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Evidence and generalisation

Link between evidence and generalisation hypothesised by
McKay
First formal link was obtained by S-T & Williamson (1997):
PAC Analysis of a Bayes Estimator
Bound on generalisation in terms of the volume of the
sphere that can be inscribed in the version space –
included a dependence on the dimensionality of the space
Used Luckiness framework – a data-dependent style of
frequentist bound also used to bound generalisation of
SVMs for which no dependence on the dimensionality is
needed, just on the margin
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Definitions
PAC-Bayes Theorem
Proof outline
Applications

PAC-Bayes Theorem

First version proved by McAllester in 1999
Improved proof and bound due to Seeger in 2002 with
application to Gaussian processes
Application to SVMs by Langford and S-T also in 2002
Excellent tutorial by Langford appeared in 2005 in JMLR
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Definitions for main result
Prior and posterior distributions

The PAC-Bayes theorem involves a class of classifiers C
together with a prior distribution P and posterior Q over C
The distribution P must be chosen before learning, but the
bound holds for all choices of Q, hence Q does not need to
be the classical Bayesian posterior
The bound holds for all (prior) choices of P – hence it’s
validity is not affected by a poor choice of P though the
quality of the resulting bound may be

John Shawe-Taylor University College London Data Dependent Priors in PAC-Bayes Bounds



Outline
Links

PAC-Bayes Analysis
Linear Classifiers

Definitions
PAC-Bayes Theorem
Proof outline
Applications

Definitions for main result
Prior and posterior distributions

The PAC-Bayes theorem involves a class of classifiers C
together with a prior distribution P and posterior Q over C
The distribution P must be chosen before learning, but the
bound holds for all choices of Q, hence Q does not need to
be the classical Bayesian posterior
The bound holds for all (prior) choices of P – hence it’s
validity is not affected by a poor choice of P though the
quality of the resulting bound may be

John Shawe-Taylor University College London Data Dependent Priors in PAC-Bayes Bounds



Outline
Links

PAC-Bayes Analysis
Linear Classifiers

Definitions
PAC-Bayes Theorem
Proof outline
Applications

Definitions for main result
Prior and posterior distributions

The PAC-Bayes theorem involves a class of classifiers C
together with a prior distribution P and posterior Q over C
The distribution P must be chosen before learning, but the
bound holds for all choices of Q, hence Q does not need to
be the classical Bayesian posterior
The bound holds for all (prior) choices of P – hence it’s
validity is not affected by a poor choice of P though the
quality of the resulting bound may be

John Shawe-Taylor University College London Data Dependent Priors in PAC-Bayes Bounds



Outline
Links

PAC-Bayes Analysis
Linear Classifiers

Definitions
PAC-Bayes Theorem
Proof outline
Applications

Definitions for main result
Error measures

Being a frequentist (PAC) style result we assume an
unknown distribution D on the input space X .
D is used to generate the labelled training samples i.i.d.,
i.e. S ∼ Dm

It is also used to measure generalisation error cD of a
classifier c:

cD = Pr(x ,y)∼D(c(x) 6= y)

The empirical generalisation error is denoted ĉS:

ĉS =
1
m

∑
(x ,y)∈S

I[c(x) 6= y ] where I[·] indicator function.
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ĉS =
1
m

∑
(x ,y)∈S

I[c(x) 6= y ] where I[·] indicator function.

John Shawe-Taylor University College London Data Dependent Priors in PAC-Bayes Bounds



Outline
Links

PAC-Bayes Analysis
Linear Classifiers

Definitions
PAC-Bayes Theorem
Proof outline
Applications

Definitions for main result
Error measures

Being a frequentist (PAC) style result we assume an
unknown distribution D on the input space X .
D is used to generate the labelled training samples i.i.d.,
i.e. S ∼ Dm

It is also used to measure generalisation error cD of a
classifier c:

cD = Pr(x ,y)∼D(c(x) 6= y)

The empirical generalisation error is denoted ĉS:
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Definitions for main result
Assessing the posterior

The result is concerned with bounding the performance of
a probabilistic classifier that given a test input x chooses a
classifier c ∼ Q (the posterior) and returns c(x)
We are interested in the relation between two quantities:

QD = Ec∼Q[cD]

the true error rate of the probabilistic classifier and

Q̂S = Ec∼Q[ĉS]

its empirical error rate
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Definitions for main result
Generalisation error

