior is elongated along the line of w, but spherical with
variance 1 in other directions
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Bound for n-prior-SVM

@ Prior is elongated along the line of w, but spherical with
variance 1 in other directions

@ Posterior again on the line of w at a distance p chosen to
optimise the bound.
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Bound for n-prior-SVM

@ Prior is elongated along the line of w, but spherical with
variance 1 in other directions

@ Posterior again on the line of w at a distance p chosen to
optimise the bound.

@ Resulting bound depends on a benign parameter
determining the variance in the direction w,
KL((ADS\R(W,M)HQD(W,M)) <

0.5(In(72) + 72 — 1+ Puy (uW — W,)2 /72 + Par. (uw)?) + In(m=1+1)
m-—r
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Model Selection with the new bound: setup

@ Comparison with X-fold Xvalidation, PAC-Bayes Bound and
the Prior PAC-Bayes Bound
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Model Selection with the new bound: setup

@ Comparison with X-fold Xvalidation, PAC-Bayes Bound and
the Prior PAC-Bayes Bound
@ UCI datasets
@ Select C and ¢ that lead to minimum Classification Error
(CE)
e For X-F XV select the pair that minimize the validation error

e For PAC-Bayes Bound and Prior PAC-Bayes Bound select
the pair that minimize the bound
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Description of the Datasets

Problem # samples input dim. Pos/Neg
Handwritten-digits 5620 64 2791 /2829
Waveform 5000 21 1647 /3353

Pima 768 8 268 /500
Ringnorm 7400 20 3664 /3736
Spam 4601 57 1813/2788

Table: Description of datasets in terms of number of patterns,
number of input variables and number of positive/negative examples.
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Classifier
SVM nPrior SVM
Problem 2FCV [ 10FCV [ PAC [ PrPAC | PrPAC [ 7-PrPAC
digits Bound - - 0.175 | 0.107 0.050 0.047
CE 0.007 0.007 | 0.007 | 0.014 0.010 0.009
waveform | Bound - - 0.203 | 0.185 0.178 0.176
CE 0.090 0.086 | 0.084 | 0.088 0.087 0.086

pima Bound — — 0.424 | 0.420 0.428 0.416
CE 0.244 | 0.245 | 0.229 | 0.229 | 0.233 0.233
ringnorm | Bound - - 0.203 | 0.110 0.053 0.050

CE 0.016 | 0.016 | 0.018 | 0.018 | 0.016 0.016

spam Bound - - 0.254 | 0.198 0.186 0.178
CE 0.066 | 0.063 | 0.067 | 0.077 0.070 0.072
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Concluding remarks

@ Frequentist (PAC) and Bayesian approaches to analysing
learning lead to introduction of the PAC-Bayes bound
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Concluding remarks

@ Frequentist (PAC) and Bayesian approaches to analysing
learning lead to introduction of the PAC-Bayes bound

@ Detailed look at the ingredients of the theory
@ Application to bound the performance of an SVM

@ Investigation of learning of the prior of the distribution of
classifiers

@ Experiments show the new bound can be tighter ...
@ ...And reliable for low cost model selection

@ p-SVM and n-p-SVM: classifiers that optimise the new
bound
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