Multiple Nested Reductions of Single Data Modes as a Tool to Deal with Large Data Sets

Iven Van Mechelen and Katrijn Van Deun

K.U.Leuven
Psychology Department
and
Center for Computational Systems Biology

Overview:

- introduction
- principles
- example 1: existing model
- example 2: novel model
- discussion

Overview:

- introduction
- principles
- example 1: existing model
- example 2: novel model
- discussion

Introduction

- in many research areas:
- accessibility of novel measurement technologies
- data tsunami: highdimensional data sets
- example: various types of 'omics' data

Introduction

- in many research areas:
- accessibility of novel measurement technologies
- data tsunami: highdimensional data sets
- example: various types of 'omics' data

Introduction

- in many research areas:
- accessibility of novel measurement technologies
- data tsunami: highdimensional data sets
- example: various types of 'omics' data
- concerted use of technologies in many settings
- data sets with large number of experimental units

Introduction (ctd)

- problems:

Introduction (ctd)

- problems:
- redundancies, dependencies, ill-conditioned optimization problems

Introduction (ctd)

- problems:
- redundancies, dependencies, ill-conditioned optimization problems
- computational bottlenecks

Introduction (ctd)

- problems:
- redundancies, dependencies, ill-conditioned optimization problems
- computational bottlenecks
- displaying output prohibitive

Introduction (ctd)

- possible solution: classical reduction methods (categorical: clustering; continuous: dimension reduction)

Introduction (ctd)

- possible solution: classical reduction methods (categorical: clustering; continuous: dimension reduction)
- however: often breakdown of such methods ...

Introduction (ctd)

- possible solution: classical reduction methods (categorical: clustering; continuous: dimension reduction)
- however: often breakdown of such methods ...
- possible rescue missions: variable selection, sparseness penalty or constraints, ...

Introduction (ctd)

- possible solution: classical reduction methods (categorical: clustering; continuous: dimension reduction)
- however: often breakdown of such methods ...
- possible rescue missions: variable selection, sparseness penalty or constraints, ...
- alternative solution: multiple nested reductions of single data modes (within framework of global model for data, fitted with a simultaneous optimization procedure)

Overview:

- introduction
- principles
- example 1: existing model
- example 2: novel model
- discussion

Principles

- data: $I \times J$ object by variable (e.g., tissue by gene) data matrix \mathbf{D}
variable mode

Principles (ctd)

- (deterministic core of) generic decomposition model (Van Mechelen \& Schepers, 2007):
- reduction of object (tissue) mode by means of (binary or real-valued) $I \times P$ quantification matrix A examples:

Principles (ctd)

- (deterministic core of) generic decomposition model (Van Mechelen \& Schepers, 2007):
- reduction of object (tissue) mode by means of (binary or real-valued) $I \times P$ quantification matrix A examples:

Tissue $_{1}$	1	0	0
Tissue $_{2}$	1	0	0
Tissue $_{3}$	0	0	1
Tissue $_{4}$	0	0	1
Tissue $_{5}$	0	1	0

Principles (ctd)

- (deterministic core of) generic decomposition model (Van Mechelen \& Schepers, 2007):
- reduction of object (tissue) mode by means of (binary or real-valued) $I \times P$ quantification matrix A examples:

Tissue $_{1}$	1	1	0
Tissue $_{2}$	1	1	0
Tissue $_{3}$	1	0	1
Tissue $_{4}$	1	0	1
Tissue $_{5}$	1	0	1

Principles (ctd)

- (deterministic core of) generic decomposition model (Van Mechelen \& Schepers, 2007):
- reduction of object (tissue) mode by means of (binary or real-valued) $I \times P$ quantification matrix A examples:

Tissue $_{1}$	3.2	5.2	5.1
Tissue $_{2}$	4.1	-6.7	3.4
Tissue $_{3}$	5.8	3.9	1.9
Tissue $_{4}$	1.0	-2.1	0.5
Tissue $_{5}$	-2.3	8.0	-1.7

Principles (ctd)

- (deterministic core of) generic decomposition model (Van Mechelen \& Schepers, 2007):
- reduction of object (tissue) mode by means of (binary or real-valued) $I \times P$ quantification matrix A
- reduction of variable (gene) mode by means of (binary or real-valued) $J \times Q$ quantification matrix B

Principles (ctd)

- (deterministic core of) generic decomposition model (Van Mechelen \& Schepers, 2007):
- reduction of object (tissue) mode by means of (binary or real-valued) $I \times P$ quantification matrix A
- reduction of variable (gene) mode by means of (binary or real-valued) $J \times Q$ quantification matrix B
- $P \times Q$ core matrix \mathbf{W}

Principles (ctd)

- (deterministic core of) generic decomposition model (Van Mechelen \& Schepers, 2007):
- reduction of object (tissue) mode by means of (binary or real-valued) $I \times P$ quantification matrix A
- reduction of variable (gene) mode by means of (binary or real-valued) $J \times Q$ quantification matrix B
- $P \times Q$ core matrix \mathbf{W}
- decomposition operator f, which is such that:

$$
\mathbf{D}=f(\mathbf{A}, \mathbf{B}, \mathbf{W})+\mathbf{E}
$$

with $f(\mathbf{A}, \mathbf{B}, \mathbf{W})_{i j}$ only depending on \mathbf{A}_{j} and \mathbf{B}_{j}.

