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Basel Il and credit risk clustering

Regulatory Capital
Accurate regulatory capital calculation.

Credit Risk Bucketing
@ Step 1: Compute borrowers’ probability of default (py)
@ Step 2: Assign borrowers to groups (grades)
@ Step 3: Compute MCR for each grade (based on its p, )
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Basel Il and credit risk clustering

Using p,, instead of individual pxcauses a loss in precision.
g

T
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Approximation Error J

Meaningful assignment of borrowers to clusters

Choose appropriate size and number of clusters to minimize
over/understatement of MCR and allow statistical ex-post

validation
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[ ]
Actual number of defaults

Validate Actual Number of Defaults
Predicted correctly if DF € [D}, ; D]} ] with confidence 1-a
® D}, = ng-max(py —,0)

® D, =ng-min(p,+e,1)

Model actual defaults as binary variable

P =P (D}, < D < Dj,)




Ex-post validation
[ ]
Actual number of defaults

Validate Actual Number of Defaults
Predicted correctly if DF € [D}, ; D]} ] with confidence 1-a
® D}, = ng-max(py —,0)

® D, =ng-min(p,+e,1)

Binomial distribution

Df u —x o ngfk
Pint = kiogl (%)Pg (1 B pg) =1-a.
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Optimal buckets
[ ]
Objective functions

@ Objective function for minimizing within grades variance

] = 2
min Z Z (pc,g - pc,k) (1)
g keg
@ Objective function for minimizing regulatory capital

miny ">~ 1.06- |UL (pg) — UL (pi) 2)

9 keg



Feasible region

Optimal buckets
[ ]

Feasible region

Minimizing regulatory capital using the validation technique
(a=15%,e=1%)
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Optimal buckets
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Empirical Findings

Optimum backet setting
Within grades variace (left), Regulatory capital (right) \
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[ ]
Summary - Outlook

Summary
@ Minimum capital requirements to cover unexpected losses

@ Threshold Accepting to cluster loans with real-world
constraints

@ Optimal size and number of buckets based on ex-post
validation

Outlook
@ Relax default risk independence constraint
@ Alternative assumptions for actual default distributions
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Data description
@ portfolio of 93580
retail borrowers.
@ LGDs range between
0.17and 1.

@ pi vary from
0.000001% to 30%.

x
I
=N

IS

n W
o w o

Frequency
~

15

[¢] 0.05 0.1 0.15 0.2 0.25 03
Probabilities of default



Appendix

@ Enforced by constraint handling techniques
@ p, in bucket £ 0.03%
e Each bucket # 35% of total bank exposure
@ Considered in the structure of the algorithm

@ No bucket overlapping
@ Buckets correspond to all borrowers
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@ Generate a random candidate solution and determine its
objective function value
@ Repeat a predefined number of iterations
o Modify candidate solution and determine its objective
function value
@ Replace current solution with modified solution if new
solutions yields
@ An improved objective function value or
@ A deterioration that is smaller than some threshold
(predefined by a threshold sequence)
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Algorithm 1 Threshold Accepting Algorithm.
1: Initialize ng, ns, ,and 7r,r =1,2,...,ng
2: Generate at random a solution x° € [ajau] x [8184]
: forr=1to ngdo
4 fori=1tons_ do
5 Generate neighbor at random, x' € NV (x°)
6 if f(x") — f(x°) < 7, then
7 X0 =x'
8
9
10

S W

end if
end for
: end for
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@ Starting Candidate Solution
e For g buckets, select g-1 upper bucket thresholds from

actual pds
o Discrete search = Each solution constitutes a new partition

@ New Candidate Solution
o Determine some bucket threshold of current solution
randomly
@ Replace with new pd from interval [next lower threshold;
next higher threshold]
o Shrink interval linearly in the number of iterations;
[(1+1)—il/1
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@ Alter only one bucket threshold per iteration

@ New objective function differs from that of the current
solution only in contribution of two buckets