Note that this does not bound the posterior average but we
have

Pr(x ,y)∼D(sgn (Ec∼Q[c(x)]) 6= y) ≤ 2QD.

since for any point x misclassified by sgn (Ec∼Q[c(x)]) the
probability of a random c ∼ Q misclassifying is at least 0.5.
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PAC-Bayes Theorem

Fix an arbitrary D, arbitrary prior P, and confidence δ, then
with probability at least 1− δ over samples S ∼ Dm, all
posteriors Q satisfy

KL(Q̂S‖QD) ≤
KL(Q‖P) + ln((m + 1)/δ)

m

where KL is the KL divergence between distributions

KL(Q‖P) = Ec∼Q

[
ln

Q(c)
P(c)

]
with Q̂S and QD considered as distributions on {0,+1}.
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Ingredients of proof (1/3)
1

PrS∼Dm

(
Ec∼P

1
PrS′∼Dm(ĉS = ĉS′)

≤ m + 1
δ

)
≥ 1− δ

This follows from considering the expectation divided into
probability of particular empirical error for any c:

ES∼Dm
1

PrS′∼Dm(ĉS = ĉS′)
=
∑

k

PrS∼Dm(ĉS = k)
1

PrS′∼Dm(ĉS′ = k)
= m+1.

Taking expectations wrt to c and reversing the expectations

ES∼DmEc∼P
1

PrS′∼Dm(ĉS = ĉS′)
= m + 1

and the result follows from Markov’s inequality.
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PrS′∼Dm(ĉS′ = k)
= m+1.

Taking expectations wrt to c and reversing the expectations

ES∼DmEc∼P
1

PrS′∼Dm(ĉS = ĉS′)
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Ingredients of proof (2/3)

1

Ec∼Q ln 1
PrS′∼Dm (ĉS=ĉS′ )

m
≥ KL(Q̂S‖QD)

This follows by considering the probabilities that the two
empirical estimates are equal, applying the relative entropy
Chernoff bound and then using the concavity of the KL
divergence as a function of both arguments.
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Ingredients of proof (3/3)

1 Consider the distribution

PG(c) =
1

PrS′∼Dm(ĉS′ = ĉS)Ed∼P
1

PrS′∼Dm (d̂S=d̂S′ )

P(c)
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Ingredients of proof (2/3)

0 ≤ KL(Q‖PG)

= KL(Q‖P)− Ec∼Q ln
1

PrS′∼Dm(ĉS′ = ĉS)

+ lnEd∼P
1

PrS′∼Dm(d̂S = d̂S′)
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Ingredients of proof (3/3)

mKL(Q̂S‖QD) ≤ Ec∼Q ln
1

PrS′∼Dm(ĉS′ = ĉS)

≤ KL(Q‖P) + lnEd∼P
1

PrS′∼Dm(d̂S = d̂S′)

≤ KL(Q‖P) +
m + 1
δ

with probability greater than 1− δ.
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Finite Classes

If we take a finite class of functions h1, . . . ,hN with prior
distribution p1, . . . ,pN and assume that the posterior is
concentrated on a single function, the generalisation is
bounded by

KL(êrr(hi)‖err(hi)) ≤
− log(pi) + ln((m + 1)/δ)

m

This is the standard result for finite classes with the slight
refinement that it involves the KL divergence between
empirical and true error and the extra log(m + 1) term on
the rhs.
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Other extensions/applications

Matthias Seeger developed the theory for bounding the
error of a Gaussian process classifier.
Olivier Catoni has extended the result to exchangeable
distributions enabling him to get a PAC-Bayes version of
Vapnik-Chervonenkis bounds.
Germain et al have extended to more general loss
functions than just binary.
David McAllester has extended the approach to structured
output learning.
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Linear classifiers and SVMs

Focus in on linear function application (Langford & ST)
How the application is made
Extensions to learning the prior
Some results on UCI datasets to give an idea of what can
be achieved
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Learning the prior
New prior for linear functions
Prior-SVM

Linear classifiers

We will choose the prior and posterior distributions to be
Gaussians with unit variance.
The prior P will be centered at the origin with unit variance
The specification of the centre for the posterior Q(w , µ) will
be by a unit vector w and a scale factor µ.
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PAC-Bayes Bound for SVM (1/2)

P

0

W

Prior P is Gaussian N (0,1)
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PAC-Bayes Bound for SVM (1/2)

