Threshold Accepting for Credit Risk Assessment and Validation

M. Lyra¹ A. Onwunta P. Winker

COMPSTAT 2010

August 24, 2010

¹Financial support from the EU Commission through COMISEF is gratefully acknowledged

Introduction	Ex-post validation ○	Optimal buckets	Conclusion	Appendix

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Basel II and credit risk clustering
- Optimal size and number of clusters

2 Ex-post validation

Actual number of defaults

Optimal buckets

Conclusion

- Summary Outlook
- For further reading

Introduction	Ex-post validation	Optimal buckets	Conclusion	Appendix

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Basel II and credit risk clustering
- Optimal size and number of clusters

2 Ex-post validation

Actual number of defaults

Optimal buckets

4 Conclusion

- Summary Outlook
- For further reading

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Introduction o●ooooo	Ex-post validation ○	Optimal buckets	Conclusion	Appendix
Basel II and credit risk cl	lustering			

Regulatory Capital

Accurate regulatory capital calculation.

Credit Risk Bucketing

Step 1: Compute borrowers' probability of default (p_k)

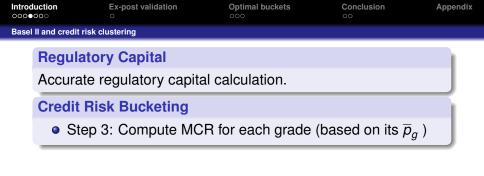
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

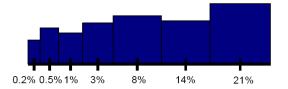
Introduction o●ooooo	Ex-post validation	Optimal buckets	Conclusion	Appendix
Basel II and credit risk cl	lustering			

Regulatory Capital

Accurate regulatory capital calculation.

Credit Risk Bucketing


Step 1: Compute borrowers' probability of default (p_k)


(日) (日) (日) (日) (日) (日) (日)

Introc 00●0	luction	Ex-post validation ○	Optimal buckets	Conclusion	Appendix
Base	II and credit risk of	clustering			
	Regulato	ry Capital			
	Accurate	regulatory capital	calculation.		
	Credit Ris	sk Bucketing			
	 Step 	2: Assign borrowe	ers to groups (gr	ades)	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

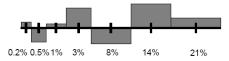
Introduction	Ex-post validation ○	Optimal buckets	Conclusion	Appendix
Basel II and credit risk c	lustering			

Regulatory Capital

Accurate regulatory capital calculation.

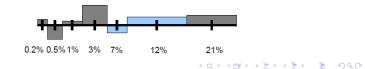
Credit Risk Bucketing

- Step 1: Compute borrowers' probability of default (p_k)
- Step 2: Assign borrowers to groups (grades)
- Step 3: Compute MCR for each grade (based on its \overline{p}_g)


◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Approximation Error

Introduction ○○○○○●○	Ex-post validation ○	Optimal buckets	Conclusion	Appendix
Basel II and credit risk of	lustering			


Approximation Error

Using \overline{p}_{g} instead of individual p_{k} causes a loss in precision.

Meaningful assignment of borrowers to clusters

Choose appropriate size and number of clusters to minimize over/understatement of MCR and allow statistical ex-post validation

Introduction	Ex-post validation	Optimal buckets	Conclusion	Appendix
000000				
Optimal size and numb	ber of clusters			

Optimal Credit Risk Rating System

Choose appropriate size and number of grades

(ex post)

Predicts defaults correctly

Introduction	Ex-post validation	Optimal buckets	Conclusion	Appendix
000000				
Optimal size and numb	ber of clusters			

Optimal Credit Risk Rating System

Choose appropriate size and number of grades

(ex post)

• Predicts defaults correctly

Introduction	Ex-post validation	Optimal buckets	Conclusion	Appendix
000000				
Optimal size and numb	ber of clusters			

Optimal Credit Risk Rating System

Choose appropriate size and number of grades

(ex post)

• Predicts defaults correctly

Introduction	Ex-post validation	Optimal buckets	Conclusion	Appendix

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction

- Basel II and credit risk clustering
- Optimal size and number of clusters

2 Ex-post validation

Actual number of defaults

Optimal buckets

4) Conclusion

- Summary Outlook
- For further reading

Introduction	Ex-post validation ●	Optimal buckets	Conclusion	Appendix
Actual number of defau	alts			