Principles (ctd)

$$
\mathbf{D}=f(\mathbf{A}, \mathbf{B}, \mathbf{W})+\mathbf{E}
$$

- special cases:

Principles (ctd)

$$
\mathbf{D}=f(\mathbf{A}, \mathbf{B}, \mathbf{W})+\mathbf{E}
$$

- special cases:
- A and B binary, f additive operator:

$$
\begin{aligned}
& f(\mathbf{A}, \mathbf{B}, \mathbf{W})=\mathbf{A}_{\mathbf{W}} \mathbf{W}^{t} \\
& f(\mathbf{A}, \mathbf{B}, \mathbf{W})_{i j}=\sum_{p=1}^{P} \sum_{q=1}^{Q} a_{i p} b_{j q} w_{p q}
\end{aligned}
$$

(general additive two-mode clustering model)
$f(\mathbf{A}, \mathbf{B}, \mathbf{W})_{i j}=\sum_{p=1}^{P} \sum_{q=1}^{Q} a_{i p} b_{j q} w_{p q}$

	$A_{\bullet 1}$	$A_{\bullet 2}$
	O_{1}	0
O_{2}	1	0
O_{3}	1	0
O_{4}	1	1
O_{5}	0	1
O_{6}	0	0

| V_{1} | V_{2} | V_{3} | V_{4} | V_{5} | V_{6} | V_{7} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | O_{1} |
| 0 | 2 | 2 | 2 | 0 | 0 | 0 | O_{2} |
| 0 | 2 | 2 | 2 | 0 | 0 | 0 | O_{3} |
| 0 | 2 | 2 | 5 | 3 | 3 | 0 | O_{4} |
| 0 | 0 | 0 | 3 | 3 | 3 | 0 | O_{5} |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | O_{6} |

$W\left|\begin{array}{c|cc}B_{01} & 2 & 0 \\ B_{02} & 0 & 3 \\ A_{01} & A_{\bullet 2}\end{array}\right| \quad\left|\begin{array}{ccccccc|c}0 & 1 & 1 & 1 & 0 & 0 & 0 & B_{01} \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & B_{02} \\ V_{1} & V_{2} & V_{3} & V_{4} & V_{5} & V_{6} & V_{7}\end{array}\right| B$

Principles (ctd)

$$
\mathbf{D}=f(\mathbf{A}, \mathbf{B}, \mathbf{W})+\mathbf{E}
$$

- special cases (ctd):
- $\quad \mathbf{A}$ and \mathbf{B} real-valued, \mathbf{W} identity matrix, f additive operator:

$$
\begin{aligned}
f(\mathbf{A}, \mathbf{B}, \mathbf{W}) & =\mathbf{A} \mathbf{B}^{t} \\
f(\mathbf{A}, \mathbf{B}, \mathbf{W})_{i j} & =\sum_{p=1}^{P} a_{i p} b_{j p}
\end{aligned}
$$

(principal component analysis)

Principles (ctd)

$$
\mathbf{D}=f(\mathbf{A}, \mathbf{B}, \mathbf{W})+\mathbf{E}
$$

- special cases (ctd):
- A and B real-valued, W identity matrix, f Euclidean distance-based operator:

$$
f(\mathbf{A}, \mathbf{B}, \mathbf{W})_{i j}=\left[\sum_{p=1}^{p}\left(a_{i p}-b_{i p}\right)^{2}\right]^{\frac{1}{2}}
$$

(multidimensional unfolding)

Principles (ctd)

$$
\mathbf{D}=f(\mathbf{A}, \mathbf{B}, \mathbf{W})+\mathbf{E}
$$

- multiple nested reductions:
- decomposition of core matrix \mathbf{W} :

$$
\mathbf{W}=f^{*}\left(\mathrm{~A}^{*}, \mathrm{~B}^{*}, \mathbf{W}^{*}\right)
$$

and therefore:

$$
\mathbf{D}=f\left(\mathbf{A}, \mathbf{B}, f^{*}\left(\mathbf{A}^{*}, \mathbf{B}^{*}, \mathbf{W}^{*}\right)\right)+\mathbf{E}
$$

with A^{*} denoting a $P \times P^{*}$ quantification matrix, B^{*} a $Q \times Q^{*}$ quantification matrix,
f^{*} a decomposition operator, and with $f^{*}\left(\mathbf{A}^{*}, \mathbf{B}^{*}, \mathbf{W}^{*}\right)_{p q}$ only depending on $\mathbf{A}^{*}{ }_{p}$ and $\mathbf{B}^{*}{ }_{q}$.