P

0

w

W

Q

μ

Prior P is Gaussian N (0,1)

Posterior is in the direction w

at distance µ from the origin

Posterior Q is Gaussian
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PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL(Q̂S(w , µ)‖ QD(w , µ) ) ≤
KL(P‖Q(w , µ)) + ln m+1

δ

m

QD(w , µ) true performance of the stochastic classifier
SVM is deterministic classifier that exactly corresponds to
sgn
(
Ec∼Q(w,µ)[c(x)]

)
as centre of the Gaussian gives the

same classification as halfspace with more weight.
Hence its error bounded by 2QD(w, µ), since as observed
above if x misclassified at least half of c ∼ Q err.
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PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL( Q̂S(w , µ) ‖QD(w , µ)) ≤
KL(P‖Q(w , µ)) + ln m+1

δ

m

Q̂S(w , µ) stochastic measure of the training error

Q̂S(w , µ) = Em[F̃ (µγ(x , y))]

γ(x , y) = (ywTφ(x))/(‖φ(x)‖‖w‖)

F̃ (t) = 1− 1√
2π

∫ t

−∞
e−x2/2dx
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KL(P‖Q) = µ2/2
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δ is the confidence
The bound holds with probability 1− δ over the random
i.i.d. selection of the training data.
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Learning the prior (1/3)

Bound depends on the distance between prior and
posterior
Better prior (closer to posterior) would lead to tighter
bound
Learn the prior P with part of the data
Introduce the learnt prior in the bound
Compute stochastic error with remaining data
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New prior for the SVM (3/3)

w r
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W

Solve SVM with subset of patterns
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Solve SVM with subset of patterns

Prior in the direction wr

Posterior like PAC-Bayes Bound

New bound proportional to KL(P‖Q)
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New Bound for the SVM (2/3)

SVM performance may be tightly bounded by

KL(Q̂S(w , µ)‖ QD(w , µ) ) ≤
0.5‖µw − ηw r‖2 + ln (m−r+1)J

δ

m − r

QD(w , µ) true performance of the classifier
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δ

m − r

Q̂S(w , µ) stochastic measure of the training error on remaining
data

Q̂(w , µ)S = Em−r [F̃ (µγ(x , y))]
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Prior-SVM

New bound proportional to ‖µw − ηw r‖2

Classifier that optimises the bound
Optimisation problem to determine the p-SVM

min
w ,ξi

[
1
2
‖w −w r‖2 + C

m−r∑
i=1

ξi

]
s.t. yiwTφ(x i) ≥ 1− ξi i = 1, . . . ,m − r

ξi ≥ 0 i = 1, . . . ,m − r

The p-SVM is only solved with the remaining points
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Bound for p-SVM

1 Determine the prior with a subset of the training examples
to obtain w r

2 Solve p-SVM and obtain w
3 Margin for the stochastic classifier Q̂s

γ(x j , yj) =
yjwTφ(x j)

‖φ(x j)‖‖w‖
j = 1, . . . ,m − r

4 Linear search to obtain the optimal value of µ. This
introduces an insignificant extra penalty term
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η-Prior-SVM

Consider using a prior distribution P that is elongated in
the direction of wr

This will mean that there is low penalty for large projections
onto this direction
Translates into an optimisation:

min
v,η,ξi

[
1
2
‖v‖2 + C

m−r∑
i=1

ξi

]
subject to

yi(v + ηwr )
Tφ(xi) ≥ 1− ξi i = 1, . . . ,m − r

ξi ≥ 0 i = 1, . . . ,m − r
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Bound for η-prior-SVM

Prior is elongated along the line of wr but spherical with
variance 1 in other directions
Posterior again on the line of w at a distance µ chosen to
optimise the bound.
Resulting bound depends on a benign parameter τ
determining the variance in the direction wr

KL(Q̂S\R(w, µ)‖QD(w, µ)) ≤

0.5(ln(τ2) + τ−2 − 1 + P‖wr (µw−wr )
2/τ2 + P⊥wr

(µw)2) + ln(m−r+1
δ )

m − r
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Model Selection with the new bound: setup

Comparison with X-fold Xvalidation, PAC-Bayes Bound and
the Prior PAC-Bayes Bound
UCI datasets
Select C and σ that lead to minimum Classification Error
(CE)

