# Multiple Nested Reductions of Single Data Modes as a Tool to Deal with Large Data Sets

Iven Van Mechelen and Katrijn Van Deun

K.U.Leuven Psychology Department and Center for Computational Systems Biology





Invited IFCS session at COMPSTAT 2010

#### Overview:

- introduction
- principles
- example 1: existing model
- example 2: novel model
- discussion

#### Overview:

- introduction
- principles
- example 1: existing model
- example 2: novel model
- discussion

#### **Introduction**

- in many research areas:
  - accessibility of novel measurement technologies
  - data tsunami: highdimensional data sets
  - example: various types of 'omics' data

#### **Introduction**

- in many research areas:
  - accessibility of novel measurement technologies
  - data tsunami: highdimensional data sets
  - example: various types of 'omics' data



#### **Introduction**

- in many research areas:
  - accessibility of novel measurement technologies
  - data tsunami: highdimensional data sets
  - example: various types of 'omics' data

- concerted use of technologies in many settings
  - data sets with large number of experimental units

• problems:

- problems:
  - redundancies, dependencies, ill-conditioned optimization problems



- problems:
  - redundancies, dependencies, ill-conditioned optimization problems

- computational bottlenecks





- problems:
  - redundancies, dependencies, ill-conditioned optimization problems

- computational bottlenecks

- displaying output prohibitive







 possible solution: classical reduction methods (categorical: clustering; continuous: dimension reduction)

 possible solution: classical reduction methods (categorical: clustering; continuous: dimension reduction)

• however: often breakdown of such methods ...

 possible solution: classical reduction methods (categorical: clustering; continuous: dimension reduction)

• however: often breakdown of such methods ...

 possible rescue missions: variable selection, sparseness penalty or constraints, ...

 possible solution: classical reduction methods (categorical: clustering; continuous: dimension reduction)

• however: often breakdown of such methods ...

 possible rescue missions: variable selection, sparseness penalty or constraints, ...

 alternative solution: multiple nested reductions of single data modes (within framework of global model for data, fitted with a simultaneous optimization procedure)

#### Overview:

- introduction
- principles
- example 1: existing model
- example 2: novel model
- discussion

### **Principles**

 data: *I* × *J* object by variable (e.g., tissue by gene) data matrix **D** variable mode



- (deterministic core of) generic decomposition model (Van Mechelen & Schepers, 2007):
  - reduction of object (tissue) mode by means of (binary or real-valued) I × P quantification matrix A

examples:

- (deterministic core of) generic decomposition model (Van Mechelen & Schepers, 2007):
  - reduction of object (tissue) mode by means of (binary or real-valued) I × P quantification matrix A

examples:

| Tissue <sub>1</sub> | 1 | 0 | 0 |  |
|---------------------|---|---|---|--|
| Tissue <sub>2</sub> | 1 | 0 | 0 |  |
| Tissue <sub>3</sub> | 0 | 0 | 1 |  |
| Tissue <sub>4</sub> | 0 | 0 | 1 |  |
| Tissue <sub>5</sub> | 0 | 1 | 0 |  |
|                     |   |   |   |  |

. . .

- (deterministic core of) generic decomposition model (Van Mechelen & Schepers, 2007):
  - reduction of object (tissue) mode by means of (binary or real-valued) I × P quantification matrix A

examples:

| Tissue <sub>1</sub> | 1 | 1 | 0 |
|---------------------|---|---|---|
| Tissue <sub>2</sub> | 1 | 1 | 0 |
| Tissue <sub>3</sub> | 1 | 0 | 1 |
| Tissue <sub>4</sub> | 1 | 0 | 1 |
| Tissue <sub>5</sub> | 1 | 0 | 1 |
|                     |   |   |   |

. . .