@ Only compute those two buckets’ fitness and update
objective function value of current solution

@ Consequence: Tremendous increase in search speed
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@ |dea: Use mean of last 100 weighted fitness differences (in
absolute values) as threshold T
o If last fitness differences were mainly
e improvements, T shrinks = Stay on path to (local) optimum
o deteriorations, T increases = Overcome (local) optimum
and search for a new one
@ Weights (wy, wp) for restrictive threshold sequence
o Fitness improvement (frequent and high at the beginning of
the search) = wy =i/l
o Fitness deterioration (frequent and high at the end of the
search) = wo =1 —i/l

@ Scale above means with (1-i/l) for further restrictiveness
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Algorithm 2 Pseudocode for TA with data driven generation of
threshold sequence.

1: Initialize /, Ls = (0, ..., 0) of length 100

2: Generate at random an initial solution x°, set 7 = f(x°)

3: fori=1to/do

4:  Generate at random x" € N(x°)

5: Delete first element of Ls

6: if f(x") — f(x°) < 0 then

7: add |f(x™) — f(x°)| - (i/]) as last element to Ls

8: else

9: add |f(x™) — f(x°)| - (1 —i/l) as last element to Ls
10:  endif

11:  r=1Ls-(1-i/l)

12:  if f(x") — f(x°) < 7 then
13: x¢=x"

14: end if

15: end for
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@ Both candidate solutions are feasible
o TA: Select the new candidate if f(g,) + T < f(gc)

@ One solution is feasible, select the feasible

@ No feasible solution

@ Select fewer violations
@ Select with regard to fitness

@ TA: Select the new candidate if f(gn) + T < f(9¢)
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@ Penalize candidate solutions’ objective value by a factor
A€ [1,3.7183] = f:(g9) = fu(g) - A

@ Arises in the number of iterations / and the degree of
. a
constraint violation a € [0;1] = A= (1 + exp(§)>
@ a=1,if

o all buckets besides one are empty, and
o EAD is concentrated in one bucket.

@ Select the new candidate if f;(gn) + T < fo(9c)
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Table: Objective function for minimizing within grades variance(1)

Best Mean Worst  s.d. q90% Freq
g=7
TA® 18.6836 18.6836 18.6836 3.6731-10° 18.6836 8/10
TA® 18.6552 24.4809 46.2984 8.2478 24.8221  1/10
g=10
TA? 97293 | 9.7293 9.7293 5.3490-10=7 9.7293 1/10
TA®  9.1118 10.3545 10.9233 0.8520 10.9108 1/10
g=13
TA®  6.6716 6.6716 6.6716 29353-10° 6.6716 1/10
TA? 6.5974 10.0515 14.5469 2.7151 12.4890 1/6
g=16
TA? 52454 52454 52454 1.9032-107° 52454 1/10
TA® 10.3647 10.3647 10.3647 0.0000 10.3647 11

4Actual number of defaults constraint
5Unexpected loss constraint
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Table: Objective function for minimizing unexpected losses (2)

Best Mean Worst  s.d. q90% Freq
9=7
TA® 6,228,874 6,228,874 6,228,874 9.8170-10"° 6,228,874 10/10
TA® 6,419,727 6,423,788 6,426,403 2,053 6,420,826 1/10
g=11
TA? 4,165,257 4,167,952 4,182,902 5,999 4,165,257 710
TA® 5534072 5,636,388 5,814,094 101,283 5,538,839 1/10
g=13
TA® 3,425,092 3,435,627 3,436,798 3,701.71 3,436,798 1/10
TA® 5192945 5,608,280 5,929,156 230,630 5,846,709 1/9
g=15
TA? 3,245,441 3,245,636 3,247,260 571.05 3,245,445 1/10
TA® 5,627,306 6,285,472 7,166,148 647,632 6,945,510 1/3

2Actual number of defaults constraint
bUnexpected loss constraint
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