For X-F XV select the pair that minimize the validation error
For PAC-Bayes Bound and Prior PAC-Bayes Bound select
the pair that minimize the bound

John Shawe-Taylor University College London Data Dependent Priors in PAC-Bayes Bounds



Outline
Links

PAC-Bayes Analysis
Linear Classifiers

General Approach
Learning the prior
New prior for linear functions
Prior-SVM

Model Selection with the new bound: setup

Comparison with X-fold Xvalidation, PAC-Bayes Bound and
the Prior PAC-Bayes Bound
UCI datasets
Select C and σ that lead to minimum Classification Error
(CE)

For X-F XV select the pair that minimize the validation error
For PAC-Bayes Bound and Prior PAC-Bayes Bound select
the pair that minimize the bound

John Shawe-Taylor University College London Data Dependent Priors in PAC-Bayes Bounds



Outline
Links

PAC-Bayes Analysis
Linear Classifiers

General Approach
Learning the prior
New prior for linear functions
Prior-SVM

Model Selection with the new bound: setup

Comparison with X-fold Xvalidation, PAC-Bayes Bound and
the Prior PAC-Bayes Bound
UCI datasets
Select C and σ that lead to minimum Classification Error
(CE)

For X-F XV select the pair that minimize the validation error
For PAC-Bayes Bound and Prior PAC-Bayes Bound select
the pair that minimize the bound

John Shawe-Taylor University College London Data Dependent Priors in PAC-Bayes Bounds



Outline
Links

PAC-Bayes Analysis
Linear Classifiers

General Approach
Learning the prior
New prior for linear functions
Prior-SVM

Model Selection with the new bound: setup

Comparison with X-fold Xvalidation, PAC-Bayes Bound and
the Prior PAC-Bayes Bound
UCI datasets
Select C and σ that lead to minimum Classification Error
(CE)

For X-F XV select the pair that minimize the validation error
For PAC-Bayes Bound and Prior PAC-Bayes Bound select
the pair that minimize the bound

John Shawe-Taylor University College London Data Dependent Priors in PAC-Bayes Bounds



Outline
Links

PAC-Bayes Analysis
Linear Classifiers

General Approach
Learning the prior
New prior for linear functions
Prior-SVM

Model Selection with the new bound: setup

Comparison with X-fold Xvalidation, PAC-Bayes Bound and
the Prior PAC-Bayes Bound
UCI datasets
Select C and σ that lead to minimum Classification Error
(CE)

For X-F XV select the pair that minimize the validation error
For PAC-Bayes Bound and Prior PAC-Bayes Bound select
the pair that minimize the bound

John Shawe-Taylor University College London Data Dependent Priors in PAC-Bayes Bounds



Outline
Links

PAC-Bayes Analysis
Linear Classifiers

General Approach
Learning the prior
New prior for linear functions
Prior-SVM

Description of the Datasets

Problem # samples input dim. Pos/Neg
Handwritten-digits 5620 64 2791 / 2829

Waveform 5000 21 1647 / 3353
Pima 768 8 268 / 500

Ringnorm 7400 20 3664 / 3736
Spam 4601 57 1813 / 2788

Table: Description of datasets in terms of number of patterns,
number of input variables and number of positive/negative examples.
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Results

Classifier
SVM ηPrior SVM

Problem 2FCV 10FCV PAC PrPAC PrPAC τ -PrPAC
digits Bound – – 0.175 0.107 0.050 0.047

CE 0.007 0.007 0.007 0.014 0.010 0.009
waveform Bound – – 0.203 0.185 0.178 0.176

CE 0.090 0.086 0.084 0.088 0.087 0.086
pima Bound – – 0.424 0.420 0.428 0.416

CE 0.244 0.245 0.229 0.229 0.233 0.233
ringnorm Bound – – 0.203 0.110 0.053 0.050

CE 0.016 0.016 0.018 0.018 0.016 0.016
spam Bound – – 0.254 0.198 0.186 0.178

CE 0.066 0.063 0.067 0.077 0.070 0.072
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Concluding remarks

Frequentist (PAC) and Bayesian approaches to analysing
learning lead to introduction of the PAC-Bayes bound
Detailed look at the ingredients of the theory
Application to bound the performance of an SVM
Investigation of learning of the prior of the distribution of
classifiers
Experiments show the new bound can be tighter ...
...And reliable for low cost model selection
p-SVM and η-p-SVM: classifiers that optimise the new
bound
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