- (deterministic core of) generic decomposition model (Van Mechelen & Schepers, 2007):
  - reduction of object (tissue) mode by means of (binary or real-valued) I × P quantification matrix A

examples:

| 3.2  | 5.2               | 5.1                                                             |
|------|-------------------|-----------------------------------------------------------------|
| 4.1  | -6.7              | 3.4                                                             |
| 5.8  | 3.9               | 1.9                                                             |
| 1.0  | -2.1              | 0.5                                                             |
| -2.3 | 8.0               | -1.7                                                            |
|      | 4.1<br>5.8<br>1.0 | <ul> <li>4.1 -6.7</li> <li>5.8 3.9</li> <li>1.0 -2.1</li> </ul> |

. . .

- (deterministic core of) generic decomposition model (Van Mechelen & Schepers, 2007):
  - reduction of object (tissue) mode by means of (binary or real-valued) I × P quantification matrix A
  - reduction of variable (gene) mode by means of (binary or real-valued)  $J \times Q$  quantification matrix **B**

- (deterministic core of) generic decomposition model (Van Mechelen & Schepers, 2007):
  - reduction of object (tissue) mode by means of (binary or real-valued) I × P quantification matrix A
  - reduction of variable (gene) mode by means of (binary or real-valued)  $J \times Q$  quantification matrix **B**
  - $P \times Q$  core matrix **W**

- (deterministic core of) generic decomposition model (Van Mechelen & Schepers, 2007):
  - reduction of object (tissue) mode by means of (binary or real-valued) I × P quantification matrix A
  - reduction of variable (gene) mode by means of (binary or real-valued)  $J \times Q$  quantification matrix **B**
  - $P \times Q$  core matrix **W**
  - decomposition operator *f*, which is such that:

$$\mathbf{D} = f(\mathbf{A}, \mathbf{B}, \mathbf{W}) + \mathbf{E}$$

with  $f(\mathbf{A}, \mathbf{B}, \mathbf{W})_{ij}$  only depending on  $\mathbf{A}_{j}$  and  $\mathbf{B}_{j}$ .

$$\mathbf{D} = f\left(\mathbf{A}, \mathbf{B}, \mathbf{W}\right) + \mathbf{E}$$

• special cases:

$$\mathbf{D} = f(\mathbf{A}, \mathbf{B}, \mathbf{W}) + \mathbf{E}$$

- special cases:
  - A and B binary, *f* additive operator:

 $f(\mathbf{A}, \mathbf{B}, \mathbf{W}) = \mathbf{A} \mathbf{W} \mathbf{B}^{t}$ 

$$f\left(\mathbf{A}, \mathbf{B}, \mathbf{W}\right)_{ij} = \sum_{p=1}^{P} \sum_{q=1}^{Q} \mathbf{a}_{ip} \mathbf{b}_{jq} \mathbf{w}_{pq}$$

(general additive two-mode clustering model)

$$f\left(\mathbf{A},\mathbf{B},\mathbf{W}\right)_{ij} = \sum_{p=1}^{P} \sum_{q=1}^{Q} \frac{\mathbf{a}_{ip}}{p} \mathbf{b}_{jq} \mathbf{w}_{pq}$$