Validate Actual Number of Defaults Predicted correctly if $D_a^a \in [D^f : D_a^f ...]$ with c

Predicted correctly if $D_g^a \in [D_{g,l}^f; D_{g,u}^f]$ with confidence 1-lpha

•
$$D_{g,l}^{f} = n_g \cdot max(\overline{p}_g - \varepsilon, 0)$$

•
$$D_{g,u}^{f} = n_g \cdot min(\overline{p}_g + \varepsilon, 1)$$

Introduction	Ex-post validation ●	Optimal buckets	Conclusion	Appendix
Actual number of defau	llts			

Validate Actual Number of Defaults

Predicted correctly if $D_g^a \in [D_{g,l}^f; D_{g,u}^f]$ with confidence 1- α

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

•
$$D_{g,l}^{f} = n_{g} \cdot max(\overline{p}_{g} - \varepsilon, 0)$$

•
$$D_{g,u}^{f} = n_g \cdot min(\overline{p}_g + \varepsilon, 1)$$

Model actual defaults as binary variable

$$\mathbb{P}_{int} = \mathbb{P}\left(D_{g,l}^{f} \leq D_{g}^{a} \leq D_{g,u}^{f}\right)$$

Introduction	Ex-post validation ●	Optimal buckets	Conclusion	Appendix
Actual number of defau	llts			

Validate Actual Number of Defaults

Predicted correctly if $D_g^a \in [D_{g,l}^f; D_{g,u}^f]$ with confidence 1- α

•
$$D_{g,l}^{f} = n_{g} \cdot max(\overline{p}_{g} - \varepsilon, 0)$$

•
$$D_{g,u}^{f} = n_{g} \cdot min(\overline{p}_{g} + \varepsilon, 1)$$

Binomial distribution

$$\mathbb{P}_{int} = \sum_{k=D_{g,l}^{f}}^{D_{g,u}^{f}} {n_{g} \choose k} \overline{p}_{g}^{k} \left(1 - \overline{p}_{g}\right)^{n_{g}-k} \geq 1 - \alpha \,.$$

◆□▼ ▲□▼ ▲目▼ ▲目▼ ▲□▼

Introduction	Ex-post validation ○	Optimal buckets	Conclusion	Appendix

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction

- Basel II and credit risk clustering
- Optimal size and number of clusters

Ex-post validation

Actual number of defaults

Optimal buckets

Conclusion

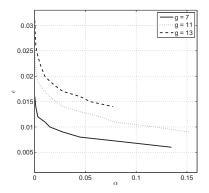
- Summary Outlook
- For further reading

Introduction	Ex-post validation ○	Optimal buckets ●○○	Conclusion	Appendix
Objective functions				

Objective function for minimizing within grades variance

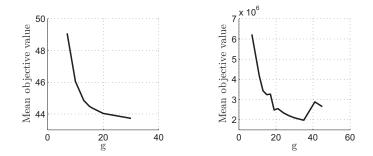
$$\min\sum_{g}\sum_{k\in g}\left(\overline{p}_{c,g}-p_{c,k}\right)^2\tag{1}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @


Objective function for minimizing regulatory capital

$$min\sum_{g}\sum_{k\in g}1.06\cdot\left|UL\left(\overline{p}_{g}\right)-UL\left(p_{k}\right)\right|$$
(2)

Introduction	Ex-post validation ○	Optimal buckets ○●○	Conclusion	Appendix
Feasible region				
Feesible				


Feasible region

Minimizing regulatory capital using the validation technique ($\alpha =$ 1.5%, $\varepsilon =$ 1%)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Ex-post validation ○	Optimal buckets	Conclusion	Appendix

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction

- Basel II and credit risk clustering
- Optimal size and number of clusters

2 Ex-post validation

Actual number of defaults

3 Optimal buckets

Conclusion

- Summary Outlook
- For further reading

Introduction	Ex-post validation ○	Optimal buckets	Conclusion ●○	Appendix
Summary - Outlook				

Summary

- Minimum capital requirements to cover unexpected losses
- Threshold Accepting to cluster loans with real-world constraints
- Optimal size and number of buckets based on ex-post validation

Outlook

- Relax default risk independence constraint
- Alternative assumptions for actual default distributions

(日) (日) (日) (日) (日) (日) (日)

Introduction	Ex-post validation	Optimal buckets	Conclusion ○●	Appendix
For further reading				

Onptimization Heuristics in Econometrics: Applications of Threshold Accepting. Wiley, New York, 2001.