Principles (ctd)

$$
\mathbf{D}=f\left(\mathbf{A}, \mathbf{B}, f^{*}\left(\mathbf{A}^{*}, \mathbf{B}^{*}, \mathbf{W}^{*}\right)\right)+\mathbf{E}
$$

- remarks:
- each of the quantification matrices (A, $\mathbf{A}^{*}, \mathbf{B}, \mathrm{~B}^{*}$) can be an identity matrix (no reduction), a binary matrix (categorical, cluster-based reduction), or a realvalued matrix (continuous, dimension reduction)
- model is to be estimated as a whole, making use of one overall objective or loss function (unlike in 'tandem' approaches)

Overview:

- introduction
- principles
- example 1: existing model
- example 2: novel model
- discussion

Example 1: Existing model

$$
\mathbf{D}=f\left(\mathbf{A}, \mathbf{B}, f^{*}\left(\mathbf{A}^{*}, \mathbf{B}^{*}, \mathbf{W}^{*}\right)\right)+\mathbf{E}
$$

- two-mode unfolding clustering:
- A and B binary partition matrices, f additive operator (i.e., outer model = two-mode partitioning)
- \mathbf{A}^{*} and \mathbf{B}^{*} real-valued matrices, \mathbf{W}^{*} identity matrix, f Euclidean-distance based operator (i.e., inner model = multidimensional unfolding)

$$
d_{i j}=\left[\sum_{p=1}^{P} \sum_{q=1}^{Q} a_{i p} b_{j q}\left[\sum_{p^{*}=1}^{P^{*}}\left(a_{p p^{*}}^{*}-b_{q p^{*}}^{*}\right)^{2}\right]^{\frac{1}{2}}\right]+e_{i j}
$$

Example 1: Existing model (ctd)

$$
d_{i j}=\left[\sum_{p=1}^{P} \sum_{q=1}^{Q} a_{i p} b_{j q}\left[\sum_{p^{*}=1}^{p^{*}}\left(a_{p p^{*}}^{*}-b_{q p^{*}}^{*}\right)^{2}\right]^{\frac{1}{2}}\right]+e_{i j}
$$

- two-mode unfolding clustering: (ctd)
- originally proposed (in deterministic form) by Van Mechelen \& Schepers (2007)
- stochastic variant (making use of double mixture approach) proposed by Vera, Macías \& Heiser (2009) under the name dual latent class unfolding
- special case: A or B identity matrix (outer categorical reduction of one mode only): latent class unfolding as proposed by De Soete \& Heiser (1993)

Example 1: Existing model (ctd)

- application (Vera et al.): respondent by statement on internet use

Overview:

- introduction
- principles
- example 1: existing model
- example 2: novel model
- discussion

Example 2: Novel model

$$
\mathbf{D}=f\left(\mathbf{A}, \mathbf{B}, f^{*}\left(\mathbf{A}^{*}, \mathbf{B}^{*}, \mathbf{W}^{*}\right)\right)+\mathbf{E}
$$

- two-mode principal component clustering:
- data centered or standardized variablewise
- A and B binary partition matrices, f additive operator (i.e., outer model = two-mode partitioning)
- \mathbf{A}^{*} and \mathbf{B}^{*} real-valued matrices, \mathbf{W}^{*} identity matrix, f additive operator (i.e., inner model = principal component analysis)

$$
d_{i j}=\left[\sum_{p=1}^{P} \sum_{q=1}^{Q} a_{i p} b_{j q}\left(\sum_{p^{*}=1}^{P^{*}} a_{p p^{*}}^{*} b_{q p^{*}}^{*}\right)\right]+e_{i j}
$$

Example 2: Novel model (ctd)

$$
d_{i j}=\left[\sum_{p=1}^{P} \sum_{q=1}^{Q} a_{i p} b_{j q}\left(\sum_{p^{*}=1}^{P^{*}} a_{p p^{*}}^{*} a_{q p^{*}}^{*}\right)\right]+e_{i j}
$$

- two-mode principal component clustering: (ctd)
- in matrix notation:

$$
\mathbf{D}=\mathbf{A}\left(\mathbf{A}^{*} \mathbf{B}^{*}\right) \mathbf{B}^{t}+\mathbf{E}
$$