|   |                       | <i>A</i> .1           | $A_{\bullet 2}$ | <i>V</i> <sub>1</sub> | <i>V</i> <sub>2</sub> | <i>V</i> <sub>3</sub> | $V_4$ | $V_5$               | $V_6$ | <i>V</i> <sub>7</sub> |                        |
|---|-----------------------|-----------------------|-----------------|-----------------------|-----------------------|-----------------------|-------|---------------------|-------|-----------------------|------------------------|
|   | <i>O</i> <sub>1</sub> | 0                     | 0               | 0                     | 0                     | 0                     | 0     | 0                   | 0     | 0                     | <i>O</i> <sub>1</sub>  |
|   | <i>O</i> <sub>2</sub> | 1                     | 0               | 0                     | 2                     | 2                     | 2     | 0                   | 0     | 0                     | <i>O</i> <sub>2</sub>  |
| A | <i>O</i> <sub>3</sub> | 1                     | 0               | 0                     | 2                     | 2                     | 2     | 0                   | 0     | 0                     | <i>O</i> <sub>3</sub>  |
|   | <i>O</i> <sub>4</sub> | 1                     | 1               | 0                     | 2                     | 2                     | 5     | 3                   | 3     |                       |                        |
|   | $O_5$                 | 0                     | 1               | 0                     | 0                     | 0                     | 3     | 3                   | 3     | 0                     | $O_5$                  |
|   | <i>O</i> <sub>6</sub> | 0                     | 0               | 0                     | 0                     | 0                     | 0     | 0                   | 0     | 0                     | <i>O</i> <sub>6</sub>  |
|   |                       |                       | I               |                       |                       |                       |       |                     |       |                       |                        |
|   | <i>B</i> .1           | 2                     | 0               | 0                     | 1                     | 1                     | 1     | 0                   | 0     | 0                     | <i>B</i> <sub>•1</sub> |
| W | B2                    | 0                     | 3               | 0                     | 0                     | 0                     | 1     | 1                   | 1     | 0                     | B2                     |
|   |                       | 2<br>0<br><i>A</i> .1 | A2              | <i>V</i> <sub>1</sub> | <i>V</i> <sub>2</sub> | $V_3$                 | $V_4$ | 1<br>V <sub>5</sub> | $V_6$ | <i>V</i> <sub>7</sub> |                        |

26

B

$$\mathbf{D} = f(\mathbf{A}, \mathbf{B}, \mathbf{W}) + \mathbf{E}$$

- special cases (ctd):
  - A and B real-valued, W identity matrix, f additive operator:

 $f(\mathbf{A}, \mathbf{B}, \mathbf{W}) = \mathbf{A} \mathbf{B}^t$ 

$$f\left(\mathbf{A},\mathbf{B},\mathbf{W}
ight)_{ij}=\sum_{p=1}^{P}oldsymbol{a}_{ip}oldsymbol{b}_{jp}$$

(principal component analysis)

$$\mathbf{D} = f(\mathbf{A}, \mathbf{B}, \mathbf{W}) + \mathbf{E}$$

- special cases (ctd):
  - A and B real-valued, W identity matrix, f Euclidean distance-based operator:

$$f(\mathbf{A}, \mathbf{B}, \mathbf{W})_{ij} = \left[\sum_{p=1}^{P} \left(\mathbf{a}_{ip} - \mathbf{b}_{jp}\right)^{2}\right]^{\frac{1}{2}}$$

(multidimensional unfolding)

$$\mathbf{D} = f(\mathbf{A}, \mathbf{B}, \mathbf{W}) + \mathbf{E}$$

- multiple nested reductions:
  - decomposition of core matrix **W**:

 $\mathbf{W} = f^* \left( \mathbf{A}^*, \mathbf{B}^*, \mathbf{W}^* \right)$ 

and therefore:

$$\mathbf{D} = f\left(\mathbf{A}, \mathbf{B}, f^{*}\left(\mathbf{A}^{*}, \mathbf{B}^{*}, \mathbf{W}^{*}\right)\right) + \mathbf{E}$$

with A\* denoting a  $P \times P^*$  quantification matrix, B\* a  $Q \times Q^*$  quantification matrix,  $f^*$  a decomposition operator, and with  $f^*(A^*, B^*, W^*)_{pq}$  only depending on  $A^*_{p}$  and  $B^*_{q}$ .

Principles (ctd)  
$$\mathbf{D} = f(\mathbf{A}, \mathbf{B}, f^*(\mathbf{A}^*, \mathbf{B}^*, \mathbf{W}^*)) + \mathbf{E}$$

- remarks:
  - each of the quantification matrices (A, A\*, B, B\*) can be an identity matrix (no reduction), a binary matrix (categorical, cluster-based reduction), or a realvalued matrix (continuous, dimension reduction)
  - model is to be estimated as a whole, making use of one overall objective or loss function (unlike in '*tandem*' approaches)

#### Overview:

- introduction
- principles
- example 1: existing model
- example 2: novel model
- discussion

