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Motivation

In various fields of application we are confronted with lists
of distinct objects in rank order
The ordering might be due to a measure of strength of
evidence or to an assessment based on expert knowledge
or a technical device
The ranking might also represent some measurement
taken on the objects which might not be comparable
across the lists, for instance, because of different
assessment technologies or levels of measurement error

Our aim is
to consolidate such lists of common objects
to provide computationally tractable solutions, hence
appropriate algorithms and graphs
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General assumptions

Let us assume ` assessors or laboratories (j = 1,2, . . . , `)
assigning rank positions to the same set of N distinct
objects
Assessment of N distinct objects according to the extent to
which a particular attribute is present
All assessors, independently of each other, rank the same
objects between 1 and N on the basis of relative
performance
The ranking is from 1 to N, without ties
Missing assessments are allowed
The ` assessors produce ` rank lists τj

There are (`2 − `)/2 possible pairs of such lists τj
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The problem

In most applications, especially for large or huge numbers
N of objects, it is unlikely that consensus prevails
As result only the top-ranked objects matter (the remainder
ones show random ordering)
Quite often we observe a general decrease, not
necessarily monotone, of the probability for consensus
rankings with increasing distance from the top rank position

Typically there is reasonable conformity in the rankings for
the first, say k , elements of the lists: notion of top-k rank
lists

Tasks: Consensus in preference and voting, integration of
search engine results, meta-analysis of microarray
experiments
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A motivating example: U.S. college preference data

Avery et al. (2005) developed a statistical model which
allows the construction of a ranking of U.S. undergraduate
programs based on students’ revealed preferences
Data from 1357 high achieving students (90th percentile of
all SAT takers) seeking admission
N = 110 colleges and universities taking part in the
national ranking (matriculation tournaments)
For each college/university there are two rankings of
interest: matriculation rank (MR) and preference rank
(PR)
There are no missing assignments
Question: Is there a top list of conforming rank
assignments?
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A motivating example: U.S. college preference data

College Name MR PR
Harvard University (o1) 1 1

California Inst. of Technology (o2) 2 7
Yale University (o3) 3 5

Massachusetts Inst. of Technology (o4) 4 3
Stanford University (o5) 5 2
Princeton University (o6) 6 4

Brown University (o7) 7 6
Columbia University (o8) 8 8

Amherst College (o9) 9 13
Dartmouth College (o10) 10 11
Wellesley College (o11) 11 33

University of Pennsylvania (o12) 12 12
University of Notre Dame (o13) 13 14

Swarthmore College (o14) 14 10
Cornell University (o15) 15 15

Georgetown University (o16) 16 9
...

...
...
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The data stream input

The indicator variable takes Ij = 1 if the ranking given by
the second assessor to the object ranked j by the first is
not distant more than δ from j , and Ij = 0 otherwise
⇒ data stream
Concordance is assumed for an arbitrary object o when
its rank in τi is maximal δ index positions apart from its
rank in τj

The data stream depends on the distance parameter δ
δ is defined by the shift in index positions of a particular
object o in one list, say τi , with respect to the other list, say
τj

A sequence of data streams ordered according to δ
represents the reduction of discordance
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U.S. college data: data streams for δ = 0 to 5

Object MR PR δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5
o1 1 1 1 1 1 1 1 1
o2 2 7 0 0 0 0 0 1
o3 3 5 0 0 1 1 1 1
o1 4 3 0 1 1 1 1 1
o1 5 2 0 0 0 1 1 1
o1 6 4 0 0 1 1 1 1
o1 7 6 0 1 1 1 1 1
o1 8 8 1 1 1 1 1 1
o1 9 13 0 0 0 0 1 1
o10 10 11 0 1 1 1 1 1
o11 11 33 0 0 0 0 0 0
o12 12 12 1 1 1 1 1 1
o13 13 14 0 1 1 1 1 1
o14 14 10 0 0 0 0 1 1
o15 15 15 1 1 1 1 1 1
o16 16 9 0 0 0 0 0 0

#(zeros) 12 8 6 5 3 2
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Selection of k̂ for list truncation

Moderate deviation-based inference for random
degeneration in paired rank lists (Hall and Schimek, 2008,
2010)

For the estimation of the point of degeneration j0 into noise
independent Bernoulli random variables are assumed
A general decrease of the probability pj (need not be
monotone) for concordance of rankings with increasing
distance j from the top rank is assumed
A distance parameter δ and a tuning parameter ν are
required to account for the closeness of the assessors’
rankings and the degree of randomness in the
assignments
The algorithm represents a simplified mathematical
model;
It is embedded in an iterative scheme to account for
irregular rankings
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∆-plot for matriculation rank and preference rank of
U.S. colleges
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U.S. college preference data: inference results

δ choice based on ∆-plot
Sharp decline of #(zeros)’, especially for δ’s up to about
20 (around δ = 45 almost no discordance left)
Pilot sample size ν ≥ 4 (functions as smoothing parameter)
For δ = 10 and ν = 4 we obtain the smallest of all stable
results: ĵ0 = 16 (15 top ranking colleges)
For δ = 20 and ν = 28 we obtain ĵ0 = 71 (70 top ranking
colleges)
Both results make sense and depend on the goal of the
study (more than one result because of modest
separability)
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An application: meta-analysis of microarray data

Breast cancer data due to Sørlie et al. (2003)
Study goal: Identification of breast tumor subtypes from
gene expression measured by microarrays
Here we consider selected expression data from three
independent patient cohorts called Norway, Norway FU,
and Stanford, hybridized on different platforms
Only genes (unique gene symbols) common to all
platforms are analyzed
3 ranked lists, τ1, τ2, and τ3, each of length N = 5812

Our task:
Identification of a subset of genes supported by all 3
cohorts that can be used for further unsupervised analysis of
subtypes of breast cancer
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Estimates of j0 for a range of δ values, combining
pairwise the lists τ1, τ2, and τ3 (r = 1.2, C = 0.4)
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Aggregation map: Graphical integration of paired
ranked lists

Define a partial reference list τ0
1 ; anyone of the 2 lists with

maxj(k̂j) objects among all pairwise comparisons (τ0
1 gives

the ordering of the objects oi on the vertical axis of the plot)
The partial lists τ2, τ3, . . . , τ` are ordered from highest to
lowest by their individual kj when compared to the
reference list τ0

1 (one column per list)
In each cell we represent: (1) top-k membership, ’yes’ is
denoted by color ’grey’ and ’no’ by ’white’,
(2) distance of a current object oi ∈ τ0

1 from its position in
the other list, color scale from ’red’ identical to ’yellow’ far
distant (integer value denotes distance with negative sign
if to the left, and positive sign if to the right)
Implemented in R utilizing the grid add-on package of
Murrell (2006)
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Aggregation map for δ = 450, combining τ1, τ2, and τ3
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Summary and conclusions

Irregularities, typical for empirical ranked lists, can be
well represented by means of data streams
Data streams are distance-dependent: distance can be
evaluated via the ∆-plot
Data stream input is sufficient for (1) inference on the
degradation of information and for (2) the graphical
integration of top-ranked objects
The aggregation map, a new graphical tool, provides
additional insight into a top-k set of objects
The approach is computationally tractable and efficient
The procedures will soon be available in the R-package
TopKLists
The approach has already demonstrated its practical
value
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