- special case: B identity matrix (no reduction)
$\rightarrow k$-means clustering in a low-dimensional Euclidean space (De Soete \& Carroll, 1994)
- in deterministic scenario: least squares loss function

$$
\min _{A, B, A, A^{*}}\left\|\mathbf{D}-\mathbf{A}\left(\mathbf{A}^{*} \mathbf{B}^{* t}\right) \mathbf{B}^{t}\right\|^{2}
$$

Example 2: Novel model (ctd)

$$
\min _{A, B, A, B}\left\|\mathbf{D}-\mathbf{A}\left(\mathbf{A}^{*} \mathbf{B}^{* t}\right) \mathbf{B}^{t}\right\|^{2}
$$

- algorithmic solution (ALS type):

1. initialize A and B, e.g., through randomly started k means analyses on rows and column of \mathbf{D}
2. estimate/update A^{*} and B^{*} through generalized SVD in the metrics $\left[\operatorname{diag}\left(\mathbf{A}^{t} \mathbf{A}\right)\right]^{-1}$ and $\left[\operatorname{diag}\left(\mathbf{B}^{t} \mathbf{B}\right)\right]^{-1}$ of the matrix of the two-mode centroids, $\left[\operatorname{diag}\left(\mathbf{A}^{t} \mathbf{A}\right)\right]^{-1} \mathbf{A}^{t} \mathbf{D} \mathbf{B}\left[\operatorname{diag}\left(\mathbf{B}^{t} \mathbf{B}\right)\right]^{-1}$
3. update A and B through rowwise exhaustive search

Repeat 2 and 3 until convergence.

Example 2: Novel model (ctd)

$$
\min _{A, B, A, B}\left\|\mathbf{D}-\mathbf{A}\left(\mathbf{A}^{*} \mathbf{B}^{* t}\right) \mathbf{B}^{t}\right\|^{2}
$$

- algorithmic solution (ALS type): (ctd)
- optional: postprocess final A* by means of regular SVD to preserve columnwise orthonormality
- possibility of convergence to local minimum \rightarrow multistart strategy

Example 2: Novel model (ctd)

- illustrative application:
- data from study by Alon et al. (1999) on gene expression in 40 tumor and 22 normal tissues
- here only data on 400 genes that maximally differentiated cancer from normal tissues
- ALS algorithm with 500 starts
- selection of model with 4 tissue clusters, 5 gene clusters and 2 components
- two tissue clusters largely pertained to tumor tissues and the two other ones to normal tissues

Overview:

- introduction
- principles
- example 1: existing model
- example 2: novel model
- discussion

Discussion

- principle of multiple nested reductions can be extended to:
- three- and higher-mode data
- more than two levels of reduction
- inner en outer reductions can fulfill different functions (e.g., outer ones may capture redundancies, and inner ones core substantive mechanisms)
- multiple nested reductions of a single data mode \neq simultaneous single reductions of several modes (as in classical two-mode clustering techniques and in methods for multimode data analysis)
- multiple nested reductions of a single data mode \neq interwoven categorical/dimensional reductions as in 'clustering \& disjoint principal component analyis' (Vichi \& Saporta, 2009)

Discussion (ctd)

- approach addresses problems as outlined at the start:

Discussion (ctd)

- approach addresses problems as outlined at the start:

- redundancies, dependencies

Discussion (ctd)

- approach addresses problems as outlined at the start:

- redundancies, dependencies
\rightarrow through outer reduction (no need for discarding information or for arbitrary choices)

Discussion (ctd)

- approach addresses problems as outlined at the start:

- redundancies, dependencies
\rightarrow through outer reduction (no need for discarding information or for arbitrary choices)
- computational bottlenecks

Discussion (ctd)

- approach addresses problems as outlined at the start:

- redundancies, dependencies
\rightarrow through outer reduction (no need for discarding information or for arbitrary choices)

- computational bottlenecks
\rightarrow see, e.g., inner GSVD to be applied to small matrix with centroids

Discussion (ctd)

- approach addresses problems as outlined at the start:

- redundancies, dependencies
\rightarrow through outer reduction (no need for discarding information or for arbitrary choices)

- computational bottlenecks
\rightarrow see, e.g., inner GSVD to be applied to small matrix with centroids
- displaying output prohibitive

Discussion (ctd)

- approach addresses problems as outlined at the start:

- redundancies, dependencies
\rightarrow through outer reduction (no need for discarding information or for arbitrary choices)

- computational bottlenecks
\rightarrow see, e.g., inner GSVD to be applied to small matrix with centroids

Iven.VanMechelen@psy.kuleuven.be

ppw.kuleuven.be/okp

thank you for your attention!