#### Example 1: Existing model

$$\mathbf{D} = f\left(\mathbf{A}, \mathbf{B}, f^{*}\left(\mathbf{A}^{*}, \mathbf{B}^{*}, \mathbf{W}^{*}\right)\right) + \mathbf{E}$$

- two-mode unfolding clustering:
  - A and B binary partition matrices, *f* additive operator (i.e., outer model = two-mode partitioning)
  - A\* and B\* real-valued matrices, W\* identity matrix, f
     Euclidean-distance based operator
     (i.e., inner model = multidimensional unfolding)

$$d_{ij} = \left[\sum_{p=1}^{P} \sum_{q=1}^{Q} a_{ip} b_{jq} \left[\sum_{p^{*}=1}^{P^{*}} \left(a_{pp^{*}}^{*} - b_{qp^{*}}^{*}\right)^{2}\right]^{\frac{1}{2}}\right] + e_{ij}$$

### Example 1: Existing model (ctd)

$$\boxed{d_{ij} = \left[\sum_{p=1}^{P} \sum_{q=1}^{Q} a_{ip} b_{jq} \left[\sum_{p^{*}=1}^{P^{*}} \left(a_{pp^{*}}^{*} - b_{qp^{*}}^{*}\right)^{2}\right]^{\frac{1}{2}}\right] + e_{ij}}$$

- two-mode unfolding clustering: (ctd)
  - originally proposed (in deterministic form) by Van Mechelen & Schepers (2007)
  - stochastic variant (making use of double mixture approach) proposed by Vera, Macías & Heiser (2009) under the name dual latent class unfolding
  - special case: A or B identity matrix (outer categorical reduction of one mode only): latent class unfolding as proposed by De Soete & Heiser (1993)

#### Example 1: Existing model (ctd)

 application (Vera et al.): respondent by statement on internet use



#### Overview:

- introduction
- principles
- example 1: existing model
- example 2: novel model
- discussion

Example 2: Novel model

$$\mathbf{D} = f\left(\mathbf{A}, \mathbf{B}, f^{*}\left(\mathbf{A}^{*}, \mathbf{B}^{*}, \mathbf{W}^{*}\right)\right) + \mathbf{E}$$

- two-mode principal component clustering:
  - data centered or standardized variablewise
  - A and B binary partition matrices, f additive operator (i.e., outer model = two-mode partitioning)
  - A\* and B\* real-valued matrices, W\* identity matrix, f additive operator
     (i.e., inner model = principal component analysis)

$$\boldsymbol{d}_{ij} = \left[\sum_{p=1}^{P} \sum_{q=1}^{Q} \boldsymbol{a}_{ip} \boldsymbol{b}_{jq} \left(\sum_{p^{*}=1}^{P^{*}} \boldsymbol{a}_{pp^{*}}^{*} \boldsymbol{b}_{qp^{*}}^{*}\right)\right] + \boldsymbol{e}_{ij}$$

$$d_{ij} = \left[\sum_{p=1}^{P} \sum_{q=1}^{Q} a_{ip} b_{jq} \left(\sum_{p^*=1}^{P^*} a^*_{pp^*} b^*_{qp^*}\right)\right] + e_{ij}$$

- two-mode principal component clustering: (ctd)
  - in matrix notation:

 $\mathbf{D} = \mathbf{A} \left( \mathbf{A}^* \mathbf{B}^{*t} \right) \mathbf{B}^t + \mathbf{E}$ 

- special case: B identity matrix (no reduction)
   → k-means clustering in a low-dimensional Euclidean space (De Soete & Carroll, 1994)
- in deterministic scenario: least squares loss function  $\min_{\mathbf{A},\mathbf{B},\mathbf{A}^{*},\mathbf{B}^{*}} \|\mathbf{D} - \mathbf{A}(\mathbf{A}^{*}\mathbf{B}^{*t})\mathbf{B}^{t}\|^{2}$

$$\min_{\mathbf{A},\mathbf{B},\mathbf{A}^*,\mathbf{B}^*} \left\| \mathbf{D} - \mathbf{A} \left( \mathbf{A}^* \mathbf{B}^{*t} \right) \mathbf{B}^t \right\|^2$$

