Variable Inclusion and Shrinkage Algorithm in High Dimension

A.Mkhadri and M.Ouhourane

Faculty of Sciences-Semlalia, Marrakech

19th International Conference on Computational Statistics on August 22nd-27th 2010.

イロト イヨト イヨト イヨト

Table of contents

Introduction and motivation

2 The regularization methods for linear regression

4 Theoretical Results

・ロト ・回ト ・ヨト ・ヨト

Introduction and motivation

We consider the standard linear regression model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon},$$

where

- $\mathbf{y} \in I\!\!R^n$ is the response
- X is the *nxp* model matrix, with x_j ∈ *I*Rⁿ, j = 1, ..., p, are the predictors
- *β* is a *p*-vector of unknown parameters which are to be estimated
- ε is a *n*-vector of (i.i.d.) random errors with mean 0 and variance σ^2

크

Introduction and motivation

OLS :

$$\widehat{\boldsymbol{\beta}}_{\textit{OLS}} = \text{argmin}_{\boldsymbol{\beta}} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2.$$

Two alternatives class of methods :

- Classical variable selection
 - Stepwise regression
 - Information criterion AIC, BIC
- Regularization methods

イロト イヨト イヨト イヨト

Definition

$$\widehat{\boldsymbol{\beta}}_{Lasso} = \operatorname{argmin}_{\boldsymbol{\beta}} \| \mathbf{y} - \mathbf{X} \boldsymbol{\beta} \|_{2}^{2} + \lambda \| \boldsymbol{\beta} \|_{1}.$$

A.Mkhadri and M.Ouhourane Variable Inclusion and Shrinkage Algorithm in High Dimension

イロン イヨン イヨン イヨン

≡ ∽ ९ (~

A.Mkhadri and M.Ouhourane

Variable Inclusion and Shrinkage Algorithm in High Dimension

æ

Advantages

- Reduce the variability of the estimates by shrinking the coefficients
- Produces interpretable models by shrinking some coefficients to exactly zero

Disadvantages

- In high dimension, the Lasso selects at most n variables
- It's tends to select only some variable from the high correlated group of variables.
- The some tuning parameter is used for both variable selection and shrinkage.

ELASTIC NET

Definition

$$\widehat{\boldsymbol{\beta}}_{\textit{NaiveEnet}} = \text{argmin}_{\boldsymbol{\beta}} \| \mathbf{y} - \mathbf{X} \boldsymbol{\beta} \|_2^2 + \lambda_1 \| \boldsymbol{\beta} \|_1 + \lambda_2 \| \boldsymbol{\beta} \|_2^2.$$

$$\widehat{oldsymbol{eta}}_{\textit{Enet}} = (\mathbf{1} + \lambda_2) * \widehat{oldsymbol{eta}}_{\textit{Naive-Enet}}.$$

A.Mkhadri and M.Ouhourane Variable Inclusion and Shrinkage Algorithm in High Dimension

・ロン ・回 と ・ ヨン・

æ

ELASTIC NET

A.Mkhadri and M.Ouhourane

Variable Inclusion and Shrinkage Algorithm in High Dimension

æ

ELASTIC NET

Advantages

- Encourage a grouping effect
- No limitation on the number of variables that may be selected for the model

Disadvantages

- It must be chosen between over shrink the correct variables and select a number of noise variables
- If some significative variables are ignored, It is not possible to restor

イロト イヨト イヨト イヨト

크

Definition

- Select the first set of variables using LASSO (starting point β_λ(0))
- Eliminate the over shrinkage to this set and detects another set of significative variables Simultaneously.
- Eliminates the over shrinkage of the latter set of variables.

< ロ > < 同 > < 臣 > < 臣 > -

æ

A.Mkhadri and M.Ouhourane

Variable Inclusion and Shrinkage Algorithm in High Dimensio

Advantages

 Select sparse models while avoiding over shrinkage problems

Disadvantages

- It does not ensure the grouping effect
- The number of variables in the starting point is limited by number of observations *n*

イロト イヨト イヨト イヨト

Introduction and motivation The regularization methods for linear regression VISA NET algorithm

Theoretical Results Numerical experiments

VISA NET algorithm

Definition

- Select the first set of variables using Naive-Enet (starting point β_{λ1,λ2}(0))
- Eliminate the over shrinkage to this set and detects another set of significative variables Simultaneously.
- Eliminate the over shrinkage of the lather set of variables.