- Basel Committee on Banking Supervision. Capital Standards a Revised Framework. Bank for International Settlements, 2006.
- M. Lyra and J. Paha and S. Paterlini and P. Winker. Optimization Heuristics for Determining Internal Rating Grading Scales. Computational Statistics & Data Analysis, Article in Press

M. Kalkbrener and A. Onwunta. Validation Structural Credit Portfolio Models. *In:Model Risk in Finance*, forthcoming.

Introduction	Ex-post validation	Optimal buckets	Conclusion ○●	Appendix
For further reading				

Onptimization Heuristics in Econometrics: Applications of Threshold Accepting. Wiley, New York, 2001.

- Basel Committee on Banking Supervision. Capital Standards a Revised Framework. Bank for International Settlements, 2006.
- M. Lyra and J. Paha and S. Paterlini and P. Winker. Optimization Heuristics for Determining Internal Rating Grading Scales. Computational Statistics & Data Analysis, Article in Press
- M. Kalkbrener and A. Onwunta. Validation Structural Credit Portfolio Models. *In:Model Risk in Finance*, forthcoming.

Introduction	Ex-post validation	Optimal buckets	Conclusion ○●	Appendix
For further reading				

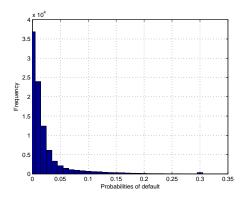
Onptimization Heuristics in Econometrics: Applications of Threshold Accepting. Wiley, New York, 2001.

- Basel Committee on Banking Supervision. Capital Standards a Revised Framework. Bank for International Settlements, 2006.
- M. Lyra and J. Paha and S. Paterlini and P. Winker. Optimization Heuristics for Determining Internal Rating Grading Scales.

Computational Statistics & Data Analysis, Article in Press.

M. Kalkbrener and A. Onwunta. Validation Structural Credit Portfolio Models In:Model Risk in Finance, forthcoming.

Introduction	Ex-post validation	Optimal buckets	Conclusion ○●	Appendix
For further reading				


Onptimization Heuristics in Econometrics: Applications of Threshold Accepting. Wiley, New York, 2001.

- Basel Committee on Banking Supervision. Capital Standards a Revised Framework. Bank for International Settlements, 2006.
- M. Lyra and J. Paha and S. Paterlini and P. Winker. Optimization Heuristics for Determining Internal Rating Grading Scales. *Computational Statistics & Data Analysis*, Article in Press.
- M. Kalkbrener and A. Onwunta. Validation Structural Credit Portfolio Models. *In:Model Risk in Finance*, forthcoming.

Introduction	Ex-post validation ○	Optimal buckets	Conclusion	Appendix

- portfolio of 93 580 retail borrowers.
- LGDs range between 0.17 and 1.
- *p_k* vary from
 0.000001% to 30%.

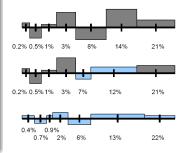
ヘロト 人間 とくほとくほとう

-

Introduction	Ex-post validation ○	Optimal buckets	Conclusion	Appendix

Credit Risk Assignment - Side Constraints

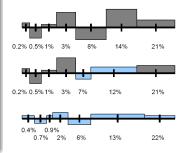
- Enforced by constraint handling techniques
 - \overline{p}_{q} in bucket $\leq 0.03\%$
 - Each bucket $\not\geq$ 35% of total bank exposure


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Considered in the structure of the algorithm
 - No bucket overlapping
 - Buckets correspond to all borrowers

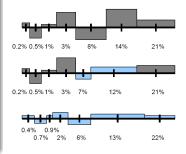
Introduction	Ex-post validation	Optimal buckets	Conclusion	Appendix

Optimal partition of k bank clients in g clusters


- Generate random starting thresholds (candidate solution)
- 2 Alter current candidate solution
- Accept or reject new candidate solution
- Repeat until a very good solution is found

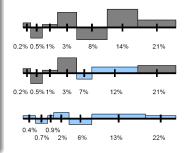
Introduction	Ex-post validation	Optimal buckets	Conclusion	Appendix

Optimal partition of k bank clients in g clusters


- Generate random starting thresholds (candidate solution)
- Alter current candidate solution
- Accept or reject new candidate solution
- Repeat until a very good solution is found

