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Introduction and motivation

Introduction and motivation

We consider the standard linear regression model

y=XB+e,

where
@ y € IR" is the response

@ Xis the nxp model matrix, with x; € IR",j =1, ..., p, are the
predictors

@ (3 is a p-vector of unknown parameters which are to be
estimated

@ e is a n-vector of (i.i.d.) random errors with mean 0 and
variance o?
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Introduction and motivation

Introduction and motivation

OLS: R
BoLs = argminglly — Xg||3.
Two alternatives class of methods :

@ Classical variable selection

@ Stepwise regression
@ Information criterion AIC, BIC

@ Regularization methods
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The regularization methods for linear regression

LASSO

Definition

BlLasso = argmin,@||y - XBH% + AlIBll1-
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The regularization methods for linear regression

LASSO

Starting points RBa(0)
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The regularization methods for linear regression

LASSO

Advantages

@ Reduce the variability of the estimates by shrinking the
coefficients

@ Produces interpretable models by shrinking some
coefficients to exactly zero

>

Disadvantages

@ In high dimension, the Lasso selects at most n variables

@ It's tends to select only some variable from the high
correlated group of variables.

@ The some tuning parameter is used for both variable
selection and shrinkage.
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The regularization methods for linear regression

ELASTIC NET

Definition

IBNaiveEnet = argminBHy - X,@H% + )‘lH:BHl + )‘ZHIBH%

BEnet = (1 + )‘2) * BNaive—Enet'
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The regularization methods for linear regression

ELASTIC NET
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The regularization methods for linear regression

ELASTIC NET

Advantages

@ Encourage a grouping effect

@ No limitation on the number of variables that may be
selected for the model )

Disadvantages

@ It must be chosen between over shrink the correct
variables and select a number of noise variables

@ If some significative variables are ignored, It is not possible
to restor )
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The regularization methods for linear regression

VISA

@ Select the first set of variables using LASSO (starting point
5x(0))

@ Eliminate the over shrinkage to this set and detects
another set of significative variables Simultaneously.

@ Eliminates the over shrinkage of the latter set of variables.

-
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The regularization methods for linear regression

VISA

Rols
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The regularization methods for linear regression

VISA

Advantages

@ Select sparse models while avoiding over shrinkage
problems

Disadvantages

@ It does not ensure the grouping effect

@ The number of variables in the starting point is limited by
number of observations n
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VISA NET algorithm

VISA NET algorithm

@ Select the first set of variables using Naive-Enet (starting
point 5y, »,(0))

@ Eliminate the over shrinkage to this set and detects
another set of significative variables Simultaneously.

@ Eliminate the over shrinkage of the lather set of variables.

-
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VISA NET algorithm

VISA NET

Bols

a9 T XETOYEXR) = M
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VISA NET algorithm

VISA NET algorithm

Lemmal :Given data set (y, X) and (A1, \2, ¢), define an
artificial data set by

. X y
X(n-|—p)><n = (\/_l) (n+p) (6)

then the VISAgNeT IS equivalent to a VISA 45 problem on the
augmented data set
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VISA NET algorithm

VISA-Net

Advantages

@ ensure that we can select more than n variables In the
starting set

@ it can select groups of high correlated variables

@ the over shrinkage of the coefficients and the number of
noise variables can be decreased.
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Theoretical Results

Theoretical Results

we show that VISAgner has non-asymptotic bounds on its
estimation errors. Given an index setj C {1,...,p} and X;. Let
(k) denote the smallest eigenvalue of the matrix

DX ] < K

Theorem 1.Suppose that 5 € RP is an S-sparse coefficient
vector. Consider an a > 0, and define 7p = o/2(1 + a)logp. If
ﬁ is a VISA estimator with k non-zero ﬁ, coefficients for which

B =0,and A\ = [[XT (Y = XB)||0,then

> )\00 +Tp a 1
P8 - Blz2> (5 1K) 120(5 1K) - )\2) < (p?y/4rlogp)
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Numerical experiments

The grouping effect and selecting others variables

We generate one data set of 50 observations and 40
predictors. We chose 8 = (5, .E;, 5,3, .E;, 3,1, .5., 1,0, .2.5.,0).
The predictors X were generated as follows :

@ Z ~N(0,5)

07 =7Z+g,q~N(0,1),i=1,.,3

O xi=21+¢,i=1,..,5¢ ~N(0,0.1)

@ Xj=2Zy+¢,i=6,.,10, ~N(0,0.1)

@ Xi =2Zy+¢e,i=11,.,15¢ ~N(0,0.1)

@ xi ~N(0,5),i =186,..,40
The response y is generated as :

y = XS+ ¢ ~N(0,5)
. Intra-group correlations are high and Inter-groups are average
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Numerical experiments

The grouping effect and selecting others variables
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Numerical experiments

High-dimensional experiments

Exemple Statistics LASSO | ENET | VISA | VNET

50 var 100 obs MSE 3 3.21 3.08 | 2.77 | 2.63

cor0 False —Pos | 14.18 | 16.81 | 4.36 | 4.18

False — Neg 3.11 221 | 3.64 2.9

100 var 50 obs MSE 3 8.39 7.73 | 10.23 | 8.18

cor 0.5 False — Pos 18.0 25,5 | 12.62 | 17.62
False — Neg 3.25 2.12 | 3.750 3

50 var 100 obs MSE 3 15.79 6.92 | 15.69 | 7.04

cor 0.95 False — Pos 8.45 33.09 | 6.36 | 19.54
False — Neg 4.45 0.27 | 4.72 1

Table 1 : the simulated examples of four methods based on 100
replications..
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Numerical experiments
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