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Introduction

• in many research areas:

- accessibility of novel measurement technologies

- data tsunami: highdimensional data sets

- example: various types of ‘omics’ data

• concerted use of technologies in many settings

- data sets with large number of experimental units
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Introduction (ctd)

• possible solution: classical reduction methods
(categorical: clustering; continuous: dimension reduction)

• however: often breakdown of such methods …

• possible rescue missions: variable selection, sparseness
penalty or constraints, …

• alternative solution: multiple nested reductions of single 
data modes (within framework of global model for data, 
fitted with a simultaneous optimization procedure) 
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Principles

• data: I × J object by variable (e.g., tissue by gene) data
matrix D
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Principles (ctd)

• (deterministic core of) generic decomposition model 
(Van Mechelen & Schepers, 2007):

- reduction of object (tissue) mode by means of 
(binary or real-valued) I × P quantification matrix A

examples:
Tissue1 3.2 5.2 5.1

Tissue2 4.1 -6.7 3.4

Tissue3 5.8 3.9 1.9

Tissue4 1.0 -2.1 0.5

Tissue5 -2.3 8.0 -1.7

...
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Principles (ctd)

• (deterministic core of) generic decomposition model 
(Van Mechelen & Schepers, 2007):

- reduction of object (tissue) mode by means of 
(binary or real-valued) I × P quantification matrix A

- reduction of variable (gene) mode by means of 
(binary or real-valued) J × Q quantification matrix B

21



Principles (ctd)
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Principles (ctd)

• (deterministic core of) generic decomposition model 
(Van Mechelen & Schepers, 2007):

- reduction of object (tissue) mode by means of 
(binary or real-valued) I × P quantification matrix A

- reduction of variable (gene) mode by means of 
(binary or real-valued) J × Q quantification matrix B

- P × Q core matrix W

- decomposition operator f, which is such that:

with f(A,B,W)ij only depending on Ai⋅ and Bj⋅

( )= +, ,f BD WA E
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Principles (ctd)

• special cases:

- A and B binary, f additive operator:

(general additive two-mode clustering model)
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Principles (ctd)

• special cases (ctd):

- A and B real-valued, W identity matrix, f additive 
operator:

(principal component analysis)
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( )= +, ,f BD WA E
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Principles (ctd)

• special cases (ctd):

- A and B real-valued, W identity matrix, f Euclidean
distance-based operator:

(multidimensional unfolding)

( ) ( )
=
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Principles (ctd)

• multiple nested reductions:

- decomposition of core matrix W:

and therefore:

with A* denoting a P × P* quantification matrix,
B* a Q × Q* quantification matrix, 
f* a decomposition operator, 
and with f*(A*,B*,W*)pq only depending on A*p⋅ and B*q⋅

( )= +, ,f BD WA E

( )= * ** , , *f AW B W

( )( )= +***, , , , *f fA A BD WB E
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Principles (ctd)

• remarks:

- each of the quantification matrices (A, A*, B, B*) can
be an identity matrix (no reduction), a binary matrix
(categorical, cluster-based reduction), or a real-
valued matrix (continuous, dimension reduction)

- model is to be estimated as a whole, making use of 
one overall objective or loss function (unlike in 
‘tandem’ approaches)

( )( )= +***, , , , *f fA A BD WB E
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Example 1: Existing model

• two-mode unfolding clustering:

- A and B binary partition matrices, f additive operator
(i.e., outer model = two-mode partitioning)

- A* and B* real-valued matrices, W* identity matrix, f
Euclidean-distance based operator
(i.e., inner model = multidimensional unfolding)

( )( )= +***, , , , *f fA A BD WB E
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Example 1: Existing model (ctd)

• two-mode unfolding clustering: (ctd)

- originally proposed (in deterministic form) by Van 
Mechelen & Schepers (2007)

- stochastic variant (making use of double mixture 
approach) proposed by Vera, Macías & Heiser
(2009) under the name dual latent class unfolding

- special case: A or B identity matrix (outer categorical
reduction of one mode only): latent class unfolding
as proposed by De Soete & Heiser (1993)
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Example 1: Existing model (ctd)

• application (Vera et al.): respondent by statement on
internet use
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Example 2: Novel model

• two-mode principal component clustering:

- data centered or standardized variablewise

- A and B binary partition matrices, f additive operator
(i.e., outer model = two-mode partitioning)

- A* and B* real-valued matrices, W* identity matrix, f
additive operator
(i.e., inner model = principal component analysis)

( )( )= +***, , , , *f fA A BD WB E
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Example 2: Novel model (ctd)

• two-mode principal component clustering: (ctd)

- in matrix notation:

- special case: B identity matrix (no reduction) 
→ k-means clustering in a low-dimensional Euclidean

space (De Soete & Carroll, 1994)

• in deterministic scenario: least squares loss function
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Example 2: Novel model (ctd)

• algorithmic solution (ALS type):

1. initialize A and B, e.g., through randomly started k-
means analyses on rows and column of D

2. estimate/update A* and B* through generalized
SVD in the metrics and
of the matrix of the two-mode centroids,

3. update A and B through rowwise exhaustive search

Repeat 2 and 3 until convergence.

( )−
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Example 2: Novel model (ctd)

• algorithmic solution (ALS type): (ctd)

- optional: postprocess final A* by means of regular
SVD to preserve columnwise orthonormality

- possibility of convergence to local minimum → 
multistart strategy
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Example 2: Novel model (ctd)

• illustrative application:

- data from study by Alon et al. (1999) on gene
expression in 40 tumor and 22 normal tissues

- here only data on 400 genes that maximally
differentiated cancer from normal tissues

- ALS algorithm with 500 starts

- selection of model with 4 tissue clusters, 5 gene
clusters and 2 components

- two tissue clusters largely pertained to tumor tissues 
and the two other ones to normal tissues
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two gene clusters comprising genes
involved in elevated cellular metabolism
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two gene clusters comprising genes
involved in elevated cellular metabolism

normal tissue cluster comprising tissues
from patients in metastatic stage
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Discussion

• principle of multiple nested reductions can be extended to:
- three- and higher-mode data
- more than two levels of reduction

• inner en outer reductions can fulfill different functions
(e.g., outer ones may capture redundancies, and inner
ones core substantive mechanisms)

• multiple nested reductions of a single data mode ≠
simultaneous single reductions of several modes (as in 
classical two-mode clustering techniques and in methods
for multimode data analysis)

• multiple nested reductions of a single data mode ≠ inter-
woven categorical/dimensional reductions as in ‘clustering
& disjoint principal component analyis’ (Vichi & Saporta, 2009)
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Discussion (ctd)

• approach addresses problems as outlined at the start:

- redundancies, dependencies
→  through outer reduction (no need for discar-

ding information or for arbitrary choices)

- computational bottlenecks
→ see, e.g., inner GSVD to be applied to

small matrix with centroids

- displaying output prohibitive
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thank you for your attention!
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