< ロ > < 同 > < 臣 > < 臣 > -

2

Introduction and motivation The regularization methods for linear regression VISA NET algorithm

Theoretical Results Numerical experiments

A.Mkhadri and M.Ouhourane

Variable Inclusion and Shrinkage Algorithm in High Dimensio

VISA NET algorithm

Lemma1 :Given data set (y, X) and $(\lambda_1, \lambda_2, \phi)$, define an artificial data set by

$$\mathbf{X}^*_{(n+p)\times n} = (\frac{\mathbf{X}}{\sqrt{\lambda_2 \mathbf{I}}}), \mathbf{y}^*_{(n+p)} = (\frac{\mathbf{y}}{0})$$

then the $VISA_{ENET}$ is equivalent to a $VISA_{Lars}$ problem on the augmented data set

・ロン ・四 ・ ・ ヨン ・ ヨン

2

Introduction and motivation The regularization methods for linear regression VISA NET algorithm

Theoretical Results Numerical experiments

Advantages

- ensure that we can select more than n variables In the starting set
- it can select groups of high correlated variables
- the over shrinkage of the coefficients and the number of noise variables can be decreased.

イロト イヨト イヨト イヨト

크

Theoretical Results

we show that V/SA_{ENET} has non-asymptotic bounds on its estimation errors. Given an index set $j \in \{1, ..., p\}$ and X_j . Let $\psi(k)$ denote the smallest eigenvalue of the matrix $\{X_j^{*^T}X_j^*, |j| \le k\}$. **Theorem 1.**Suppose that $\beta \in \mathbb{R}^p$ is an S-sparse coefficient vector. Consider an a > 0, and define $\tau_p = \sigma \sqrt{2(1 + a)/ogp}$. If $\hat{\beta}$ is a VISA estimator with k non-zero $\hat{\beta}_j$ coefficients for which $\beta_j = 0$, and $\lambda_{\infty} = ||X^T(Y - X\hat{\beta})||_{\infty}$,then

$$P(\|\widehat{eta} - eta\|_2 > rac{\lambda_\infty + au_p}{(\mathcal{S} + k)^{-1/2}\psi(\mathcal{S} + k) - \lambda_2}) \leq (p^a \sqrt{4\pi \log p})^{-1}$$

The grouping effect and selecting others variables

We generate one data set of 50 observations and 40 predictors. We chose $\beta = (\underbrace{5,...,5}_{5},\underbrace{3,...,3}_{5},\underbrace{1,...,1}_{5},\underbrace{0,...,0}_{25})$. The predictors *X* were generated as follows :

•
$$Z \sim N(0,5)$$

• $Z_i = Z + \varsigma_i, \varsigma_i \sim N(0,1), i = 1, ..., 3$
• $x_i = Z_1 + \varepsilon_i^x, i = 1, ..., 5, \varepsilon_i^x \sim N(0,0.1)$
• $x_i = Z_2 + \varepsilon_i^x, i = 6, ..., 10, \varepsilon_i^x \sim N(0,0.1)$
• $x_i = Z_2 + \varepsilon_i^x, i = 11, ..., 15, \varepsilon_i^x \sim N(0,0.1)$
• $x_i \sim N(0,5), i = 16, ..., 40$

The response y is generated as :

$$\mathbf{y} = \mathbf{X}\beta + \epsilon, \varepsilon \sim N(0, 5)$$

. Intra-group correlations are high and Inter-groups are average

The grouping effect and selecting others variables

A.Mkhadri and M.Ouhourane

Variable Inclusion and Shrinkage Algorithm in High Dimension

High-dimensional experiments

Exemple	Statistics	LASSO	ENET	VISA	VNET
50 var 100 obs	$MSE\beta$	3.21	3.08	2.77	2.63
cor 0	False – Pos	14.18	16.81	4.36	4.18
	False – Neg	3.11	2.21	3.64	2.9
100 var 50 obs	$MSE\beta$	8.39	7.73	10.23	8.18
cor 0.5	False – Pos	18.0	25.5	12.62	17.62
	False – Neg	3.25	2.12	3.750	3
50 var 100 obs	$MSE\beta$	15.79	6.92	15.69	7.04
cor 0.95	False – Pos	8.45	33.09	6.36	19.54
	False – Neg	4.45	0.27	4.72	1

 Table 1 : the simulated examples of four methods based on 100 replications..

臣

bibliography

- Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004) : Least angle regression. *Annals of Statistics, 32, 407 499*.
- Meinshausen, N. (2007). Relaxed lasso. Computational Statistics & Data Analysis, 52, 374-393.
- Radchenko, P. and James, G. M.(2008) : Variable inclusion and shrinkage algorithms. *Journal of the American statistical association*, vol 103, n 483, 1304-1315.
- Tibshirani, R.(1996) : Regression shrinkage and selection via the Lasso. *journal of the Royal statistical Society, B. 58, 267-288.*
- Zou, H. and Hastie, T. (2005) : Regularization and variable selection via the elasticnet. *Journal of Classification 17 (1), 3-28.*