Introduction	Ex-post validation	Optimal buckets	Conclusion	Appendix

Optimal partition of k bank clients in g clusters


- Generate random starting thresholds (candidate solution)
- 2 Alter current candidate solution
- Accept or reject new candidate solution
- Repeat until a very good solution is found

Introduction	Ex-post validation	Optimal buckets	Conclusion	Appendix

Optimal partition of k bank clients in g clusters

- Generate random starting thresholds (candidate solution)
- 2 Alter current candidate solution
- Accept or reject new candidate solution
- Repeat until a very good solution is found

Introduction	Ex-post validation ○	Optimal buckets	Conclusion	Appendix

Threshold Accepting - The Basic Idea

- Generate a random candidate solution and determine its objective function value
- Repeat a predefined number of iterations
 - Modify candidate solution and determine its objective function value
 - Replace current solution with modified solution if new solutions yields
 - An improved objective function value or
 - A deterioration that is smaller than some threshold (predefined by a threshold sequence)

(日) (日) (日) (日) (日) (日) (日)

Introduction	Ex-post validation ○	Optimal buckets	Conclusion	Appendix

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Algorithm 1 Threshold Accepting Algorithm.

- 1: Initialize n_R , $n_{S_{\tau}}$, and τ_r , $r = 1, 2, \ldots, n_R$
- 2: Generate at random a solution $x^0 \in [\alpha_l \alpha_u] \times [\beta_l \beta_u]$
- 3: **for** r = 1 to n_B **do**
- for i = 1 to $n_{S_{\tau}}$ do 4:
- Generate neighbor at random, $x^1 \in \mathcal{N}(x^0)$ 5:

6: if
$$f(x^1) - f(x^0) < \tau_r$$
 then
7: $x^0 = x^1$

7:
$$x^{0}$$

- 8: end if
- 9: end for
- 10: end for

Introduction	Ex-post validation ○	Optimal buckets	Conclusion	Appendix

Threshold Accepting - Candidate Solutions

- Starting Candidate Solution
 - For g buckets, select g-1 upper bucket thresholds from actual pds
 - Discrete search \Rightarrow Each solution constitutes a new partition
- New Candidate Solution
 - Determine some bucket threshold of current solution randomly
 - Replace with new pd from interval [next lower threshold; next higher threshold]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Shrink interval linearly in the number of iterations; [(I+1)-i]/I

Introduction	Ex-post validation ○	Optimal buckets	Conclusion	Appendix

Threshold Accepting - Updating Objective Function Values

- Alter only one bucket threshold per iteration
- New objective function differs from that of the current solution only in contribution of two buckets
- Only compute those two buckets' fitness and update objective function value of current solution
- Consequence: Tremendous increase in search speed

(ロ) (同) (三) (三) (三) (○) (○)

Introduction	Ex-post validation ○	Optimal buckets	Conclusion	Appendix

Threshold Accepting - Threshold Sequence

- Idea: Use mean of last 100 weighted fitness differences (in absolute values) as threshold T
- If last fitness differences were mainly
 - improvements, T shrinks ⇒ Stay on path to (local) optimum
 - deteriorations, T increases \Rightarrow Overcome (local) optimum and search for a new one
- Weights (w₁, w₂) for restrictive threshold sequence
 - Fitness improvement (frequent and high at the beginning of the search) $\Rightarrow w_1 = i/I$
 - Fitness deterioration (frequent and high at the end of the search) $\Rightarrow w_2 = 1 i/I$
- Scale above means with (1-i/l) for further restrictiveness

Introduction	Ex-post validation	Optimal buckets	Conclusion	Appendix

Algorithm 2 Pseudocode for TA with data driven generation of threshold sequence.

- 1: Initialize I, $Ls = (0, \ldots, 0)$ of length 100
- 2: Generate at random an initial solution x^c , set $\tau = f(x^c)$
- 3. for i = 1 to / do
- 4: Generate at random $x^n \in \mathcal{N}(x^c)$
- 5: Delete first element of *I* s
- 6: if $f(x^n) - f(x^c) < 0$ then
- 7: add $|f(x^n) - f(x^c)| \cdot (i/I)$ as last element to Ls

8: else

9: add
$$|f(x^n) - f(x^c)| \cdot (1 - i/I)$$
 as last element to *Ls*

10: end if

$$\begin{array}{ll} |1: \quad \tau = Ls \cdot (1 - i/I) \\ |2: \quad \text{if } f(x^n) \quad f(x^c) < \tau \text{ th} \end{array}$$