- algorithmic solution (ALS type):
  - initialize A and B, e.g., through randomly started kmeans analyses on rows and column of D
  - 2. estimate/update A\* and B\* through generalized SVD in the metrics  $\left[ \text{diag} (\mathbf{A}^t \mathbf{A}) \right]^{-1}$  and  $\left[ \text{diag} (\mathbf{B}^t \mathbf{B}) \right]^{-1}$  of the matrix of the two-mode centroids,  $\left[ \text{diag} (\mathbf{A}^t \mathbf{A}) \right]^{-1} \mathbf{A}^t \mathbf{D} \mathbf{B} \left[ \text{diag} (\mathbf{B}^t \mathbf{B}) \right]^{-1}$

3. update A and B through rowwise exhaustive search

Repeat 2 and 3 until convergence.

$$\min_{\mathbf{A},\mathbf{B},\mathbf{A}^*,\mathbf{B}^*} \left\| \mathbf{D} - \mathbf{A} \left( \mathbf{A}^* \mathbf{B}^{*t} \right) \mathbf{B}^t \right\|^2$$

- algorithmic solution (ALS type): (ctd)
  - optional: postprocess final A\* by means of regular
     SVD to preserve columnwise orthonormality
  - possibility of convergence to local minimum → multistart strategy

- illustrative application:
  - data from study by Alon et al. (1999) on gene expression in 40 tumor and 22 normal tissues
  - here only data on 400 genes that maximally differentiated cancer from normal tissues
  - ALS algorithm with 500 starts
  - selection of model with 4 tissue clusters, 5 gene clusters and 2 components
  - two tissue clusters largely pertained to tumor tissues and the two other ones to normal tissues











#### Overview:

- introduction
- principles
- example 1: existing model
- example 2: novel model
- discussion

### **Discussion**

- principle of multiple nested reductions can be extended to:
  - three- and higher-mode data
  - more than two levels of reduction
- inner en outer reductions can fulfill different functions (e.g., outer ones may capture redundancies, and inner ones core substantive mechanisms)
- multiple nested reductions of a single data mode ≠ simultaneous single reductions of several modes (as in classical two-mode clustering techniques and in methods for multimode data analysis)
- multiple nested reductions of a single data mode ≠ interwoven categorical/dimensional reductions as in 'clustering & disjoint principal component analyis' (Vichi & Saporta, 2009)

• approach addresses problems as outlined at the start:

• approach addresses problems as outlined at the start:



redundancies, dependencies

• approach addresses problems as outlined at the start:



- redundancies, dependencies
  - → through outer reduction (no need for discarding information or for arbitrary choices)

• approach addresses problems as outlined at the start:



- redundancies, dependencies
  - → through outer reduction (no need for discarding information or for arbitrary choices)



- computational bottlenecks

• approach addresses problems as outlined at the start:



- redundancies, dependencies
  - → through outer reduction (no need for discarding information or for arbitrary choices)



- computational bottlenecks
  - $\rightarrow$  see, e.g., inner GSVD to be applied to small matrix with centroids

• approach addresses problems as outlined at the start:



- redundancies, dependencies
  - → through outer reduction (no need for discarding information or for arbitrary choices)



- computational bottlenecks
  - → see, e.g., inner GSVD to be applied to small matrix with centroids



displaying output prohibitive

• approach addresses problems as outlined at the start:



- redundancies, dependencies
  - → through outer reduction (no need for discarding information or for arbitrary choices)



- computational bottlenecks
  - $\rightarrow$  see, e.g., inner GSVD to be applied to small matrix with centroids



displaying output prohibitive



#### Iven.VanMechelen@psy.kuleuven.be

ppw.kuleuven.be/okp

thank you for your attention!