12: If
$$f(x^n) - f(x^c) < \tau$$
 then
13: $x^c = x^n$

13:
$$x^{c} =$$

- 14. end if
- 15: end for

Introduction	Ex-post validation	Optimal buckets	Conclusion	Appendix

Constraint Handling - Rejection Technique in TA

- Both candidate solutions are feasible
 - TA: Select the new candidate if $f(g_n) + T \leq f(g_c)$
- One solution is feasible, select the feasible
- No feasible solution
 - Select fewer violations
 - Select with regard to fitness
 - TA: Select the new candidate if $f(g_n) + T \leq f(g_c)$

Introduction	Ex-post validation ○	Optimal buckets	Conclusion	Appendix

Constraint Handling - Penalty Technique in TA

- Penalize candidate solutions' objective value by a factor $A \in [1; 3.7183] \Rightarrow f_c(g) = f_u(g) \cdot A$
- A rises in the number of iterations *i* and the degree of constraint violation *a* ∈ [0; 1] ⇒ *A* = (1 + *exp*(^{*i*}/₁))^{*a*}

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

● *a* = 1, if

- all buckets besides one are empty, and
- EAD is concentrated in one bucket.
- Select the new candidate if $f_c(g_n) + T \leq f_c(g_c)$

Introduction	Ex-post validation ○	Optimal buckets	Conclusion	Appendix

Table: Objective function for minimizing within grades variance(1)

	Best	Mean	Worst	s.d.	q90%	Freq
			g = 7			
TA ^a	18.6836	18.6836	18.6836	3.6731 · 10 ⁻⁸	18.6836	8/10
TA ^b	18.6552	24.4809	46.2984	8.2478	24.8221	1/10
			g = 10			
TA ^a	9.7293	9.7293	9.7293	$5.3490 \cdot 10^{-7}$	9.7293	1/10
TA ^b	9.1118	10.3545	10.9233	0.8520	10.9108	1/10
			g = 13			
TA ^a	6.6716	6.6716	6.6716	$2.9353 \cdot 10^{-6}$	6.6716	1/10
TA ^b	6.5974	10.0515	14.5469	2.7151	12.4890	1/6
			<i>g</i> = 16			
TA ^a	5.2454	5.2454	5.2454	1.9032 · 10 ⁻⁶	5.2454	1/10
TA ^b	10.3647	10.3647	10.3647	0.0000	10.3647	1/1

^aActual number of defaults constraint

^bUnexpected loss constraint

Introduction	Ex-post validation ○	Optimal buckets	Conclusion	Appendix

Table: Objective function for minimizing unexpected losses (2)

		14/		000/	-
Best	Mean	Worst	s.a.	d80%	Freq
		<i>g</i> = 7			
6,228,874	6,228,874	6,228,874	9.8170 · 10 ^{−10}	6,228,874	10/10
6,419,727	6,423,788	6,426,403	2,053	6,420,826	1/10
		<i>g</i> = 11			
4,165,257	4,167,952	4,182,902	5,999	4,165,257	7/10
5,534,072	5,636,388	5,814,094	101,283	5,538,839	1/10
		<i>g</i> = 13			
3,425,092	3,435,627	3,436,798	3,701.71	3,436,798	1/10
5,192,945	5,608,280	5,929,156	230,630	5,846,709	1/9
		<i>g</i> = 15			
3,245,441	3,245,636	3,247,260	571.05	3,245,445	1/10
5,627,306	6,285,472	7,166,148	647,632	6,945,510	1/3
	6,419,727 4,165,257 5,534,072 3,425,092 5,192,945 3,245,441	6,228,874 6,419,727 6,423,788 4,165,257 5,534,072 5,636,388 3,425,092 5,608,280 3,245,441 3,245,636	$\begin{array}{c ccccc} g = 7 \\ \hline 6,228,874 \\ 6,228,874 \\ 6,419,727 \\ 6,423,788 \\ 6,426,403 \\ \hline g = 11 \\ \hline 4,165,257 \\ 4,167,952 \\ 5,534,072 \\ 5,636,388 \\ 5,814,094 \\ \hline g = 13 \\ \hline 3,425,092 \\ 5,608,280 \\ 5,929,156 \\ \hline g = 15 \\ \hline 3,245,441 \\ 3,245,636 \\ \hline 3,247,260 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^aActual number of defaults constraint

^bUnexpected loss constraint